The ACA Medicaid Rebate Rule Change: Impact on Pricing and Innovation

Josh Feng¹, Thomas Hwang², Luca Maini³

¹University of Utah, ²Harvard Medical School, ³UNC Chapel Hill

Motivation I: How do firms respond to government pricing & subsidies?

- Price regulation/subsidies are common in welfare programs
 - Medicare/Medicaid reimbursement
 - Premium subsidies for insurance plans
 - Rent control/public housing vouchers
 - Federal financial aid for colleges
 - Food stamps

Motivation I: How do firms respond to government pricing & subsidies?

- Price regulation/subsidies are common in welfare programs
 - Medicare/Medicaid reimbursement
 - Premium subsidies for insurance plans
 - Rent control/public housing vouchers
 - Federal financial aid for colleges
 - Food stamps
- Regulation leads to distortions
 - Government benchmarks can anchor private prices (e.g. Medicare reimbursement rates)
 - Fluctuating benchmarks that are tied to equilibrium prices will change firm strategic incentives

Motivation II: the Medicaid Drug Rebate Program

Duggan and Scott-Morton (2006): drugs with high Medicaid Market Share (MMS)

- have higher prices
- introduce more line extensions

Motivation II: the Medicaid Drug Rebate Program

Duggan and Scott-Morton (2006): drugs with high Medicaid Market Share (MMS)

- have higher prices
- introduce more line extensions

However:

- Cross-sectional evidence on list prices only
- ▶ MDRP contains provisions than DSM06 doesn't consider

Motivation II: the Medicaid Drug Rebate Program

Duggan and Scott-Morton (2006): drugs with high Medicaid Market Share (MMS)

- have higher prices
- introduce more line extensions

However:

- Cross-sectional evidence on list prices only
- ▶ MDRP contains provisions than DSM06 doesn't consider
- Medicaid has changed since 2006:
 - Medicare Part D covers dual eligibles
 - MDRP formula increased minimum rebate in 2010
 - New data on estimated net prices is available

We find that the MDRP has a more nuanced impact than previously thought

Main takeways

- Drugs with high Medicaid exposure:
 - Increase prices at a lower rate
 - Give lower commercial rebates
 - Launch line extensions at a higher rate
- ► (Not today): Little evidence of higher launch drug prices
- 2010 increase in minimum rebate enhanced positive/reduced negative effects

Overview of the Medicaid Drug Rebate Program

Medicaid initially pays for drugs at list prices

Manufacturers then send lump-sum rebates

Quarterly rebate is a fraction of list price

Price at launch

Formula implies the price is anchored to launch price

And that prices fall if price growth exceeds inflation

There are a few other relevant features of the program

- Medicaid is entitled to the "best price" if it is lower than AMP – 15.1%
 - ▶ Difference between *AMP* and best price becomes new rebate %
 - Basically a "most-favored nation" clause
- Line extensions "reset the clock" on price
 - Line extensions are versions of the drug with the same active ingredient but different form/strength
 - ► Firms get to set a new initial price for line extensions

CMS changed the formula starting in January 2010

Two main changes:

- Base rebate increased from 15.1% to 23.1% of AMP
- ► Max rebate capped at **100%**

Optimal firm behavior

Setting

- Increasing demand
- Medicaid demand inelastic
- Maximum initial price bounded
- ► Firm sets AMP, discount
- Medicaid formula:

$$p_t^{\text{Med}} = \min\left(p_0, p_t\right) - p_t \times \max\left(r, d_t\right)$$

where

- p_0 is the launch AMP
- p_t is the AMP in period t
- *d_t* is the discount granted to commercial payer

Optimal firm behavior

Setting

- Increasing demand
- Medicaid demand inelastic
- Maximum initial price bounded
- ► Firm sets AMP, discount
- Medicaid formula:

$$p_t^{\text{Med}} = \min\left(p_0, p_t\right) - p_t \times \max\left(r, d_t\right)$$

where

- p_0 is the launch AMP
- p_t is the AMP in period t
- *d_t* is the discount granted to commercial payer

Optimal firm behavior

Setting

- Increasing demand
- Medicaid demand inelastic
- Maximum initial price bounded
- ► Firm sets AMP, discount
- Medicaid formula:

$$p_t^{\text{Med}} = \min\left(p_0, p_t\right) - p_t \times \max\left(r, d_t\right)$$

where

- p_0 is the launch AMP
- p_t is the AMP in period t
- *d_t* is the discount granted to commercial payer

From the model we derive a few testable hypotheses

Drugs with high Medicaid exposure will have:

- 1. Slower list price growth (but possibly higher launch price)
- 2. Lower discounts to commercial payers (to avoid triggering the best-price clause)
- 3. Higher probability of introduction of line extensions

From the model we derive a few testable hypotheses

Drugs with high Medicaid exposure will have:

- 1. Slower list price growth (but possibly higher launch price)
- 2. Lower discounts to commercial payers (to avoid triggering the best-price clause)
- 3. Higher probability of introduction of line extensions

After the formula changes:

- 1. Even slower list price growth (unless discount is at 100%)
- 2. Higher-than-before discounts to commercial payers
- 3. Even higher probability of line extensions

Data and Empirical Strategy

Data

SSR Health (~1,000 brand drugs, quarterly from 2007-2019)

- Gross sales, volume
- Net sales (obtained from SEC filings)
- Product name level (e.g. ABILIFY)
- Medicaid PUF (quarterly from 1990-2019)
 - Gross sales, volume
 - NDC level (product-form-strength), e.g. ABILIFY-TABLET-20MG

Key variables

Medicaid Market Share:

$$MMS = \frac{\text{Medicaid sales}}{\text{Invoice sales}}$$

List price: measured as Wholesale Acquisition Cost (WAC)

non-Medicaid discount: estimated as

$$1 - \frac{\text{Net sales} - \text{net Medicaid sales}}{\text{Invoice sales} - \text{Medicaid sales}}$$

 Number of line extensions: new NDC with new form or strength

Issue: invoice sales are underreported for many drugs

- Problem for many specialty, physician-administered drugs
- Example: Eylea (Aflibercept, macular degeneration)
 - ► WAC sales (2013): ~6 million
 - Medicaid sales: ~5 million

Issue: invoice sales are underreported for many drugs

- Problem for many specialty, physician-administered drugs
- Example: Eylea (Aflibercept, macular degeneration)
 - ► WAC sales (2013): ~6 million
 - Medicaid sales: ~5 million
 - ▶ Net sales: ~1.5 billion
- Solution: drop drugs with net sales > invoice sales over the life-cycle

Estimation exploits variation in exposure to Medicaid to estimate diff-in-diff around 2010

- Two independent variables of interest
 - 1. Medicaid Market Share \rightarrow matters for price
 - 2. Medicaid sales \rightarrow matters for line extensions
- Sample: drugs launched in 2007 w/ positive sales in 2009
- Two regression designs:
 - 1. Linear interaction of MMS/Sales with policy change
 - 2. Interaction of quartiles of MMS/sales with policy change

Results I: Price Distortions

List price of drugs with high MMS grows more slowly

 $log(WAC_{it}) = \alpha_i + \delta_t + \beta_1 \times MMS_i \times (t - 2007)$

List price of drugs with high MMS grows more slowly

 $log(WAC_{it}) = \alpha_i + \delta_t + \beta_1 \times MMS_i \times (t - 2007)$

and even more slowly after 2010

$$log (WAC_{it}) = \alpha_i + \delta_t + \beta_1 \times MMS_i \times (t - 2007) + \beta_2 \times MMS_i \times PostACA_t \times (t - 2010)$$

Drugs with high MMS have lower discounts

 $Discount_{it} = \delta_t + \beta_1 \times MMS_i$

Drugs with high MMS have lower discounts

 $Discount_{it} = \delta_t + \beta_1 \times MMS_i$

but less so after the change in the formula

 $Discount_{it} = \delta_t + \beta_1 \times MMS_i + \beta_2 \times MMS_i \times PostACA_t$

Results II: Innovation Distortions

Line extensions are more likely for drugs with high Medicaid sales

$$\lambda (age | X) = \lambda_0 (age) \times exp (X)$$

Line extensions are more likely for drugs with high Medicaid sales

$\lambda (age X) = \lambda_0 (age) \times exp (X)$					
	All Line Extensions				
High Med Sales	2.278** (0.367)				
Post-ACA					
High Med Sales ×Post-ACA					
Ν	552				

and even more so after the ACA

	U (0-)	1 ()		
	All Line Extensions			
High Med Sales	2.278**	1.725**		
	(0.367)	(0.364)		
Post-ACA		0.947		
		(0.246)		
High Med Sales		2.078*		
×Post-ACA		(0.691)		
Ν	552	552		

$$\lambda (age | X) = \lambda_0 (age) \times exp (X)$$

Which line extensions are more profitable under Medicaid rules?

Intuition

- Key of a line extension is to get people to switch
- Higher quality line extensions can get more people to switch
- Marginal gain from extra switchers increases with base rebate

Which line extensions are more profitable under Medicaid rules?

Intuition

- Key of a line extension is to get people to switch
- Higher quality line extensions can get more people to switch
- Marginal gain from extra switchers increases with base rebate

Firms develop higher-quality line extensions post-ACA

$$\lambda (age | X) = \lambda_0 (age) \times exp(X)$$

	New Form		New Strength	
High Med Sales	2.459**	1.439	2.370**	1.939**
	(0.600)	(0.515)	(0.404)	(0.433)
Post-ACA		0.937		1.110
		(0.348)		(0.304)
High Med Sales		3.029*		1.697
×Post-ACA		(1.500)		(0.589)
Ν	552	552	552	552

Conclusion

The Medicaid Drug Rebate Program affects pricing and R&D strategies of firms

- List prices grow more slowly
- Private market discounts are lower
- Line extensions introduced at a higher rate

Conclusion

The Medicaid Drug Rebate Program affects pricing and R&D strategies of firms

- List prices grow more slowly
- Private market discounts are lower
- Line extensions introduced at a higher rate

Predicting effect of policy change is not easy

- Simple prediction: \uparrow mandatory rebate $\implies \uparrow$ distortion
- But firms face a lot of constraints that are hard to model
- These constraints affect predictions
- ▶ In this case, the reform turns out to be relatively benign