Technological Change and Occupations over the Long Run

L. Kogan¹ D. Papanikolaou² L. Schmidt³ B. Seegmiller³

¹MIT Sloan and NBER

²Kellogg School of Management and NBER

³MIT Sloan

Motivation

- A large set of questions require us to measure innovation outcomes.
 - Decline in measured productivity: Is innovative output low? Or is the relation with productivity weakened?
 - ► What is the relation between innovation and worker outcomes?
- To answer these questions we need:
 - a measure of innovation that is comparable across time and space
 - a way to identify exposure to technical change at the level of an individual worker
- This paper:
 - We create time-series indicators of technological change at the level of worker occupations

What we do

- We build on Kelly et al. (2018) to identify important patents by parsing the text of all 9 million patents issued by the USPTO since 1836.
 - We posit that important patents are those that are distinct from prior patents but are closely related to future patents.
 - Our technology indicators correlate with measured productivity at the aggregate and sectoral level
- For each patent, we identify a group of occupations that are likely to be significantly affected by the underlying invention.
 - Occupations exposed to technological change experienced declines in employment and wages.
- Implementation requires us to measure distance between patent documents and occupation task descriptions.
 - We do so using advances in text analysis

Measuring technological innovation

- Innovation is hard to measure directly.
 - ► How do you measure ideas? R&D spending measures inputs not outputs.
- Our starting goal is patents. Why?
 - By definition, patents relate to new inventions (though not all valuable inventions are patentable)
 - They measure output not inputs (important if you think research productivity is slowing down)
- However, not all patents are equally valuable inventions.
 - ▶ pro-patent shift in US policy (Hall and Zeidonis 2001)
- To create meaningful indices of innovation, we need to weigh important patents differently from ones that are trivial.

Some patents represent important breakthroughs...

History of Biotech: How the "First" Biotech Patent Generated Millions

MARIE GODAR (HTTPS://LABIOTECH.EU/AUTHOR/MARIE/) - 🛱 03/12/2015 💿 4 MINS - MEDICAL (HTTPS://LABIOTECH.EU/MEDICAL/)

The Cohen-Boyer patents were now issued 35 years ago at Stanford University... so what were they and how did they shape the Modern Biotechnology Field?

DNIVERSITY Recombinant DNA (rDNA) products provided a new technology platform for a range of industries, resulting in over US\$35 billion in sales for an estimated 2,442 new products.

...while others are not so useful

US006368227B1

(12) United States Patent Olson

(10) Patent No.: US 6,368,227 B1 (45) Date of Patent: Apr. 9, 2002

(54) METHOD OF SWINGING ON A SWING

- (76) Inventor: Steven Olson, 337 Otis Ave., St. Paul, MN (US) 55104
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 09/715,198
- (22) Filed: Nov. 17, 2000
- (51) Int. Cl.⁷ A63G 9/00

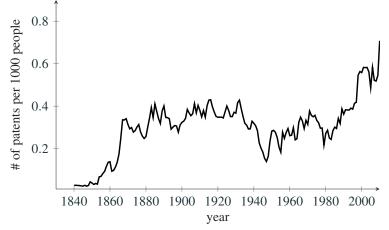
(56) References Cited

U.S. PATENT DOCUMENTS

242,601 A * 6/1881 Clement 472/118

5,413,298 A * 5/1995 Perreault 248/228

* cited by examiner


Primary Examiner—Kien T. Nguyen (74) Attorney, Agent, or Firm—Peter Lowell Olson

(57) ABSTRACT

A method of swing on a swing is disclosed, in which a user positioned on a standard swing suspended by two chains from a substantially horizontal tree branch induces side to side motion by pulling alternately on one chain and then the other.

4 Claims, 3 Drawing Sheets

Total patent count, per capita

Clearly we need to weigh patents by their importance.

• Q: Can we identify important patents and relate them to worker occupations using text alone?

Broad Idea

- 1. We identify significant patents as those that:
 - are distinct from previous patents but are related to subsequent patents (i.e., they are novel and impactful)
 - ► **Implementation:** We need to measure the similarity between a given patent and prior and subsequent patents (within a window).
- 2. We identify the exposure of occupation *j* to technology as
 - The number of important patents that are related to the tasks occupation j performs
 - ► Implementation: We need to measure the similarity between a given patent and occupation task descriptions (ONET/DOT)

Occupation Task Description: Example

Summary Report for: 13-2072.00 - Loan Officers

Evaluate, authorize, or recommend approval of commercial, real estate, or credit loans. Advise borrowers on financial status and payment methods. Includes mortgage loan officers and agents, collection analysts, loan servicing officers, and loan underwriters.

Sample of reported job titles: Business Banking Officer, Commercial Banker, Commercial Loan Officer, Corporate Banking Officer, Loan Officer, Mortgage Loan Officer, Mortgage Loan Originator, Portfolio Manager, Relationship Manager

View report:	Summary	Details	Custom	
Tasks Technology S	ikills Tools Use	d Knowledge	Skills Abilities	Work Activities Detailed Work Activities Work Context Job Zone Education Credentials
Interests Work Style	as Work Value	Related Occu		8 Employment Job Openings Additional Information

Tasks

All 21 displayed

- O Analyze applicants' financial status, credit, and property evaluations to determine feasibility of granting loans.
- Obtain and compile copies of loan applicants' credit histories, corporate financial statements, and other financial information.
- O Meet with applicants to obtain information for loan applications and to answer questions about the process.
- Explain to customers the different types of loans and credit options that are available, as well as the terms of those services.
- Review loan agreements to ensure that they are complete and accurate according to policy.
- Approve loans within specified limits, and refer loan applications outside those limits to management for approval.
- Handle customer complaints and take appropriate action to resolve them.
- Stay abreast of new types of loans and other financial services and products to better meet customers' needs.
- Review and update credit and loan files.
- Submit applications to credit analysts for verification and recommendation.
- Compute payment schedules.
- O Analyze potential loan markets and develop referral networks to locate prospects for loans.
- O Set credit policies, credit lines, procedures and standards in conjunction with senior managers.
- Confer with underwriters to aid in resolving mortgage application problems.
- O Market bank products to individuals and firms, promoting bank services that may meet customers' needs.
- O Work with clients to identify their financial goals and to find ways of reaching those goals.
- O Negotiate payment arrangements with customers who have delinquent loans.
- Prepare reports to send to customers whose accounts are delinquent, and forward irreconcilable accounts for collector action.

Updated 2019

Bright Outlook

Occupation Task Description: Example

Summary Report for: 19-3011.00 - Economists

Updated 2019

Conduct research, prepare reports, or formulate plans to address economic problems related to the production and distribution of goods and services or monetary and fiscal policy. May collect and process economic and statistical data using sampling techniques and econometric methods.

Sample of reported job titles: Economic Analyst, Economic Consultant, Economic Development Specialist, Economist, Forensic Economist, Project Economist, Research Analyst, Research Associate, Revenue Research Analyst, Tax Economist

Also see: Environmental Economists

View report:	Summary		Details		Custom	
Taske Tashnolony Skills Tools San Konwladna Skills Abilitias Work Activitias Datailed Work Activitias Work Contavt Joh Zona Education Credentials						

Tasks | Technology Skills | Tools Used | Knowledge | Skills | Abilities | Work Activities | Detailed Work Activities | Work Context | Job Zone | Education | Credentials Interests | Work Styles | Work Values | Related Occupations | Wages & Employment | Job Openings | Additional Information

Tasks

All 11 displayed

- Study economic and statistical data in area of specialization, such as finance, labor, or agriculture.
- Ocnduct research on economic issues and disseminate research findings through technical reports or scientific articles in journals.
- Compile, analyze, and report data to explain economic phenomena and forecast market trends, applying mathematical models and statistical techniques.
- Supervise research projects and students' study projects.
- Teach theories, principles, and methods of economics.
- Study the socioeconomic impacts of new public policies, such as proposed legislation, taxes, services, and regulations.
- O Formulate recommendations, policies, or plans to solve economic problems or to interpret markets.
- Explain economic impact of policies to the public.
- Provide advice and consultation on economic relationships to businesses, public and private agencies, and other employers.
- Forecast production and consumption of renewable resources and supply, consumption, and depletion of non-renewable resources.
- Develop economic guidelines and standards and prepare points of view used in forecasting trends and formulating economic policy.

Patent Text: Examples

Uı	nited S	tates Patent [19]	[11] 4,237,224		
Coh	en et al.		[45] Dec. 2, 1980		
[54]	BIOLOGI	FOR PRODUCING CALLY FUNCTIONAL LAR CHIMERAS	Mertz et al., Proc. Nat. Acad. Sci. USA, vol. 69, pp 3370-3374, Nov. 1972. Cohen, et al., Proc. Nat. Acad. Sci. USA, vol. 70, pp		
[75]	Inventors:	Stanley N. Cohen, Portola Valley; Herbert W. Boyer, Mill Valley, both of Calif.	1293-1297, May 1973. Cohen et al., Proc. Nat. Acad. Sci. USA, vol. 70, pp 3240-3244, Nov. 1973. Chang et al., Proc. Nat. Acad. Sci, USA, vol. 71, pp		
[73]	Assignee:	Board of Trustees of the Leland Stanford Jr. University, Stanford, Calif.	1030-1034, Apr. 1974. Ullrich et al., Science vol. 196, pp. 1313-1319, Jun. 1977.		
[21]	Appl. No.:	1,021	Singer et al., Science vol. 181, p. 1114 (1973). Itakura et al., Science vol. 198, pp. 1056-1063 Dec.		
[22]	Filed:	Jan. 4, 1979	1977. Komaroff et al., Proc. Nat. Acad. Sci. USA, vol. 75, pp		
	Rela	ted U.S. Application Data	3727–3731, Aug. 1978. Chemical and Engineering News, p. 4, May 30, 1977. Chemical and Engineering News, p. 6, Sep. 11, 1978. <i>Primary Examiner</i> —Alvin E. Tanenholtz <i>Attorney, Agent, or Firm</i> —Bertram I. Rowland		
[63]	which is a May 17, 19	n-in-part of Ser. No. 959,288, Nov. 9, 1978, continuation-in-part of Ser. No. 687,430, 76, abandoned, which is a continuation-in- No. 520,691, Nov. 4, 1974.			
[51]	Int. Cl.3		[57] ABSTRACT		
[52]	U.S. Cl 435/231	435/68; 435/172; ; 435/183; 435/317; 435/849; 435/820; 5/207; 260/112.5 S; 260/27R; 435/212	Method and compositions are provided for replication and expression of exogenous genes in microorganisms. Plasmids or virus DNA are cleaved to provide linear		
[58]		arch 195/1, 28 N, 28 R, 112, 195/78, 79; 435/68, 172, 231, 183	DNA having ligatable termini to which is inserted a gene having complementary termini, to provide a bio- logically functional replicon with a desired phenotypi-		
[56]		References Cited	cal property. The replicon is inserted into a microor-		

ganism cell by transformation. Isolation of the transfor-

mants provides cells for replication and expression of

the DNA molecules present in the modified plasmid. The method provides a convenient and efficient way to

[56] References Cited

U.S. PATENT DOCUMENTS

3,813,316 5/1974 Chakrabarty 195/28 R

OTHER PUBLICATIONS

10

1

PROCESS FOR PRODUCING BIOLOGICALLY FUNCTIONAL MOLECULAR CHIMERAS

The invention was supported by generous grants of 5 NIH, NSF and the American Cancer Society.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuatin-in-part of applicatin 10 Ser. No. 959,288, filed Nov. 9, 1978, which is a continuation of application Ser. No. 687,430 filed May 17, 1976, now abandoned, which was a continuation-in-part of application Ser. No. 520,691, filed Nov. 4, 1974, now abandoned.

BACKGROUND OF THE INVENTION

Field of the Invention

Although transfer of plasmids among strains of E. coli and other Enterobacteriaceae has long been accom- 20 plished by conjugation and/or transduction, it has not been previously possible to selectively introduce particular species of plasmid DNA into these bacterial hosts or other microorganisms. Since microorganisms that have been transformed with plasmid DNA contain au- 25 tonomously replicating extrachromosomal DNA species having the genetic and molecular characteristics of the parent plasmid, transformation has enabled the selective cloning and amplification of particular plasmid genes. 30

The ability of genes derived from totally different biological classes to replicate and be expressed in a particular microorganism permits the attainment of

4.237.224

2 DESCRIPTION OF THE SPECIFIC EMBODIMENTS

The process of this invention employs novel plasmids, which are formed by inserting DNAhaving one or more intact genes into a plasmid in such a location as to permit retention of an intact replicator locus and system (replicon) to provide a recombinant plasmid molecule. The recombinant plasmid molecule will be referred to as a "hybrid" plasmid or plasmid "chimera." The plasmid chimera contains genes that are capable of expressing at least one phenotypical property. The plasmmid chimera is used to transform a susceptible and competent microorganism under conditions where transformation occurs. The microorganism is then grown under conditions which allow for separation and harvesting of transformants that contain the plasmid chimera.

The process of this invention will be divided into the following stages:

I. preparation of the recombinant plasmid or plasmid chimera-

II. transformation or preparation of transformants; and

III. replication and transcription of the recombinant plasmid in transformed bacteria.

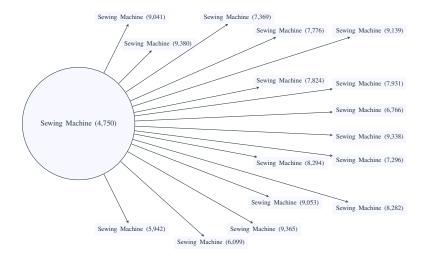
Preparation of Plasmid Chimera

In order to prepare the plasmid chimera, it is necessary to have a DNA vector, such as a plasmid or phage, which can be cleaved to provide an intact replicator locus and system (replicon), where the linear segment

Text Analysis Basics: Representing Text as Data

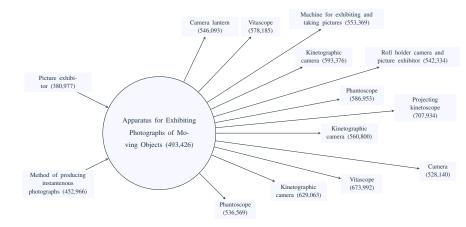
Approach 1: Represent document as sparse word vectors

- For two documents *i* and *j*, we construct *V_i* and *V_j* as a (sparse) word vector of length *W* (i.e. the size of the set union for terms in (*i*,*j*))
 - Example: $D1 = \{ \text{dog}, \text{eat}, \text{food} \}$ and $D2 = \{ \text{cat}, \text{eat}, \text{food} \}$ leads to $V_1 = [1, 0, 1, 1]$ and $V_2 = [0, 1, 1, 1]$
- This 'bag of words' approach works well when the two documents are written in the same 'language', for instance when they contain well defined technical terms.
- We can measure similarity across documents based on a distance measure (cosine similarity) between V₁ and V₂.
 - ► We will use this approach when measuring the distance between two patent documents.
 - ► Not all words are equally informative, so we need appropriate weights.

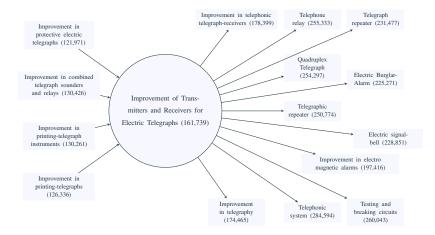

Assigning weights to individual words

- Not all words are equally informative. Similar documents should share **uncommon** words
 - The challenge is isolate these important terms. For example: word 'electricity' first appears in a patent in 1880; it should be weighted differently in 1880 than if it appears in 1980.
- Weigh word w in patent document d by

$$\underbrace{\frac{f_{\text{W},d}}{\sum f_{\text{W}',d}}}_{\text{Term Frequency (TF)}} \times \underbrace{\log\left(\frac{\# \text{ documents before } t}{1 + \# \text{ documents before } t \text{ that include term } w\right)}_{\text{Backward Inverse Document Frequency (BIDF)}}$$


- TF: how important is word W to document d
- BIDF: how much information provided by word W
- $TFBIDF_{w,d} = TF_{w,d} \times BIDF_{w,d}$
- We then compute cosine similarities using $V_{i,t} = TFBIDF_{i,t}$.

Patent Similarity Example: Sewing Machine



Connection indicates similarity in excess of 50%

Patent Similarity Example: Moving Pictures

Patent Similarity Example: Telephone

Text Analysis Basics: Representing Text as Data

However, the previous approach does not deal with synonyms.

• For example, if $D3 = \{\text{canine}, \text{eat}, \text{food}\}$ then

distance(D1, D2) = distance(D1, D3)

- This creates a bias towards low similarity if the two documents use different vocabulary
 - e.g. patent documents vs occupation task descriptions
- Our (current) approach: use word embeddings (e.g. word2vec).
 - Each word x_k is represented as a 300-dimensional vector (arbitrary basis).
 - The (cosine) distance between two vectors is related to the probability they are synonyms (i.e., they are used in the same context within a set of documents).
 - ► We use word vectors provided by Pennington et al. (2014) that were trained on 42 billion word tokens of web data from Common Crawl.

Text Analysis Basics: Representing Text as Data

Approach 2: Represent documents as weighted averages of word vectors:

• Each document is a weighted average of word vectors

$$V_i = \sum_{x_k \in A_i} w_{i,k} x_k$$

- Now, V_i is no longer sparse but has lower dimensionality than before.
- Here *w*_{*i*,*k*} is the term-frequency-inverse-document-frequency (TFIDF) defined as

$$w_{i,k} \equiv TF_{i,k} \times IDF_k$$

- As before, a word will receive a higher weight if it appears multiple times in a document and if it is relatively infrequent.
- ► IDF is computed separately for patents and job descriptions

Patents and Occupations: Similarity Examples

Occupation	US Patent #	Patent Title
Loan Interviewers and Clerks (434131)	_	
	4,736,294	Data processing methods and apparatus for managing vehicle financing
	5,611,052	Lender direct credit evaluation and loan processing system
	5,673,402	Computer system for producing an illustration of an investment re- paying a mortgage
	5,870,721	System and method for real time loan approval
	5,940,811	Closed loop financial transaction method and apparatus
Cashiers (412011)		
	4,541,057	System for performing combined financial transactions with single dis- pensing of cash
	4,814,985	Sales limit indicator for an electronic cash register
	5,055,657	Vending type machine dispensing a redeemable credit voucher upon payment interrupt
	5,085,435	Method of using a random number supplier for the purpose of reducing currency handling
	5,224,162	Electronic cash system

Patents and Occupations: Similarity Examples (cont)

Occupation	US Patent #	Patent Title
Packers and Packagers, Hand (537064)		
	3,876,858	Shrink-film hole-burning device
	3,931,701	Automatic produce-bagging machine that uses factory-rol polyethylene net tubing
	4,098,398	Container for recycle of motor oil
	4,266,698	Opening arrangement for packing containers of thin plastic
		film together with a packing container provided with the ope
		ning arrangement
	4,912,913	Bag sealing machine
Shipping, Receiving, and Traffic Clerks (435071)		
	5,233,532	System for mailing and collecting items
	5,481,464	System for collecting and shipping items
	5,656,799	Automated package shipping machine
	5,666,493	System for managing customer orders and method of implementation
	6,148,291	Container and inventory monitoring methods and systems

- So far, we have created distance measures between patents and between patents to occupations.
- Next steps:
 - 1. Create indices of technological change
 - 2. Identify occupation exposures

Measuring patent importance

- Important patents are both novel (fewer past connections) and impactful (have more future connections)
- Our importance score measures both impact and novelty

$$\xi_j^{0,\tau} = FS_j^{0,\tau} / BS_j^{0,5}$$

Future Impact (forward similarity)

$$FS_j^{0,\tau} = \sum_{i \in \mathcal{F}} \rho_{j,i},$$

Novelty (backward similarity):

$$BS_j^{0,\tau} = \sum_{i \in \mathcal{B}} \rho_{j,i},$$

 $\mathcal{B}_{j,\tau}$ and $\mathcal{F}_{j,\tau}$ is set of patents granted in the τ calendar years prior to, and following, *j*'s application year, respectively.

Airplane patent is at the 99th percentile in terms of our importance measure (it has 19 cites over its lifetime)

UNITED STATES PATENT OFFICE.

ORVILLE WRIGHT AND WILBUR WRIGHT, OF DAYTON, OHIO.

FLYING-MACHINE.

No. 821,393.

Specification of Letters Patent. Application filed March 23, 1903 Serial No. 149, 220 Patented May 22, 1906.

To all when it may concern:

Be it known that we ORVILLE WRIGHT and WILDE WRIGHT, citizens of the United States, residing in the city of Dayton, county 5 of Montgomery, and State of Ohio, have invented certain new and useful Improvements, in Flying-Machines, of which the following is a specification.

Our invention relates to that class of flying-machines an which the weight is sustained by the reactions resulting when one or more aeroplanes are moved through the air edgewise at a small angle of incidence, either by the application of the force of gravity.

The objects of our invention are to provide means for maintaining or restoring the equilibrium or lateral balance of the appartus, to provide means for guiding the machine to provide means for guiding the machine rest of the upper acroplane are indicated by vide a structure combining lightness, strength, corresponding corners of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane convenience of construction, and certain 1 are indicated by the preformation of the lower acrophane in the preformation of the preformation of the lower acrophane in the preformation of the lower acrophane in the preformation of the preformation of the lower acrophane in the preformation of the preforma

ous disturbing forces which tend to shift the machine from the position which itshould occupy to obtain the desired results. It is the chief object of our invention to provide 60 means for remedying this difficulty, and we will now proceed to describe the construction by means of which these results are accomplished.

In the accompanying drawings we have 65 shown an apparatus embodying our invention in one form. In this illustrative embodiment the machine is shown as comprising. two parallel superposed aeroplane 1 and 2; and this construction we produce the and 2; invention may be embodied an attribute having a single aeroplane. Each aeroplane is of considerably groater width from are to ners of the upper aeroplane are indexer by 75 the reference-letters d, be, can dd, while the corresponding corners of the lower onterplane are indicated by the aeroplane are indicated by 75 the reference-letters d, be, can dd, while the corresponding corners of the lower onerplane

Not so significant Patents, Examples

Patent is at the 63th percentile in terms of our importance measure (it has 30 cites over its lifetime)

(12) United States Patent Boies et al.

(10) Patent No.:US6,329,919B1(45) Date of Patent:Dec. 11, 2001

(54) SYSTEM AND METHOD FOR PROVIDING RESERVATIONS FOR RESTROOM USE

- (75) Inventors: Stephen J. Boies, Mahopac, NY (US); Samuel Dinkin, Austin, TX (US); Paul Andrew Moskowitz, Yorktown Heights; Philip Shi-Lung Yu, Chappaqua, both of NY (US)
- (73) Assignce: International Business Machines Corporation, Armonk, NY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 09/639,254
- (22) Filed: Aug. 14, 2000
- (51) Int CL7

COOD 22/00

(56) References Cited

U.S. PATENT DOCUMENTS

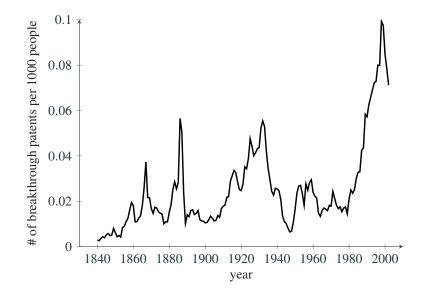
5,272,474	*	12/1993	Hill	340/825.29
5,864,818	*	1/1999	Feldman	395/205
5,948,040	*	9/1999	DeLormet et al.	701/201
5,963,948	*	10/1999	Shilcrat	707/100
5,978,770	*	11/1999	Waytena et al.	705/5

* cited by examiner

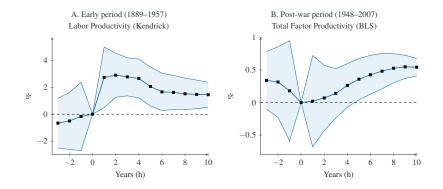
Primary Examiner-Benjamin C. Lee

(74) Attorney, Agent, or Firm-Morgan & Finnegan, LLP.

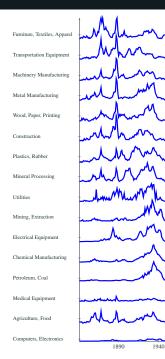
(57) ABSTRACT

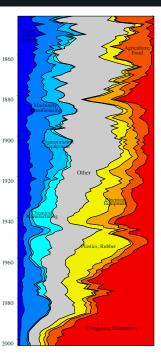

The present invention is an apparatus, system, and method for providing reservations for restroom use. In one embodiment, a passenger on an airplane may submit a reservation request to the system for restroom use. The reservation system determines when the request can be Next, we construct indices of technological progress.

- One issue: part of the time-variation in our importance indicator may capture shifts in language (or differences in OCR quality)
 - Solution: remove year FEs, denote adjusted quality measure by \tilde{q} .
 - ► Assumption: shifts in language should affect all patents symmetrically.
- Our approach: count the # of patents at the right tail of the distribution (breakthroughs)

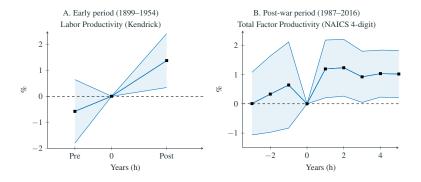

$$\eta_t = \frac{1}{\kappa_t} \sum_{i \in \Gamma_t} \mathbf{1}(\tilde{q}_{i,t} \ge \tilde{q}_{90})$$

scale by US population κ_t


Breakthrough patents-based on breakthrough counts

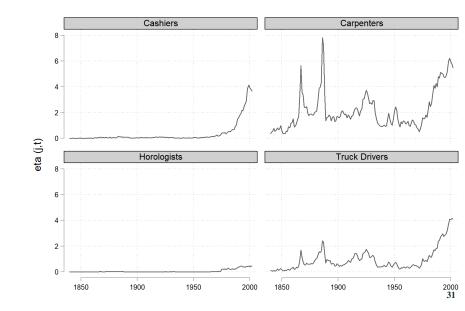


Breakthrough patents and aggregate productivity

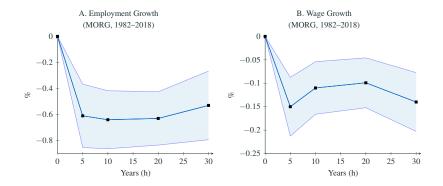


• Figures plot increase in **average** productivity to a one-standard deviation increase in our index

Breakthrough patents and industry productivity

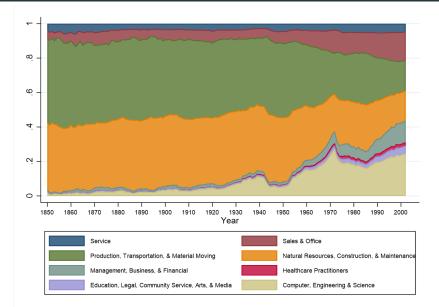

• Figures plot increase in **average** productivity to a one-standard deviation increase in our index

Occupation-specific indices of technical change


- Follow similar approach as before, with some adjustments:
 - Denote by $\rho_{i,j}$ each element of the patent (i) X occupation (j) matrix.
 - ► To account for shifts in language, remove time FEs from all elements.
 - ► Impose sparsity: set the bottom 80% of patent-occupation pairs to zero.
 - ▶ Re-scale the remainder 20% of pairs so they range between (0,1).
 - Denote the adjusted similarity measure by ρ˜_{i,j}.
- Our index then sums up occupation exposures across breakthrough patents:

$$\eta_{j,t} = \frac{1}{\kappa_t} \sum_{i \in \Gamma_t^c} \tilde{\rho}_{i,j} \times \mathbf{1}(\tilde{q}_{i,t} \ge \tilde{q}_{p90})$$

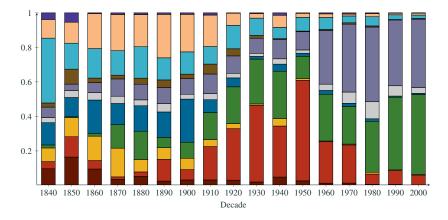
Technological Change and Occupations: Examples



Breakthrough patents and occupation outcomes

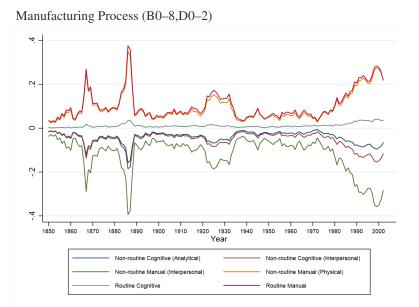
• Figures plot change in annualized employment/wage growth over time, in response to a one-standard deviation increase in our index

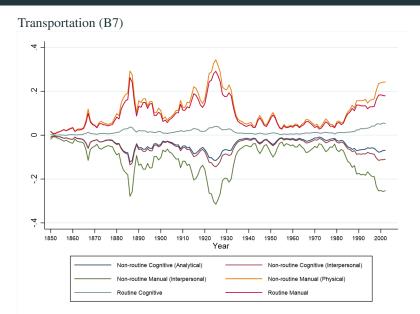
Technological Change and Occupations: Composition

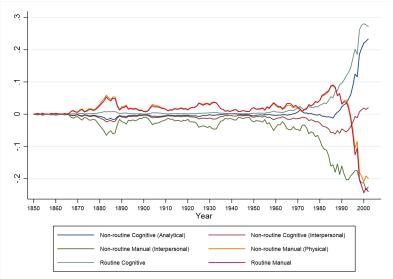

- One way to summarize trends is to examine how technical change is related to occupations performing different task types.
- Use task category scores $(T_{i,w})$ in Acemoglu and Autor (2011)
 - Tasks w fall into: non-routine cognitive (analytical), non-routine cognitive (interpersonal), non-routine manual (interpersonal) non-routine manual (physical), routine cognitive, or routine manual.
 - ► *T* normalized to mean zero and unit standard deviation.
- The task innovation exposure score for task w in year t is then given by

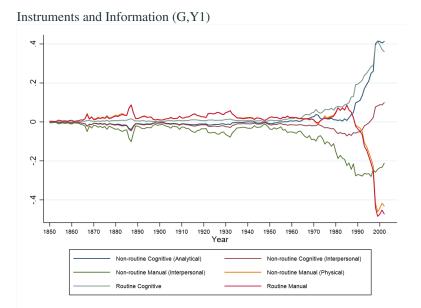
$$\lambda_{w,t} = \sum_{j} \eta_{j,t} \times T_{j,w} \times \omega_j$$

Here ω_i is SOC labor-supply weights




Breakthrough Patents: Breakdown by Technology Classes


- Agriculture and Food (A0, A2)
- Electricity and Electronics (H0)
- Health and Entertainment (A6)
- Lighting, Heating, Nuclear (F2, G2)
- Transportation (B6)


- Chemistry and Metallurgy (C)
- Consumer Goods(A4)
- Engineering, Construction, and Mining (E0, E2, F0, F1)
- Instruments, Information (G, Y1)
- Manufacturing Process (B0, B2, B3, B4, B8, D0, D1, D2)
- Weapons (F4)

Electricity and Electronics (H0)

40

Conclusion

- We create text-based indicators of the exposure of occupations to technological change
- Our indices are negatively correlated with future employment and wage growth.
- Recent technological wave appears qualitatively different than previous waves: it is a lot more related to occupations emphasizing cognitive tasks than before.
- Open questions and next step:
 - Average outcomes obscure heterogeneity
 - ► Relate innovation to individual worker outcomes using Census data.