Optimal Allocation of Sample Sizes in Group-Randomized Trials

Ben Kelcey Zuchao Shen Gang Wang & Winthrop University **University of Cincinnati University of Florida**

Introduction

Multilevel structures extremely are education and social in common such as students sciences, nested patients within schools and nested physicians. **Group-randomized** within often used in the social trials are

Methods **Assumptions/Constraints** Framework & Cost Structure **Optimal Design Parameter(s) & Visual Representation** Between-treatment equal cost Raudenbush (1997) assumption □ Balanced design constraint (i.e., $(1 - \rho)(1 - R_1^2)$ n =p = 0.5). 1/2 J $\square R_{\#}^2$ represents the

sciences to account for the multilevel structures.

A key consideration in planning grouprandomized trials is statistical power or the probability of detecting treatment if effects related they exist. Α consideration is the optimal use of resources to achieve adequate power.

Optimal Sample Allocation

Sample allocation is the sample sizes (to be) allocated at different levels and conditions treatment (groupin randomized) experiments.

(1 - p)J

. . .

proportion of variance explained by covariate(s) $\Box \rho$ is the intraclass correlation coefficient or proportion of outcome variance at the group level.

Predetermined sample size constraint (i.e., $n = n_0$).

□ No constrained cost structure or sample size(s), but the framework can accommodate constraint(s)

Liu (2003)

n

n

pJ

100 | | | OC

Optimal sample allocation is the sample allocation that achieves the maximum statistical power under a fixed budget, or uses the minimum resources to gain adequate statistical power.

Why optimal sample allocation? It can be used to improve design efficiency less budget request) and/or (e.g., statistical precision (more power, smaller effect sizes).

A school-randomized trial

 \Box intraclass correlation coefficient (ρ): 0.2 □ How many schools and students do we need to have a power of 0.80 to detect an effect size of 0.20?

□What is the optimal sample allocation given the below cost structures of sampling?

Results

Framework	Sample Allocation	Total Costs
Raudenbush	p = 0.50, n = 33, J = 178	\$530,440
Liu	p = 0.22, n = 10, J = 322	\$462,500
Proposed	p = 0.24, n = 24, J = 253	\$423,320

- one student in control: \$10
- one student in treatment: \$10
- one school in control: \$300
- one school in treatment: \$5,000

Conclusion

□ The proposed framework

✓ has more authentic assumptions

 \checkmark can identify more efficient designs

□ It has been implemented in R

✓ R package *odr* (Shen & Kelcey, 2018)