Do Sounder Banks Make Calmer Water? The Link Between Regulations and Extreme Capital Flow Episodes

Kristin Forbes MIT-Sloan School of Management, NBER & CEPR

AEA Annual Meetings January 2019

Comments Today

Have tighter prudential and macroprudential regulations since 2008 reduced "capital flow waves"?

Key results

- Changes since GFC in relationship with global factors (& waves)
- Mixed evidence on impact of regulations
 - Higher bank capitalization ratios $\rightarrow \downarrow$ surges
 - Tighter macroprudential regulations \rightarrow less impact, \uparrow stops?
 - Different effects of bank-focused regulations on different flows

Implications

- Bank flows calmer, but may be more "chop" in other flows
- Sounder banks at core of financial system can reduce impact of any "waves"

Builds on Key Papers

> Literature on global financial cycle and if it has changed

- Rey, (2013), Miranda-Agrippino & Rey (2015)
- Bruno & Shin (2015)
- Scheubel, Stracca and Tille (2019)
- Converse, Levy-Yeyati & Williams (2019)
- Avdjiev, Gambacorta, Goldberg & Schiaffi (2019)

Literature on extreme capital flow movements/episodes

- Forbes & Warnock (2012, 2019), Scheubel et al. (2019)
- > Shifting composition of capital flows
 - Shin (2013), Cerutti & Claessens (2014), Avdjiev et al. (2019)
- How bank characteristics affect vulnerability to liquidity shocks
 - Bruno & Shin (2015), Buch & Goldberg (2015)
- Impact of regulations on international bank lending
 - Aiyar et al (2014), Forbes, Reinhardt & Wieledak (2017)

Waves / Extreme Capital Flow Episodes Forbes & Warnock (2012) Approach

Calculating a Surge or Stop

> Let C_t be a 4-quarter moving sum of gross capital inflows from foreigners (GINFLOW):

$$C_{t} = \sum_{i=0}^{3} GINFLOW_{t-i}$$
$$\Delta C_{t} = C_{t} - C_{t-4}$$

- ➤ A surge is when △C_t increases more than 1 standard deviation above its rolling historical mean
 - provided: ΔC_t increases at least 2 sd at some point in episode
 - the entire episode lasts more than 1 quarter
 - country has at least 4 years of data to calculate historic mean
- Stop is defined symmetrically

Incidence of Waves/Episodes

	<u> </u>	ull Samp	le	Eme	Emerging Market			
	1985-	2000-	2010-	1985-	2000-	2010-		
	2009	2007	2018	2009	2007	2018		
Surges	16%	21%	7%	14%	18%	9%		
Stops	14%	9%	8%	13%	10%	11%		
Flight	17%	22%	6%	17%	22%	7%		
Retrenchment	13%	10%	7%	11%	9%	9%		

Source: Forbes and Warnock (2019)

Drivers of Episodes

Forbes & Warnock (2012, 2019) estimate conditional probability of having a surge, stop, flight or retrenchment in a quarter

 $Prob(e_{it}=1) = F(\phi_t, \gamma_{it}, \alpha_{it})$

- *e_{it}* is dummy=1 for each episode (surge, stop, flight, retrenchment)
- ϕ_t : global factors
- γ_{it} : contagion variables
- α_{it} : domestic variables

Estimation issue: cdf of F(.) is skewed (85% of episodes=0)

- Use complimentary logarithmic estimator (cloglog) which assumes the cdf of F(.) is the extreme value distribution, F(z) = 1 exp [-exp(z)]
- Seemingly unrelated regression estimation to allow for crossepisode correlation in errors
 - Robust standard errors, clustered by country

Control Variables

Global variables:

- Global risk: VXO (log)
- Global interest rates; shadow short-term rate for US, Japan, Euro area & UK (Krippner's RBZ website)
- Global GDP growth (IMFs' WEO)
- Change in oil prices
- Regional contagion: episode in another country in same region

Domestic variables

- Domestic GDP growth
- GDP per capita
- Macroprudential policy: changes in 17 different tools over last 2 or 5 years (from iMapp database in Alam et al., 2019)
- Banking system strength: bank regulatory capital to risk-weighted assets or z-score (World Banks' GFDD)

Probability of Surges & Stops in Total Capital Flows From Abroad

	Full Period (1990-2018)			Post-GFC (2010-2018		
	Surges	Stops		Surges	Stops	
Global risk	-0.777**	1.081**		-0.550	0.298	
Global interest rates	0.133**	0.149**		0.104	0.230	
Global GDP growth	0.320**	-0.168**		-0.133	0.191	
Δ oil prices	0.001	0.001		0.007	-0.019**	
Regional contagion	0.668**	0.691**		0.694*	0.002	
Domestic GDP growth	0.021**	-0.072**		0.069	-0.083**	
GDP per capita	-0.000	-0.002		-0.009	-0.032**	
Observations	4,238	4,238		1,461	1,461	

Note: Similar framework and variables as Forbes and Warnock (2019)

Effect of Regulations on Probability of Surges & Stops *in Total Capital Flows*

Individual controls:	Surges	Stops	# obs
Δ macropru regs (2 yrs)	0.027	0.100**	4,099
Δ macropru regs (4 yrs)	-0.025	0.059**	3,808
Capital-asset ratio (risk-wtd)	-0.080**	0.008	3,135
Bank Z-score	-0.012	0.018**	3,590

Simultaneous controls:

Δ macropru regs (4 yrs)	-0.035	0.066**	3,019
Capital-asset ratio (risk-wtd)	-0.074**	0.016	
Bank Z-score	-0.010	0.015*	

Explanations?

- Short and unusual post-2008 period
- Insufficient tightening—especially limited use of macroprudential tools to date
- Endogeneity
- Different effects of bank-focused regulations on different types of capital flows

Effect of Regulations on Probability of Surges & Stops *in Bank & Debt Flows*

	Banking Flows			Debt Flows			
Individual controls:	Surges	Stops	# obs	Surges	Stops	# obs	
Δ macropru regs (2 yrs)	-0.010	0.022	4,099	-0.044	0.076*	4,059	
Δ macropru regs (4 yrs)	0.022	0.023	3,808	-0.036	0.070**	3,756	
<u>Simultaneous controls:</u>							
Δ macropru regs (4 yrs)	0.019	0.036	3,019	-0.061*	0.059**	3,018	
Capital-asset ratio (risk-wtd)	-0.067**	-0.035		-0.104**	-0.029		
Bank Z-score	-0.027**	0.008		-0.013	0.013*		

Supports work on shifting of risks from regulations focused on banks (Ahnert et al., 2019)

Incidence of Stop Episodes: Full Sample

Source: Forbes and Warnock (2019)

Incidence of Stop Episodes: Bank Flows – Full Sample

Incidence of Stop Episodes: Debt Flows – Full Sample

Incidence of Stop Episodes: Debt Flows – Emerging Markets

Conclusions

> Mixed evidence: impact of regulations on capital flow waves

- Better capitalized banks → fewer surges
- Tighter macroprudential regulations \rightarrow less impact
 - Not sufficiently tightened?
 - Shifted financial intermediation outside regulated sector?

Important context

- Primary goal of regulations: reduce amplification mechanisms
- Important even if no impact on incidence of waves

Even if the water is not calmer, waves should do less damage