Motivation	Data	Estimation Strategy	

Intergenerational Transmission of Mother-to-Child Health:

Evidence from the Philippines

Leah Bevis¹ Kira Villa²

¹Ohio State University

²University of New Mexico

AEA/ASSA, January 4, 2020

Bevis, Villa (UNM)

Health Transmission

AEA 2019 1/31

(B)

- Large literature documents intergenerational correlations of health—particularly between maternal health and child birth health (e.g., Bhalotra & Rawlings 2011)
 - Poor maternal health associated with low birth weight infants, infant mortality, increased morbidity, and shorter lifespan

- Large literature documents intergenerational correlations of health—particularly between maternal health and child birth health (e.g., Bhalotra & Rawlings 2011)
 - Poor maternal health associated with low birth weight infants, infant mortality, increased morbidity, and shorter lifespan
- However, causal estimates are scarce

- Large literature documents intergenerational correlations of health—particularly between maternal health and child birth health (e.g., Bhalotra & Rawlings 2011)
 - Poor maternal health associated with low birth weight infants, infant mortality, increased morbidity, and shorter lifespan
- However, causal estimates are scarce
 - Typically come from sibling or twin fixed effects or exploit a seperation between biological and adoptive parents. (e.g., Currie & Moretti, 2007; Bharadwawaj et al., 2018, etc.)

(日)

- Large literature documents intergenerational correlations of health—particularly between maternal health and child birth health (e.g., Bhalotra & Rawlings 2011)
 - Poor maternal health associated with low birth weight infants, infant mortality, increased morbidity, and shorter lifespan
- However, causal estimates are scarce
 - Typically come from sibling or twin fixed effects or exploit a seperation between biological and adoptive parents. (e.g., Currie & Moretti, 2007; Bharadwawaj et al., 2018, etc.)
 - $\bullet\,$ These data hard to come by in developing countries $\Rightarrow\,$ all use data from developed countries

イロト 不得 トイラト イラト 一日

Motivation	Data	Estimation Strategy	
000			
_			

- Contributions
 - Provide a causal estimate of mother-to-child health transmission in Cebu, the Philippines across two dimensions of child health

Motivation	Data	Estimation Strategy	
000			
.			

- Provide a causal estimate of mother-to-child health transmission in Cebu, the Philippines across two dimensions of child health
- Examine persistence of transmission across multiple ages—from birth through adolescence

A B b A B b

Motivation	Data	Estimation Strategy	
000			

- Provide a causal estimate of mother-to-child health transmission in Cebu, the Philippines across two dimensions of child health
- Examine persistence of transmission across multiple ages—from birth through adolescence
- Explore both underlying mechanisms for health transmission—both biological and socio-economic

▲ 国 ▶ | ▲ 国 ▶

Motivation	Data	Estimation Strategy	
000			

- Provide a causal estimate of mother-to-child health transmission in Cebu, the Philippines across two dimensions of child health
- Examine persistence of transmission across multiple ages—from birth through adolescence
- Explore both underlying mechanisms for health transmission—both biological and socio-economic
- To obtain exogenous variation in maternal health, exploit unique climatology of the Philippines

Motivation	Data	Estimation Strategy	
000			

- Provide a causal estimate of mother-to-child health transmission in Cebu, the Philippines across two dimensions of child health
- Examine persistence of transmission across multiple ages—from birth through adolescence
- Explore both underlying mechanisms for health transmission—both biological and socio-economic
- To obtain exogenous variation in maternal health, exploit unique climatology of the Philippines
 - Philippines the most intensely exposed country to typhoons in world

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivation	Data	Estimation Strategy	
000			

- Provide a causal estimate of mother-to-child health transmission in Cebu, the Philippines across two dimensions of child health
- Examine persistence of transmission across multiple ages—from birth through adolescence
- Explore both underlying mechanisms for health transmission—both biological and socio-economic
- To obtain exogenous variation in maternal health, exploit unique climatology of the Philippines
 - Philippines the most intensely exposed country to typhoons in world
 - Use variations in wind speed, temperature, and precipitation around the time of mother's birth and in her early childhood as instruments

- 4 回 ト 4 三 ト 4 三 ト

Motivation	Data	Estimation Strategy	
000			

- Provide a causal estimate of mother-to-child health transmission in Cebu, the Philippines across two dimensions of child health
- Examine persistence of transmission across multiple ages—from birth through adolescence
- Explore both underlying mechanisms for health transmission—both biological and socio-economic
- To obtain exogenous variation in maternal health, exploit unique climatology of the Philippines
 - Philippines the most intensely exposed country to typhoons in world
 - Use variations in wind speed, temperature, and precipitation around the time of mother's birth and in her early childhood as instruments
- Climate instruments are numerous, plausibly exogenous, but weak

(日)

Motivation	Data	Estimation Strategy	
000			

- Provide a causal estimate of mother-to-child health transmission in Cebu, the Philippines across two dimensions of child health
- Examine persistence of transmission across multiple ages—from birth through adolescence
- Explore both underlying mechanisms for health transmission—both biological and socio-economic
- To obtain exogenous variation in maternal health, exploit unique climatology of the Philippines
 - Philippines the most intensely exposed country to typhoons in world
 - Use variations in wind speed, temperature, and precipitation around the time of mother's birth and in her early childhood as instruments
- Climate instruments are numerous, plausibly exogenous, but weak
 - Use Singular Value Analysis (SVA) to strengthen weak instruments

(日)

Motivation	Data	
000		
Findings		
i mungs		

• Transmission to child weight fairly constant to adolescence—loosing significance with age

Motivation	Data	
000		
Findings		

- Transmission to child weight fairly constant to adolescence—loosing significance with age
 - Seems to be largely explained by a transmission at birth

(4) (日本)

Motivation	Data	
000		
Findings		

- Transmission to child weight fairly constant to adolescence—loosing significance with age
 - Seems to be largely explained by a transmission at birth
- Transmission to child height increases with age up to adolescence at which point it falls

A B b A B b

Motivation 00●	Data 0000000	
Findings		

- Transmission to child weight fairly constant to adolescence—loosing significance with age
 - Seems to be largely explained by a transmission at birth
- Transmission to child height increases with age up to adolescence at which point it falls
 - Not fully explained by birth health or socio-economic mechanisms—only account for 15—30% of transmission

A B A A B A

Motivation	Data	
000		
Findings		
i mungs		

- Transmission to child weight fairly constant to adolescence—loosing significance with age
 - Seems to be largely explained by a transmission at birth
- Transmission to child height increases with age up to adolescence at which point it falls
 - Not fully explained by birth health or socio-economic mechanisms—only account for 15—30% of transmission
 - Suggestive evidence that transmission affects the endocrinological regulators of pre-pubertal growth and growth velocity

< 同 > < 三 > < 三 >

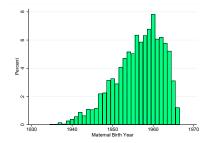
 Interviewed all pregnant women giving birth between May 1, 1983 and April 30, 1984 in randomly selected barangays in metropolitan Cebu, in Philippines.

- Interviewed all pregnant women giving birth between May 1, 1983 and April 30, 1984 in randomly selected barangays in metropolitan Cebu, in Philippines.
 - Mothers and children surveyed at birth and when the children were aged 1, 2, 8, 11, 15 years.

- Interviewed all pregnant women giving birth between May 1, 1983 and April 30, 1984 in randomly selected barangays in metropolitan Cebu, in Philippines.
 - Mothers and children surveyed at birth and when the children were aged 1, 2, 8, 11, 15 years.
- Use height and weight measures to proxy for health stock and flow, respectively

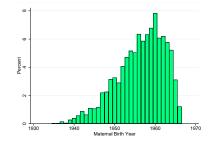
- Interviewed all pregnant women giving birth between May 1, 1983 and April 30, 1984 in randomly selected barangays in metropolitan Cebu, in Philippines.
 - Mothers and children surveyed at birth and when the children were aged 1, 2, 8, 11, 15 years.
- Use height and weight measures to proxy for health stock and flow, respectively
 - Mother health stock measured in baseline (pregnancy) height, in cm

イロト イポト イヨト イヨト

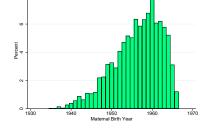

- Interviewed all pregnant women giving birth between May 1, 1983 and April 30, 1984 in randomly selected barangays in metropolitan Cebu, in Philippines.
 - Mothers and children surveyed at birth and when the children were aged 1, 2, 8, 11, 15 years.
- Use height and weight measures to proxy for health stock and flow, respectively
 - Mother health stock measured in baseline (pregnancy) height, in cm
 - Child health measures of both health stock and flow

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Interviewed all pregnant women giving birth between May 1, 1983 and April 30, 1984 in randomly selected barangays in metropolitan Cebu, in Philippines.
 - Mothers and children surveyed at birth and when the children were aged 1, 2, 8, 11, 15 years.
- Use height and weight measures to proxy for health stock and flow, respectively
 - Mother health stock measured in baseline (pregnancy) height, in cm
 - Child health measures of both health stock and flow
 - Birth weight (standard measure at birth)
 - HAZ (stock) and WHZ (flow)

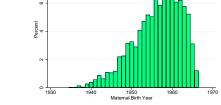


 Mother's health correlated with numerous dimensions of socio-economic status that also affect child human capital.


- Mother's health correlated with numerous dimensions of socio-economic status that also affect child human capital.
- Instrument with information on wind, rain, and temperature from around the time of her birth and in her early childhood

(3)

- Mother's health correlated with numerous dimensions of socio-economic status that also affect child human capital.
- Instrument with information on wind, rain, and temperature from around the time of her birth and in her early childhood



• Mothers born between 1936 and 1966; most in the 1950s

(3)

- Mother's health correlated with numerous dimensions of socio-economic status that also affect child human capital.
- Instrument with information on wind, rain, and temperature from around the time of her birth and in her early childhood

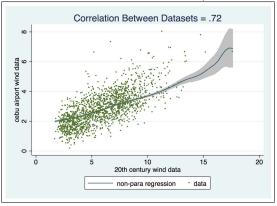
- Mothers born between 1936 and 1966; most in the 1950s
- Thus, we need climate data from 2-4 decades prior to the birth of sample children in 1983/84

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Employ three geospatial datasets for climate information all stretching back to the 1930s (before the advent of satellites)

- Employ three geospatial datasets for climate information all stretching back to the 1930s (before the advent of satellites)
- Global Precipitation Climatology Centre: Monthly average precipitation estimates

- Employ three geospatial datasets for climate information all stretching back to the 1930s (before the advent of satellites)
- Global Precipitation Climatology Centre: Monthly average precipitation estimates
- 20th Century Re-Analysis Project: Daily averages estimates of wind speed and temperature


- Employ three geospatial datasets for climate information all stretching back to the 1930s (before the advent of satellites)
- Global Precipitation Climatology Centre: Monthly average precipitation estimates
- 20th Century Re-Analysis Project: Daily averages estimates of wind speed and temperature
- Pre-satellite climate data predicted with surface observations of synoptic pressure, sea surface temperature, sea ice distribution all highly predictive of true temp, rain, and wind patterns

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Correlation between Re-Analysis Predicted Wind Data and Observed Wind Data

Re-analysis wind speed data exhibits high correlation with wind speed data collected at the Cebu Airport

Motivation	Data	Estimation Strategy	
	0000000		

Instruments for Maternal Health

• First Set of Instruments: Monsoon temperature and precipitation

< ∃ ►

Instruments for Maternal Health

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following

Instruments for Maternal Health

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income

• Second Set of Instruments: Wind Intensity around mother's birth

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income
- Second Set of Instruments: Wind Intensity around mother's birth
 - Squared monthly maximum windspeeds for month of birth and 12 months proceeding and following birth

Instruments for Maternal Health

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income
- Second Set of Instruments: Wind Intensity around mother's birth
 - Squared monthly maximum windspeeds for month of birth and 12 months proceeding and following birth
 - Likely captures the pre/post-natal health impacts of property destruction, dirty water and infectious disease

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income
- Second Set of Instruments: Wind Intensity around mother's birth
 - Squared monthly maximum windspeeds for month of birth and 12 months proceeding and following birth
 - Likely captures the pre/post-natal health impacts of property destruction, dirty water and infectious disease
- Third Set of Instruments: Wind Intensity during Harvest Periods

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income
- Second Set of Instruments: Wind Intensity around mother's birth
 - Squared monthly maximum windspeeds for month of birth and 12 months proceeding and following birth
 - Likely captures the pre/post-natal health impacts of property destruction, dirty water and infectious disease
- Third Set of Instruments: Wind Intensity during Harvest Periods
 - Squared maximum windspeeds during harvest months, in 2 years prior to, year of, and 5 years after birth (as with 1st instruments)

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income
- Second Set of Instruments: Wind Intensity around mother's birth
 - Squared monthly maximum windspeeds for month of birth and 12 months proceeding and following birth
 - Likely captures the pre/post-natal health impacts of property destruction, dirty water and infectious disease
- Third Set of Instruments: Wind Intensity during Harvest Periods
 - Squared maximum windspeeds during harvest months, in 2 years prior to, year of, and 5 years after birth (as with 1st instruments)
 - Captures destruction during rice "heading" phase (two cycles per year)

イロト イボト イヨト イヨト

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income
- Second Set of Instruments: Wind Intensity around mother's birth
 - Squared monthly maximum windspeeds for month of birth and 12 months proceeding and following birth
 - Likely captures the pre/post-natal health impacts of property destruction, dirty water and infectious disease
- Third Set of Instruments: Wind Intensity during Harvest Periods
 - Squared maximum windspeeds during harvest months, in 2 years prior to, year of, and 5 years after birth (as with 1st instruments)
 - Captures destruction during rice "heading" phase (two cycles per year)
- Fourth Set of Instruments: Mother's month of birth fixed effects

イロト イボト イヨト イヨト

- First Set of Instruments: Monsoon temperature and precipitation
 - Monsoon-season average temp and precip and interactions, de-trended by time, (time)², for year of birth, two years prior, 5 years following
 - Captures shocks to food supply and agricultural income
- Second Set of Instruments: Wind Intensity around mother's birth
 - Squared monthly maximum windspeeds for month of birth and 12 months proceeding and following birth
 - Likely captures the pre/post-natal health impacts of property destruction, dirty water and infectious disease
- Third Set of Instruments: Wind Intensity during Harvest Periods
 - Squared maximum windspeeds during harvest months, in 2 years prior to, year of, and 5 years after birth (as with 1st instruments)
 - Captures destruction during rice "heading" phase (two cycles per year)
- Fourth Set of Instruments: Mother's month of birth fixed effects
 - Mother's health exhibits distinct seasonality

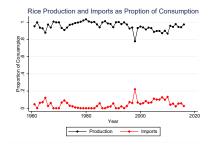
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Early weather events may affect local infrastructure and characteristics outside of mother's health related to later child health

(日) (四) (日) (日) (日)

- Early weather events may affect local infrastructure and characteristics outside of mother's health related to later child health
 - Weather measures occur approx. 30-40 years prior to birth of children

- Early weather events may affect local infrastructure and characteristics outside of mother's health related to later child health
 - Weather measures occur approx. 30-40 years prior to birth of children
 - Identify off minor weather variation on intensive margin rather than extreme weather events ⇒ Less likely to have lasting generational impacts on income, infrastructure, or schooling

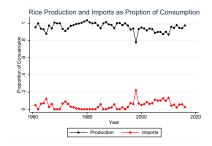

- Early weather events may affect local infrastructure and characteristics outside of mother's health related to later child health
 - Weather measures occur approx. 30-40 years prior to birth of children
 - Identify off minor weather variation on intensive margin rather than extreme weather events ⇒ Less likely to have lasting generational impacts on income, infrastructure, or schooling
- Mother's birth month may correlate with grandparent SES due to reproductive control

- Early weather events may affect local infrastructure and characteristics outside of mother's health related to later child health
 - Weather measures occur approx. 30-40 years prior to birth of children
 - Identify off minor weather variation on intensive margin rather than extreme weather events ⇒ Less likely to have lasting generational impacts on income, infrastructure, or schooling
- Mother's birth month may correlate with grandparent SES due to reproductive control
 - Roman Catholic country with low contraceptive use (esp. 30-40 yrs ago)

- Early weather events may affect local infrastructure and characteristics outside of mother's health related to later child health
 - Weather measures occur approx. 30-40 years prior to birth of children
 - Identify off minor weather variation on intensive margin rather than extreme weather events ⇒ Less likely to have lasting generational impacts on income, infrastructure, or schooling
- Mother's birth month may correlate with grandparent SES due to reproductive control
 - Roman Catholic country with low contraceptive use (esp. 30-40 yrs ago)
 - in 1960s, less than 15.5% use any contraceptive practice, less than 4% of which use modern contraceptives (1968, DHS)

More likely that our results may represent a LATE effect

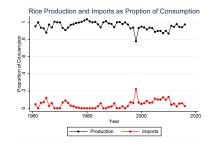
(日) (四) (日) (日) (日)


Total Production

Bevis.	(UNM)	

Health Transmission

- More likely that our results may represent a LATE effect
 - Identify transmission off women whose adult health influenced by early life weather variation



Total Production

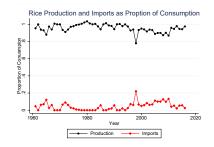
.

- More likely that our results may represent a LATE effect
 - Identify transmission off women whose adult health influenced by early life weather variation
- However, presence of "non-compliers" in sample is likely low

Total Production

A B b A B b

- More likely that our results may represent a LATE effect
 - Identify transmission off women whose adult health influenced by early life weather variation
- However, presence of "non-compliers" in sample is likely low
 - Over 40% of sample mothers' parents worked in agriculture as primary occupation



Total Production

Health Transmission

A B b A B b

- More likely that our results may represent a LATE effect
 - Identify transmission off women whose adult health influenced by early life weather variation
- However, presence of "non-compliers" in sample is likely low
 - Over 40% of sample mothers' parents worked in agriculture as primary occupation
 - Agriculture highly protected up to 1990s resulting in very low food imports when sample mothers were young

Total Production

AEA 2019 11/31

A B A A B A

• When instruments are both many and weak, 2SLS estimates biased towards OLS estimates

イロト イポト イヨト イヨト

- When instruments are both many and weak, 2SLS estimates biased towards OLS estimates
 - Source of bias is randomness in the instruments picking up randomness in the endogenous variables in the first stage

(日) (四) (日) (日) (日)

- When instruments are both many and weak, 2SLS estimates biased towards OLS estimates
 - Source of bias is randomness in the instruments picking up randomness in the endogenous variables in the first stage
 - Overfitting Problem: OLS in the first stage overfits to random noise when the signal is weak

- When instruments are both many and weak, 2SLS estimates biased towards OLS estimates
 - Source of bias is randomness in the instruments picking up randomness in the endogenous variables in the first stage
 - Overfitting Problem: OLS in the first stage overfits to random noise when the signal is weak
 - Bias gets worse as number of weak instruments increases

- When instruments are both many and weak, 2SLS estimates biased towards OLS estimates
 - Source of bias is randomness in the instruments picking up randomness in the endogenous variables in the first stage
 - Overfitting Problem: OLS in the first stage overfits to random noise when the signal is weak
 - Bias gets worse as number of weak instruments increases
- We have 69 instruments

A B A A B A

- When instruments are both many and weak, 2SLS estimates biased towards OLS estimates
 - Source of bias is randomness in the instruments picking up randomness in the endogenous variables in the first stage
 - Overfitting Problem: OLS in the first stage overfits to random noise when the signal is weak
 - Bias gets worse as number of weak instruments increases
- We have 69 instruments
- When we estimate mother-to-child health transmission with 2SLS, first-stage F-statistics hover around one (0.99—1.170)... weak.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- When instruments are both many and weak, 2SLS estimates biased towards OLS estimates
 - Source of bias is randomness in the instruments picking up randomness in the endogenous variables in the first stage
 - Overfitting Problem: OLS in the first stage overfits to random noise when the signal is weak
 - Bias gets worse as number of weak instruments increases
- We have 69 instruments
- When we estimate mother-to-child health transmission with 2SLS, first-stage F-statistics hover around one (0.99—1.170)... weak.
- We need to choose the "optimal" instruments, to proceed.

イロト 不得 トイラト イラト 一日

• A small literature addresses choosing/creating relevant-optimal IVs in a setting with many valid but weak instruments

(日) (四) (日) (日) (日)

- A small literature addresses choosing/creating relevant-optimal IVs in a setting with many valid but weak instruments
 - **Subset Method:** Use shrinkage estimators/algorithms to choose "best" discrete subset of many IVs, e.g., Lasso, Ridge, Boosting (Belloni et al., 2012; Okui 2011; Ng and Bai 2009)

- A small literature addresses choosing/creating relevant-optimal IVs in a setting with many valid but weak instruments
 - **Subset Method:** Use shrinkage estimators/algorithms to choose "best" discrete subset of many IVs, e.g., Lasso, Ridge, Boosting (Belloni et al., 2012; Okui 2011; Ng and Bai 2009)
 - Linear Combination Method: Use PCA to form linear combinations of weak IVs to reduce dimensionality (Amemiya, 1966); use set of new, orthogonal PC vectors as IVs, each capturing decreasing variation

- A small literature addresses choosing/creating relevant-optimal IVs in a setting with many valid but weak instruments
 - **Subset Method:** Use shrinkage estimators/algorithms to choose "best" discrete subset of many IVs, e.g., Lasso, Ridge, Boosting (Belloni et al., 2012; Okui 2011; Ng and Bai 2009)
 - Linear Combination Method: Use PCA to form linear combinations of weak IVs to reduce dimensionality (Amemiya, 1966); use set of new, orthogonal PC vectors as IVs, each capturing decreasing variation
- We combine SVA and a ML subsetting method to crease a single, optimal IV

- A small literature addresses choosing/creating relevant-optimal IVs in a setting with many valid but weak instruments
 - **Subset Method:** Use shrinkage estimators/algorithms to choose "best" discrete subset of many IVs, e.g., Lasso, Ridge, Boosting (Belloni et al., 2012; Okui 2011; Ng and Bai 2009)
 - Linear Combination Method: Use PCA to form linear combinations of weak IVs to reduce dimensionality (Amemiya, 1966); use set of new, orthogonal PC vectors as IVs, each capturing decreasing variation
- We combine SVA and a ML subsetting method to crease a single, optimal IV
 - Create linear combination of IVs in rotated space via SVA-used in other lit to find cutpoint that separates signal from noise

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- A small literature addresses choosing/creating relevant-optimal IVs in a setting with many valid but weak instruments
 - **Subset Method:** Use shrinkage estimators/algorithms to choose "best" discrete subset of many IVs, e.g., Lasso, Ridge, Boosting (Belloni et al., 2012; Okui 2011; Ng and Bai 2009)
 - Linear Combination Method: Use PCA to form linear combinations of weak IVs to reduce dimensionality (Amemiya, 1966); use set of new, orthogonal PC vectors as IVs, each capturing decreasing variation
- We combine SVA and a ML subsetting method to crease a single, optimal IV
 - Create linear combination of IVs in rotated space via SVA-used in other lit to find cutpoint that separates signal from noise
 - Use cross-validation/sample splitting to choose the "best" SVA-generated linear combination of climate signals that forcasts mother's health

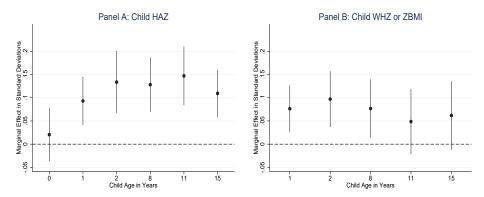
イロト 不得 トイラト イラト 一日

- A small literature addresses choosing/creating relevant-optimal IVs in a setting with many valid but weak instruments
 - **Subset Method:** Use shrinkage estimators/algorithms to choose "best" discrete subset of many IVs, e.g., Lasso, Ridge, Boosting (Belloni et al., 2012; Okui 2011; Ng and Bai 2009)
 - Linear Combination Method: Use PCA to form linear combinations of weak IVs to reduce dimensionality (Amemiya, 1966); use set of new, orthogonal PC vectors as IVs, each capturing decreasing variation
- We combine SVA and a ML subsetting method to crease a single, optimal IV
 - Create linear combination of IVs in rotated space via SVA-used in other lit to find cutpoint that separates signal from noise
 - Use cross-validation/sample splitting to choose the "best" SVA-generated linear combination of climate signals that forcasts mother's health
 - Results are similar using LASSO or PCA with LASSO boosting

Exogenous Right-Hand-Side Variables

• Mother's age, mother birth cohort dummies (because children born in same year, equivalent to controlling for mother's year of birth)

Estimation Strategy


000

- Baseline baranagay and child birth month fixed effects
- For birth outcomes only, also include indicator for whether gestational age is in question

(日) (四) (日) (日) (日)

Marginal Effect of Maternal Health on Child Health across Ages

Results 1

Bevis, Villa (UNM)

Health Transmission

AEA 2019 15/31

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Mechanisms for Transmission

We suggest 3 potential channels through which this transmission operates

• The influence of maternal health on socio-eonomic status and parenting ability

イロト イポト イヨト イヨト

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
- The effect of maternal health on fetal/birth health, which then influences later health

(日) (四) (日) (日) (日)

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
- The effect of maternal health on fetal/birth health, which then influences later health
- The effect of maternal health on child growth trajectory/potential manifesting in a persistent effect on growth velocity

イロト イポト イヨト イヨト

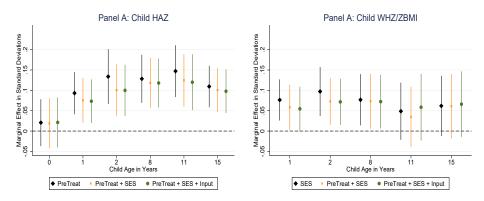
We suggest 3 potential channels through which this transmission operates

• The influence of maternal health on socio-economic status and parenting ability

(日) (四) (日) (日) (日)

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-economic status and parenting ability
 - Control for a rich set of socio-economic characteristics and parental inputs across ages


We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-economic status and parenting ability
 - Control for a rich set of socio-economic characteristics and parental inputs across ages
 - e.g., per-capita income, maternal education, vaccination status, time allocation, child expenditure, many more...

Motivation	Data 0000000	Estimation Strateg	y Results
	Socio-Economic Controls		Parental Input Controls 2
Birth	Per capita household income, Household size, N tion, Baseline asset value; Access to piped water let, Electricity; Garbage taken away after dispo: cooking fuel, Food area kept clean; Excreta visibl	, Flushable toi- sal; Uses clean	Took prenatal vitamins; Received prenatal care; Baby delivered by doctor; Baby deliv- ered in hospital
Age 1	Per capita household income, Household size, M tion, Year 1 asset value; Access to piped water, F Electricity; Garbage taken away after disposal; I clean cooking fuel, Food area kept clean; Excreta HH; Animals kept inside HH	lushable toilet, lousehold uses	In last year child given vitamins or minerals, vaccinations, or non-treated water; Child breastfed for full first year
Age 2	Per capita household income, Household size, M tion, Baseline asset value; Access to piped water let, Electricity; Garbage is taken away after dispo cooking fuel, Food area kept clean; Excreta visil Animals kept inside HH	, Flushable toi- sal; Uses clean	In last year child given vitamins or minerals, vaccinations, or non-treated water
Age 8	Per capita household income, Household size, N tion; Access to piped water, Flushable toilet, Elect taken away after disposal; Uses clean cooking f kept clean; Excreta visible around HH	tricity; Garbage uel, Food area	Since last survey child given vitamins or minerals or vaccinations; Child given worm medication; Child's food consumption score for average week; Extended family in HH
Age 11	Per capita household income, Household size, M tion; Access to piped water, Flushable toilet, Elect taken away after disposal; Uses clean cooking f kept clean; Excreta visible around HH	lother's educa- tricity; Garbage uel, Food area	Parent usually helps child with homework; Hours spend on chores in avg week; Child's food consumption score for average week; Extended family in HH; Per capita expendi- ture on food, child allowances, and school fees
Age 15	Per capita household income, Household size, M tion; Access to piped water, Flushable toilet, Elect taken away after disposal; Uses clean cooking f kept clean; Excreta visible around HH	tricity; Garbage uel, Food area	Child's food consumption score for average week; Extended family in HH; Per capita expenditure on food, child allowances, and school fees

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000

Socio-economic channel?

Bevis, Villa (UNM)

Health Transmission

AEA 2019 19/31

э

▲□ ► ▲ □ ► ▲ □

We suggest 3 potential channels through which this transmission operates

• The influence of maternal health on socio-eonomic status and parenting ability

(日) (四) (日) (日) (日)

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood

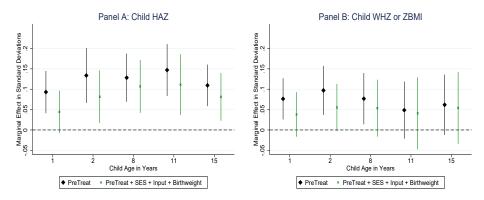
(日) (四) (日) (日) (日)

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood
- The effect of maternal health on fetal/birth health, which then influences later health

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood
- The effect of maternal health on fetal/birth health, which then influences later health
 - Is the persistence due to a transmission at birth and the persistence of health at birth?


(日) (四) (日) (日) (日)

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood
- The effect of maternal health on fetal/birth health, which then influences later health
 - Is the persistence due to a transmission at birth and the persistence of health at birth?
 - Control for birthweight as proxy for birth health, in addition to SES and parental input variables

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Marginal Effect of Maternal Health on Child Health across Ages—Controlling for Birthweight

Results 2

Bevis, Villa (UNM)

Health Transmission

AEA 2019 21/31

(4) (3) (4) (4) (4)

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood
- The effect of maternal health on fetal/birth health, which then influences later health

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood
- The effect of maternal health on fetal/birth health, which then influences later health
 - Transmission at birth appears to explain much if not all transmission to child weight

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood
- The effect of maternal health on fetal/birth health, which then influences later health
 - Transmission at birth appears to explain much if not all transmission to child weight
 - SES channel and birth health channel still can only account for 15-30% of transmission to child height

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood
- The effect of maternal health on fetal/birth health, which then influences later health
 - Transmission at birth appears to explain much if not all transmission to child weight
 - SES channel and birth health channel still can only account for 15-30% of transmission to child height
- The effect of maternal health on child growth trajectory/potential manifesting in a persistent effect on growth velocity

イロト 不得 トイヨト イヨト

We suggest 3 potential channels through which this transmission operates

- The influence of maternal health on socio-eonomic status and parenting ability
 - Partly but not fully, explains only 15–30% of height transmission, maybe explains more of weight transmission in early childhood
- The effect of maternal health on fetal/birth health, which then influences later health
 - Transmission at birth appears to explain much if not all transmission to child weight
 - SES channel and birth health channel still can only account for 15-30% of transmission to child height
- The effect of maternal health on child growth trajectory/potential manifesting in a persistent effect on growth velocity
 - Exploit variation in sex-specific growth transitions

• Medical/epigenetic literature:

イロト イヨト イヨト イヨト

- Medical/epigenetic literature:
 - Three periods of childhood growth: uterine, prepubertal, pubertal

< □ > < 同 > < 回 > < 回 > < 回 >

- Medical/epigenetic literature:
 - Three periods of childhood growth: uterine, prepubertal, pubertal
 - Governed through different growth regulators... prepubertal predominately dependent on the hormones and growth factors related to the Growth Hormone (GH) axis-i.e., growth hormone

< □ > < 同 > < 回 > < 回 > < 回 >

- Medical/epigenetic literature:
 - Three periods of childhood growth: uterine, prepubertal, pubertal
 - Governed through different growth regulators... prepubertal predominately dependent on the hormones and growth factors related to the Growth Hormone (GH) axis-i.e., growth hormone
 - Pubertal growth primarily governed by sex hormones (e.g., testosterone)

- Medical/epigenetic literature:
 - Three periods of childhood growth: uterine, prepubertal, pubertal
 - Governed through different growth regulators... prepubertal predominately dependent on the hormones and growth factors related to the Growth Hormone (GH) axis-i.e., growth hormone
 - Pubertal growth primarily governed by sex hormones (e.g., testosterone)
 - Human/animal studies show that uterine environment can affect endocrine environment regulating growth hormones, insuline-like growth factors, and insulin pathways

- Medical/epigenetic literature:
 - Three periods of childhood growth: uterine, prepubertal, pubertal
 - Governed through different growth regulators... prepubertal predominately dependent on the hormones and growth factors related to the Growth Hormone (GH) axis-i.e., growth hormone
 - Pubertal growth primarily governed by sex hormones (e.g., testosterone)
 - Human/animal studies show that uterine environment can affect endocrine environment regulating growth hormones, insuline-like growth factors, and insulin pathways
- If mother's health affects these factors, may drive growth velocity during prepubertal period

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Medical/epigenetic literature:
 - Three periods of childhood growth: uterine, prepubertal, pubertal
 - Governed through different growth regulators... prepubertal predominately dependent on the hormones and growth factors related to the Growth Hormone (GH) axis-i.e., growth hormone
 - Pubertal growth primarily governed by sex hormones (e.g., testosterone)
 - Human/animal studies show that uterine environment can affect endocrine environment regulating growth hormones, insuline-like growth factors, and insulin pathways
- If mother's health affects these factors, may drive growth velocity during prepubertal period
 - Could explain increasing height advantage of having healthier mother

イロト 不得 トイラト イラト 一日

• Transition for prepubertal to pubertal growth occurs around the time of the pubertal growth spurt (approx. 9.5 for girls, 11 for boys)

< □ > < 同 > < 回 > < 回 > < 回 >

- Transition for prepubertal to pubertal growth occurs around the time of the pubertal growth spurt (approx. 9.5 for girls, 11 for boys)
- If maternal health constrains growth velocity, may see this velocity rate shift earlier for girls than boys (i.e., around the time of sex-specific puberty onset).

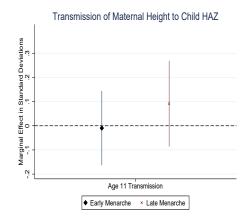
- Transition for prepubertal to pubertal growth occurs around the time of the pubertal growth spurt (approx. 9.5 for girls, 11 for boys)
- If maternal health constrains growth velocity, may see this velocity rate shift earlier for girls than boys (i.e., around the time of sex-specific puberty onset).
 - Split sample by gender


- Transition for prepubertal to pubertal growth occurs around the time of the pubertal growth spurt (approx. 9.5 for girls, 11 for boys)
- If maternal health constrains growth velocity, may see this velocity rate shift earlier for girls than boys (i.e., around the time of sex-specific puberty onset).
 - Split sample by gender
- May also see differences across children with earlier vs later puberty onset

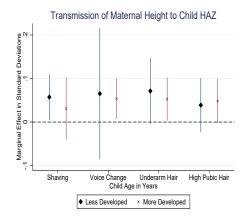
- Transition for prepubertal to pubertal growth occurs around the time of the pubertal growth spurt (approx. 9.5 for girls, 11 for boys)
- If maternal health constrains growth velocity, may see this velocity rate shift earlier for girls than boys (i.e., around the time of sex-specific puberty onset).
 - Split sample by gender
- May also see differences across children with earlier vs later puberty onset
 - Interact mother's height with best proxies for timing of pubertal development

イロト 不得 トイヨト イヨト

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000


Marginal Effect of Maternal Height on Boy vs Girl Height

Bevis, Villa (UNM)


AEA 2019 25 / 31

Marginal Effect of Maternal Height on Girls based on Menarche Timing

< □ > < 同 > < 回 > < 回 > < 回 >

Marginal Effect of Maternal Height on Boys Based on Developmental Indicators at Age 15

AEA 2019 27 / 31

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000

• Causal effects indicates that benefits of health interventions and consequences of early life shocks felt into the next generation, in terms of health, productivity

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000

- Causal effects indicates that benefits of health interventions and consequences of early life shocks felt into the next generation, in terms of health, productivity
- Causal transmission of mother to child health persists into adolescence

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000

- Causal effects indicates that benefits of health interventions and consequences of early life shocks felt into the next generation, in terms of health, productivity
- Causal transmission of mother to child health persists into adolescence
 - In part transmitted at birth, but significant persistence that increases in magnitude over age

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000

- Causal effects indicates that benefits of health interventions and consequences of early life shocks felt into the next generation, in terms of health, productivity
- Causal transmission of mother to child health persists into adolescence
 - In part transmitted at birth, but significant persistence that increases in magnitude over age
 - Approx. a third explained by (health-driven) maternal socio-economic status or care

(4) (5) (4) (5)

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000

- Causal effects indicates that benefits of health interventions and consequences of early life shocks felt into the next generation, in terms of health, productivity
- Causal transmission of mother to child health persists into adolescence
 - In part transmitted at birth, but significant persistence that increases in magnitude over age
 - Approx. a third explained by (health-driven) maternal socio-economic status or care
 - The rest biological: uterine environment may effect childhood growth trajectories through prepubertal growth factors such as growth hormones, growth plate

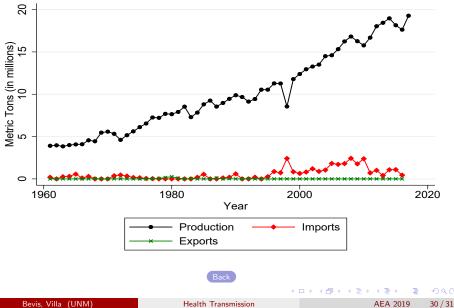
A (1) × A (2) × A (2) ×

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000

- Causal effects indicates that benefits of health interventions and consequences of early life shocks felt into the next generation, in terms of health, productivity
- Causal transmission of mother to child health persists into adolescence
 - In part transmitted at birth, but significant persistence that increases in magnitude over age
 - Approx. a third explained by (health-driven) maternal socio-economic status or care
 - The rest biological: uterine environment may effect childhood growth trajectories through prepubertal growth factors such as growth hormones, growth plate
 - If so, concerning: these same factors associated with other health outcomes, e.g. metabolic disorders, hormonal imbalance, cardiovascular problems, and organ dysfunction

イロト 不得 トイヨト イヨト 二日

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000


- Causal effects indicates that benefits of health interventions and consequences of early life shocks felt into the next generation, in terms of health, productivity
- Causal transmission of mother to child health persists into adolescence
 - In part transmitted at birth, but significant persistence that increases in magnitude over age
 - Approx. a third explained by (health-driven) maternal socio-economic status or care
 - The rest biological: uterine environment may effect childhood growth trajectories through prepubertal growth factors such as growth hormones, growth plate
 - If so, concerning: these same factors associated with other health outcomes, e.g. metabolic disorders, hormonal imbalance, cardiovascular problems, and organ dysfunction
- SVA a promising way of dealing with many weak instruments

Motivation	Data	Estimation Strategy	Results
			000000000000000000000000000000000000000

Thank you!

Rice Production and Trade

Contraception Use in the Philippines

- Concern that mother's month of birth may correlate with grandparent socio-economic status due to reproductive control
- The Philippines predominately Roman Catholic country with low contraceptive use
- 1968 DHS (earliest available) found that only 15.5% used any contraceptive practice (Laing, 1984)
 - $\bullet\,$ Over 70% of those used traditional methods such as withdrawal or rhythm methods
 - Less than 4% of those used modern contraception such as pills, IUD, sterilization, or condoms
- Regardless, our IV does not predict grade parent grade attainment or occupation type.

Back

イロト イポト イヨト イヨト 二日