Model Equilibrium Repo Runs Introduction

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Dynamic Coordination with Flexible Security Design

Emre Ozdenoren¹ Kathy Yuan² Shengxing Zhang³

¹LBS and CEPR, ²LSE and CEPR, ³LSE and CEPR

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Motivation				

- How does liquidity creation in a dynamic environment affect financial fragility when there are
 - limited commitment: without collateral borrowers cannot commit to paying back.
 - adverse selection on (dividend paying) collateral asset
- New financial fragility source via dynamic price feedback loop.
- Security design has implications on fragility of financial system.

ション ふゆ アメリア メリア しょうくしゃ

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Motivation				

- How does liquidity creation in a dynamic environment affect financial fragility when there are
 - limited commitment: without collateral borrowers cannot commit to paying back.
 - adverse selection on (dividend paying) collateral asset
- New financial fragility source via dynamic price feedback loop.
- Security design has implications on fragility of financial system.

ション ふゆ アメリア メリア しょうくしゃ

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Key Takeawa	ays			

• Two frictions: Limited commitment and adverse selection

• Dynamic (mis)coordination without security design

- Collateral asset resale price ameliorates adverse selection
- An asset that is a good (lousy) collateral has high (low) resale price, but high (low) resale price makes an asset a good (lousy) collateral.
- Leads to multiplicity and volatility in asset price and real output.
- Flexible security design facilitates dynamic coordination
 - Optimal security (short-term, asset-backed liquid debt) eliminates fragility
 - Haircut \Leftarrow adverse selection+heterogenous valuation (between borrower and lender)
 - Interest rate <= default risk + demand for liquidity
 - Slow security run and multiple equilibria ← rigidity of security design

Introduction Model Equilibrium Repo Runs Repo Properties Key Takeaways

- Two frictions: Limited commitment and adverse selection
- Dynamic (mis)coordination without security design
 - Collateral asset resale price ameliorates adverse selection
 - An asset that is a good (lousy) collateral has high (low) resale price, but high (low) resale price makes an asset a good (lousy) collateral.
 - Leads to multiplicity and volatility in asset price and real output.
- Flexible security design facilitates dynamic coordination
 - Optimal security (short-term, asset-backed liquid debt) eliminates fragility
 - Haircut \Leftarrow adverse selection+heterogenous valuation (between borrower and lender)
 - Interest rate <= default risk + demand for liquidity
 - Slow security run and multiple equilibria

 rigidity of security design
 rigidity (2)
 rigidity (2)
 rigidity (2)

Introduction Model Equilibrium Repo Runs Repo Properties Key Takeaways

- Two frictions: Limited commitment and adverse selection
- Dynamic (mis)coordination without security design
 - Collateral asset resale price ameliorates adverse selection
 - An asset that is a good (lousy) collateral has high (low) resale price, but high (low) resale price makes an asset a good (lousy) collateral.
 - Leads to multiplicity and volatility in asset price and real output.
- Flexible security design facilitates dynamic coordination
 - Optimal security (short-term, asset-backed liquid debt) eliminates fragility
 - Haircut \Leftarrow adverse selection+heterogenous valuation (between borrower and lender)
 - Interest rate \Leftarrow default risk + demand for liquidity
 - Slow security run and multiple equilibria ⇐ rigidity of security design

- Financial intermediaries and liquidity creation: Gorton and Pennacchi (90)
- Adverse selection: Akerlof (70), Myers and Majluf (84)
- Security design: De Marzo and Duffie (99), Biais and Mariotti (05)
- Role of collateral: Kiyotaki and Moore (97), Fostel and Geanakoplos (12), Simsek (13)
- Financial frictions and boom-bust cycles: Gorton and Ordonez (14), Kurlat (13)

ション ふゆ アメリア メリア しょうくしゃ

• Dynamic price feedback: Asriyan, Fuchs and Green (19)

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Agents				

- Two Agents
 - Agent B (banker/borrower);
 Agent I (intermediate goods supplier)
 - Both: a basic technology produces consumption goods 1-to-1 from labor at period end
 - Utility in period t is $U_t(x, l) = x l$
 - x: consumption; I: labor
 - Discount rate between periods $eta \in (0,1)$
- Agent B has a CRS z-technology which produces z > 1 units of consumption good from one intermediate good
- Agent / produces intermediate good 1-to-1 from labor
- Gains from trade:
 - Agent *B* would like to borrow unlimited amount of intermediate goods from agent *I*.
 - ${\, \bullet \,}$ because returns to scale of z-technology is z>1
- ... but agent B's promise to pay back is not enforceable

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Agents				

- Two Agents
 - Agent B (banker/borrower);
 Agent I (intermediate goods supplier)
 - Both: a basic technology produces consumption goods 1-to-1 from labor at period end
 - Utility in period t is $U_t(x, l) = x l$
 - x: consumption; I: labor
 - Discount rate between periods $eta \in (0,1)$
- Agent B has a CRS z-technology which produces z > 1 units of consumption good from one intermediate good
- Agent I produces intermediate good 1-to-1 from labor
- Gains from trade:
 - Agent *B* would like to borrow unlimited amount of intermediate goods from agent *I*.
 - ${\ensuremath{\, \circ }}$ because returns to scale of z-technology is z>1

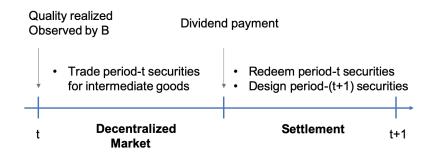
Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Agents				

- Two Agents
 - Agent B (banker/borrower);
 Agent I (intermediate goods supplier)
 - Both: a basic technology produces consumption goods 1-to-1 from labor at period end
 - Utility in period t is $U_t(x, l) = x l$
 - x: consumption; I: labor
 - Discount rate between periods $eta \in (0,1)$
- Agent B has a CRS z-technology which produces z > 1 units of consumption good from one intermediate good
- Agent I produces intermediate good 1-to-1 from labor
- Gains from trade:
 - Agent *B* would like to borrow unlimited amount of intermediate goods from agent *I*.
 - because returns to scale of z-technology is z>1

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Agents				

- Two Agents
 - Agent B (banker/borrower);
 Agent I (intermediate goods supplier)
 - Both: a basic technology produces consumption goods 1-to-1 from labor at period end
 - Utility in period t is $U_t(x, l) = x l$
 - x: consumption; I: labor
 - Discount rate between periods $eta \in (0,1)$
- Agent B has a CRS z-technology which produces z > 1 units of consumption good from one intermediate good
- Agent I produces intermediate good 1-to-1 from labor
- Gains from trade:
 - Agent *B* would like to borrow unlimited amount of intermediate goods from agent *I*.
 - because returns to scale of z-technology is z > 1
- ... but agent B's promise to pay back is not enforceable

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Assets and	securities			


• Risky assets

- Low distribution $F_L(s)$ w.p. λ
- High distribution $F_H(s)$ w.p. 1λ
- Agent B observes asset quality
- Quality iid over time
- Securities backed by assets

$$\sum_{j} y^{j}(s) \leq s + \phi_{t}, orall s \in [s_{L}, s_{H}],$$

 $y^{j}(s)$ nonnegative and increasing in s

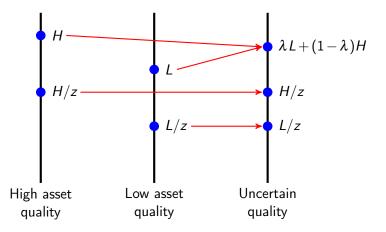
ション ふゆ アメリア メリア しょうくしゃ

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Timeline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Market for Each Security

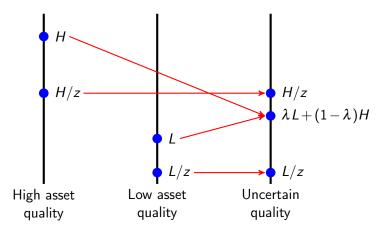
- A secondary market for each private IOU
- Multiple buyers matched to each bank
- Buyers make simultaneous price offers
 Bank chooses how much to sell at the best offer
 Bertrand competition ⇒ price = reservation value of the bank


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

No communication across markets

 Introduction
 Model
 Equilibrium
 Repo Runs
 Repo Properties

 Pooling:
 Liquid Security


Reservation price of agent B and agent Is

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Reservation price of agent B and agent Is

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Introduction Model Equilibrium Repo Runs Repo Properties Equilibrium in Security j's Market

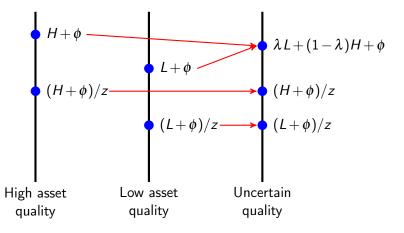
• Index of info. insensitivity: higher R_t^j , lower adverse selection

$$R_t^j \equiv \frac{E_L y_t^j}{E_H y_t^j}$$

うして ふゆう ふほう ふほう うらつ

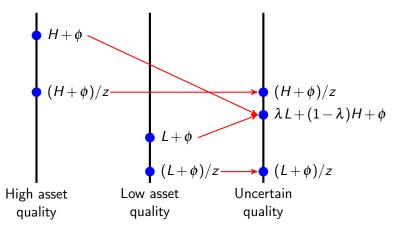
If R^j_t > ζ ≡ 1 − (z − 1)/λz, pooling eq. in market j
both high and low B types sell
q^j_t = λE_Ly^j_t + (1 − λ)E_Hy^j_t
If R^j_t < ζ, separating eq. in market j
only low type sells
q^j_t = E_Ly^j_t

How does security design affect financial fragility?

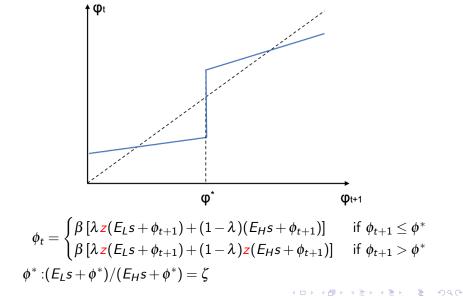

Benchmark

- only equity backed by the collateral
- Flexible Security Design
 - monotone securities
 - update security design each period
- Rigid Security Design
 - monotone securities
 - update security design with some probability

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●


Reservation price of agent B and agent Is

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @



Reservation price of agent B and agent Is

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Fragility of the Dynamic Lemons Market

Fragility of Dynamic Lemons Market

- There can be multiple equilibria in a dynamic lemons market.
- Asset prices are self-fulfilling.
- Occurs when $\frac{E_L s + \phi^S}{E_H s + \phi^S} < \zeta \le \frac{E_L s + \phi^P}{E_H s + \phi^P}$.
- Plugging for ϕ_S and ϕ_P we obtain the condition for multiplicity as $(0 < \kappa_P < \kappa_S < 1)$

$$\kappa_P < \frac{E_L s}{E_H s} < \kappa_S,$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

For intermediate values of $E_L s / E_H s$ both equilibria exist.

Fragility of Dynamic Lemons Market

- There can be multiple equilibria in a dynamic lemons market.
- Asset prices are self-fulfilling.
- Occurs when $\frac{E_L s + \phi^S}{E_H s + \phi^S} < \zeta \leq \frac{E_L s + \phi^P}{E_H s + \phi^P}$.
- Plugging for ϕ_S and ϕ_P we obtain the condition for multiplicity as $(0 < \kappa_P < \kappa_S < 1)$

$$\kappa_P < \frac{E_L s}{E_H s} < \kappa_S,$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

For intermediate values of $E_L s / E_H s$ both equilibria exist.

Introduction Model Equilibrium Repo Runs Repo Properties
Fragility of Dynamic Lemons Market

Fragility of Dynamic Lemons Market

- There can be multiple equilibria in a dynamic lemons market.
- Asset prices are self-fulfilling.
- Occurs when $\frac{E_L s + \phi^S}{E_H s + \phi^S} < \zeta \leq \frac{E_L s + \phi^P}{E_H s + \phi^P}$.
- Plugging for ϕ_S and ϕ_P we obtain the condition for multiplicity as $(0 < \kappa_P < \kappa_S < 1)$

$$\kappa_P < rac{E_L s}{E_H s} < \kappa_S,$$

For intermediate values of $E_L s / E_H s$ both equilibria exist.

Model Equilibrium Repo Runs Introduction **Repo** Properties

Fragility of Dynamic Lemons Market

- There can be multiple equilibria in a dynamic lemons market.
- Asset prices are self-fulfilling.
- Occurs when $\frac{E_L s + \phi^S}{E_H s + \phi^S} < \zeta \leq \frac{E_L s + \phi^P}{E_H s + \phi^P}$.
- Plugging for ϕ_S and ϕ_P we obtain the condition for multiplicity as $(0 < \kappa_P < \kappa_S < 1)$

$$\kappa_P < rac{E_L s}{E_H s} < \kappa_S,$$

For intermediate values of E_{LS}/E_{HS} both equilibria exist.

Introduction

Model

Equilibrium

Repo Runs

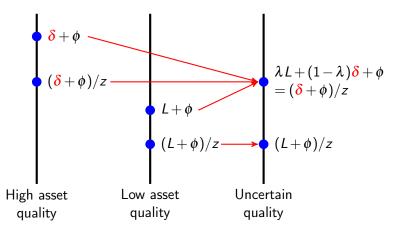
Repo Properties

うして ふゆう ふほう ふほう うらつ

Optimality of Repo

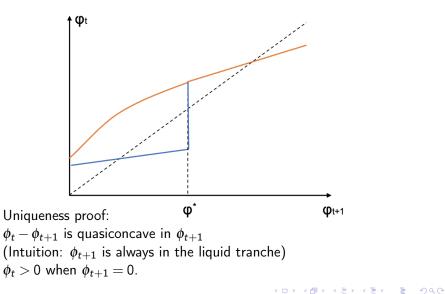
Proposition

Assume that $\frac{f_L(s)}{f_H(s)}$ is decreasing in *s*. The optimal securities are unique and include a liquid repo contract y_D and an illiquid equity contract such that


 $y_D(s) = \phi + \min(s, \delta),$ $y_E(s) = \max(s - \delta, 0),$

for some $\delta \in (s_L, s_H)$.

With more than N quality levels, N tranches in equilibrium.



Reservation price of agent B and agent Is

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction Model Equilibrium Repo Runs Repo Properties Feedback Loop $\phi(\delta)$

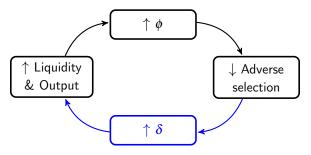


Figure: Asset Price ϕ and Liquid Debt Face Value $\phi + \delta$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Discussions on Fragility and Robustness

- Unravelling results when flexible security design option is introduced.
 - Suppose low asset price,
 - tranche a small senior liquid debt, asset price \uparrow , which allows more liquid tranching $\delta \uparrow$, which leads to asset price \uparrow , ... converges to the unique optimal.
- Unique equilibrium
 - improve the unique separating equilibrium by allowing tranching out liquid debt.
 - select the optimal pooling equilibrium in the multiple equilibria region.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Rigidity in Security Design

- Suppose agent B can only update design with some probability
- Security design is rigid \Rightarrow securities are long-lived
- $\bullet\,$ Dynamic lemons problem \Rightarrow fragility of the securities market

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

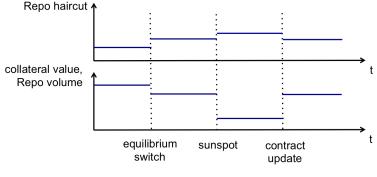


Figure: Dynamics of Repo Run.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Implementation as Short-Term Repo

- Repo terms (two point distributions for F_L and F_H for closed form solutions)
 - haircut
 - interest rate
- Persistent (asset quality or productivity) fundamentals
 - quanitify the effect of shocks to fundamentals to prices/output

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Implementation as Short-Term Repo

- Repo terms (two point distributions for F_L and F_H for closed form solutions)
 - haircut
 - interest rate
- Persistent (asset quality or productivity) fundamentals
 - quanitify the effect of shocks to fundamentals to prices/output

Example: Two-point Distribution

- High quality asset pays 1 w.p. π_H and 0 otherwise.
- Low quality asset pays 1 w.p. π_1 and 0 otherwise.
- $0 < \pi_I < \pi_H < 1$.
- Debt contract: pays ϕ if 0 dividend and $\phi + \delta$ if 1 dividend.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

•
$$\frac{d\delta}{d\lambda} < 0$$
 and $\frac{d\phi}{d\lambda} < 0$
• $\frac{d\delta}{dz} > 0$ and $\frac{d\phi}{dz} > 0$

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Example:	Two-point Di	stribution		

- High quality asset pays 1 w.p. π_H and 0 otherwise.
- Low quality asset pays 1 w.p. π_L and 0 otherwise.
- $0 < \pi_L < \pi_H < 1.$
- Debt contract: pays ϕ if 0 dividend and $\phi + \delta$ if 1 dividend.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

•
$$\frac{d\delta}{d\lambda} < 0$$
 and $\frac{d\phi}{d\lambda} < 0$
• $\frac{d\delta}{dz} > 0$ and $\frac{d\phi}{dz} > 0$

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Example:	Two-point D	istribution		

- High quality asset pays 1 w.p. π_H and 0 otherwise.
- Low quality asset pays 1 w.p. π_L and 0 otherwise.
- $0 < \pi_L < \pi_H < 1.$
- Debt contract: pays ϕ if 0 dividend and $\phi + \delta$ if 1 dividend.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

•
$$\frac{d\delta}{d\lambda} < 0$$
 and $\frac{d\phi}{d\lambda} < 0$
• $\frac{d\delta}{dz} > 0$ and $\frac{d\phi}{dz} > 0$

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Example:	Two-point D	istribution		

- High quality asset pays 1 w.p. π_H and 0 otherwise.
- Low quality asset pays 1 w.p. π_L and 0 otherwise.
- $0 < \pi_L < \pi_H < 1$.
- Debt contract: pays ϕ if 0 dividend and $\phi + \delta$ if 1 dividend.

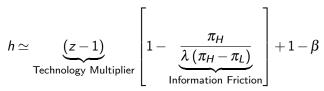
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

•
$$\frac{d\delta}{d\lambda} < 0$$
 and $\frac{d\phi}{d\lambda} < 0$
• $\frac{d\delta}{d\lambda} > 0$ and $\frac{d\phi}{d\lambda} > 0$

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Example: Two-point Distribution				

- High quality asset pays 1 w.p. π_H and 0 otherwise.
- Low quality asset pays 1 w.p. π_L and 0 otherwise.
- $0 < \pi_L < \pi_H < 1$.
- Debt contract: pays ϕ if 0 dividend and $\phi + \delta$ if 1 dividend.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ


•
$$\frac{d\delta}{d\lambda} < 0$$
 and $\frac{d\phi}{d\lambda} < 0$
• $\frac{d\delta}{dz} > 0$ and $\frac{d\phi}{dz} > 0$

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Repo terms				

• Repo rate:

- impact of adverse selection diminishes when $\pi_H
 ightarrow 1$
- Repo haircut

- Incorporates two views of haircut:
- Fostel & Geanakoplos; Simsek: heterogeneous valuation/difference of opinion
- Dang & Gorton & Holmstrom & Ordonez: information sensitivity.

Introduction	Model	Equilibrium	Repo Runs	Repo Properties
Conclusion				

Optimal security design in a dynamic lemons market

- When the design is updated frequently,
 - Unique equilibrium with liquid repo contract
 - Eliminates fragility and Pareto improves welfare
- When the design is rigid, repo run may emerge
- Amplification of shocks to asset quality and productivity

うして ふゆう ふほう ふほう うらつ

• Haircut more information sensitive than interest rate