Global Housing Markets and Monetary Policy Spillovers Evidence from OECD Countries

Shikong (Scott) Luo^{1†} Jun Ma²

¹ University of Alabama

² Northeastern University

[†] presenter

ASSA 2020 Annual Meeting, San Diego

Scott Luo Lun	1/1-2
JCOLL LUO. JUIT	IVIA

Global Housing Markets

Jan 2020 1 / 28

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Motivation

- Overview
- **3** Empirical Model
- **4** Empirical Results: Variance Decomposition
- **6** Empirical Results: Understanding Global Housing Risk Premium
- **6** Conclusive Remarks
- References

Motivation

- Overview
- 8 Empirical Model
- **4** Empirical Results: Variance Decomposition
- 6 Empirical Results: Understanding Global Housing Risk Premium
- 6 Conclusive Remarks
- References

Research Questions

- Rey (2015), Miranda-Agrippino and Rey (2015) and Rey (2016): "Global Financial Cycle" Hypothesis
 - Even under floating exchange rate regime, individual countries lack controls over the domestic financial conditions

イロト 不得 トイラト イラト 二日

Research Questions

- Rey (2015), Miranda-Agrippino and Rey (2015) and Rey (2016): "Global Financial Cycle" Hypothesis
 - Even under floating exchange rate regime, individual countries lack controls over the domestic financial conditions
- Miranda-Agrippino and Rey (2015) : extracting a common factor from international equity and bond prices

イロト 不得 トイラト イラト 二日

Research Questions (cont.)

• If you look at the global housing market...

Housing Market Conditions in 17 OECD Countries around Financial Crisis

Scott Luo, Jun Ma

Research Questions (cont.)

- Previous studies on housing markets in an open economy framework are relatively limited...
- ... especially for the role of global financial cycle in the international housing markets

Research Questions (cont.)

- Previous studies on housing markets in an open economy framework are relatively limited...
- ... especially for the role of global financial cycle in the international housing markets
- This paper: Use international housing markets to test the global financial cycle hypothesis.

Motivation

- Overview
- 8 Empirical Model
- **4** Empirical Results: Variance Decomposition
- 5 Empirical Results: Understanding Global Housing Risk Premium
- 6 Conclusive Remarks
- References

A Quick Overview

What we did:

• Integrate the Campbell-Shiller decomposition with a dynamic factor model and apply this approach to the housing price-rent ratios in 17 OECD countries over 1981-2015...

A Quick Overview

What we did:

• Integrate the Campbell-Shiller decomposition with a dynamic factor model and apply this approach to the housing price-rent ratios in 17 OECD countries over 1981-2015...

What we found:

- The global factor can explain the bulk of housing markets variability across OECD advanced economies, *especially for the years leading up to the financial crisis*
- 2 The global housing risk premium component is the key driver
- O US monetary policy has a significant impact on the global housing risk premium

イロト 不得 トイラト イラト 二日

- Motivation
- Overview
- **3** Empirical Model
- **4** Empirical Results: Variance Decomposition
- 6 Empirical Results: Understanding Global Housing Risk Premium
- 6 Conclusive Remarks
- References

Campbell-Shiller Decomposition

The one-period simple return on housing as a financial asset

$$H_{it} = (P_{it} + D_{it})/P_{it-1}$$

Taking log-linear approximation to the return yields the following dynamic relation (suppress constant):

$$pd_{i,t} = \Delta d_{i,t+1} - h_{i,t+1} + \rho \cdot pd_{i,t+1} \tag{1}$$

Campbell-Shiller Decomposition

The one-period simple return on housing as a financial asset

$$H_{it} = (P_{it} + D_{it})/P_{it-1}$$

Taking log-linear approximation to the return yields the following dynamic relation (suppress constant):

$$pd_{i,t} = \Delta d_{i,t+1} - h_{i,t+1} + \rho \cdot pd_{i,t+1} \tag{1}$$

Solve (1):

$$pd_{i,t} = \hat{\mathbb{E}}_t \Delta d_{i,t} - \hat{\mathbb{E}}_t h_{i,t}, \quad \text{where } \hat{\mathbb{E}}_t(x_t) \equiv E_t \sum_{\tau=0}^{\infty} \rho^{\tau} x_{t+1+\tau}$$
 (2)

Jan 2020 10 / 28

Campbell-Shiller Decomposition

The one-period simple return on housing as a financial asset

$$H_{it} = (P_{it} + D_{it})/P_{it-1}$$

Taking log-linear approximation to the return yields the following dynamic relation (suppress constant):

$$pd_{i,t} = \Delta d_{i,t+1} - h_{i,t+1} + \rho \cdot pd_{i,t+1} \tag{1}$$

Solve (1):

$$pd_{i,t} = \hat{\mathbb{E}}_t \Delta d_{i,t} - \hat{\mathbb{E}}_t h_{i,t}, \quad \text{where } \hat{\mathbb{E}}_t(x_t) \equiv E_t \sum_{\tau=0}^{\infty} \rho^{\tau} x_{t+1+\tau}$$
 (2)

Further decompose expected return into risk free and risk premium components:

$$pd_{i,t} = \hat{\mathbb{E}}_t \Delta d_{i,t} - \hat{\mathbb{E}}_t r_{i,t} - \hat{\mathbb{E}}_t r_{i,t}$$

$$(3)$$

Scott Luo, Jun Ma

Global Housing Markets

Jan 2020 10 / 28

Dynamic Factor Model

Each component in equation (3) can be further split into a country-specific and a global parts by a dynamic factor model

$$X_{it} = \tilde{X}_{i,t} + \beta_i^X \bar{X}_t$$

where as in Stock and Watson (1989), $\tilde{X}_{i,t}$ and \bar{X}_t follow AR processes

Dynamic Factor Model

Each component in equation (3) can be further split into a country-specific and a global parts by a dynamic factor model

$$X_{it} = \tilde{X}_{i,t} + \beta_i^X \bar{X}_t$$

where as in Stock and Watson (1989), $\tilde{X}_{i,t}$ and \bar{X}_t follow AR processes The resulting price-rent ratio decomposition becomes:

$$pd_{i,t} = \underbrace{\hat{\mathbb{E}}_{t}\Delta\tilde{d}_{i,t} - \hat{\mathbb{E}}_{t}\tilde{r}_{i,t} - \hat{\mathbb{E}}_{t}\tilde{r}p_{i,t}}_{\text{Local Factors}} + \underbrace{\beta_{i}^{d}\hat{\mathbb{E}}_{t}\Delta\bar{d}_{t} - \beta_{i}^{r}\hat{\mathbb{E}}_{t}\bar{r}_{t} - \beta_{i}^{rp}\hat{\mathbb{E}}_{t}\bar{r}p_{t}}_{\text{Global Factors}}$$
(4)

Then one can use (4) to evaluate the fraction of price-rent volatility due to specific component.

イロト 不得 トイラト イラト 二日

Data and Estimation

- Global housing data: OECD iLibrary Analytical House Price Indicators Dataset
- Coverage: 1981Q1-2015Q4 and 17 OECD countries: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom and United States
- Other macroeconomic data: OECD, IFS and FRED database
- Estimation
 - Maximum Likelihood Method
 - Expectations are estimated by VAR following finance literature.
 - The conditioning information set in the VAR includes some macro fundamentals such as GDP growth and inflation. Two lags are used based on information criterion.
 - Results are qualitatively robust to an expanded VAR.

イロト 不得下 イヨト イヨト 二日

- Motivation
- Overview
- 8 Empirical Model
- **4** Empirical Results: Variance Decomposition
- 5 Empirical Results: Understanding Global Housing Risk Premium
- 6 Conclusive Remarks
- References

Volatility Contribution: Global vs. Local

Table 1: The Local Factor Contribution to Price-Rent Ratios Volatility					
Country	1981Q3-1998Q4	1999Q1-2007Q4	2008Q1-2015Q4	1981Q3-2015Q4	
Australia	0.2184	0.0530	0.6913	0.0217	
Belgium	0.5280	0.0728	0.6219	0.0446	
Canada	0.7440	0.0621	0.8935	0.1500	
Denmark	0.9379	0.4493	0.9178	0.3575	
Finland	0.9219	0.1440	0.8808	0.2546	
France	0.9269	0.7415	0.8870	0.4595	
Germany	0.9015	0.2061	0.9655	0.3053	
Ireland	0.7983	0.3595	0.9635	0.4356	
Italy	0.9973	0.9581	0.9979	0.9272	
Japan	0.8955	0.0996	0.8392	0.2950	
Netherlands	0.7338	0.2324	0.9613	0.3030	
Norway	0.8650	0.2083	0.8677	0.1710	
Spain	0.9698	0.4795	0.9813	0.5273	
Sweden	0.9763	0.3957	0.9609	0.5938	
Switzerland	0.9860	0.7030	0.9749	0.7328	
United Kingdom	0.9212	0.2506	0.7380	0.2548	
United States	0.7197	0.2345	0.9225	0.3279	
Average	0.8260	0.3324	0.8862	0.3624	
Median	0.9015	0.2345	0.9178	0.3053	

Scott Luo, Jun Ma

Global Housing Markets

● ■ ・ ■ ・ つ へ (?)
 Jan 2020 14 / 28

・ロト ・聞ト ・ヨト ・ヨト

Volatility Contribution: The Role of Housing Risk Premium

• To further unveil the sources housing market variability, according to (3) the variance decomposition can be written as

$$var(pd_{it}) = var(\hat{\mathbb{E}}_{t}\Delta d_{i,t}) + var(\hat{\mathbb{E}}_{t}r_{i,t}) + var(\hat{\mathbb{E}}_{t}rp_{i,t})$$
$$-2cov(\hat{\mathbb{E}}_{t}\Delta d_{i,t}, \hat{\mathbb{E}}_{t}rp_{i,t}) - 2cov(\hat{\mathbb{E}}_{t}\Delta d_{i,t}, \hat{\mathbb{E}}_{t}r_{i,t}) + 2cov(\hat{\mathbb{E}}_{t}r_{i,t}, \hat{\mathbb{E}}_{t}rp_{i,t})$$

- The variance terms can be further decomposed to variances at local and global levels based on (4).
- The impact of covariance is either small or actually negative in the data.
- We focus on variance shares.

イロト 不得下 イヨト イヨト 二日

Volatility Contribution: The Role of Housing Risk Premium (cont.)

	Global		Local			
Country	$\Delta \bar{d}$	\bar{r}	$\tau \bar{p}$	$\Delta \tilde{d}$	\tilde{r}	\tilde{rp}
Australia	0.0000	0.1542	0.4717	0.0008	0.0653	0.0913
Belgium	0.0037	0.3956	0.3257	0.0024	0.0290	0.0963
Canada	0.0000	0.3079	0.2845	0.0002	0.1126	0.3111
Denmark	0.0003	0.0969	0.3254	0.0023	0.2528	0.5078
Finland	0.0064	1.1058	0.2531	0.2196	0.1462	0.6370
France	0.0077	0.2973	0.1718	0.0043	0.0598	0.5263
Germany	0.0129	0.2605	1.4265	0.0091	0.1084	0.3064
Ireland	0.0006	0.0025	0.5321	0.0965	0.0142	0.5485
Italy	0.0100	0.8325	0.3590	0.0632	0.1724	0.9444
Japan	0.0097	0.3838	1.7319	0.0232	0.0600	0.2796
Netherlands	0.0017	0.3182	0.2225	0.0003	0.1304	0.4979
Norway	0.0000	0.0496	0.5335	0.0001	0.0367	0.2961
Spain	0.0004	0.1866	0.1575	0.0100	0.0347	0.4009
Sweden	0.0063	0.0307	0.3076	0.0366	0.0134	0.5333
Switzerland	0.0142	0.1155	0.5168	0.0078	0.0684	0.6940
United Kingdom	0.0083	0.9806	0.2241	0.0702	0.2466	0.6428
United States	0.0044	0.9575	0.2242	0.0022	0.4279	0.3849
Average	0.0051	0.3809	0.4746	0.0323	0.1164	0.4529
Median	0.0044	0.2973	0.3254	0.0078	0.0684	0.4979

Table 2: The Campbell-Shiller Component Volatility Contribution

Scott Luo, Jun Ma

Global Housing Markets

Jan 2020 16 / 28

Volatility Contribution: The Role of Housing Risk Premium (cont.)

	Global			Local		
Country	$\Delta \bar{d}$	\overline{r}	$r\bar{p}$	$\Delta \tilde{d}$	\tilde{r}	rīp
Australia	0.0000	0.0182	0.8013	0.0006	0.0317	0.1004
Belgium	0.0005	0.0469	0.7256	0.0014	0.0264	0.0866
Canada	0.0000	0.0415	0.7325	0.0002	0.0347	0.1092
Denmark	0.0000	0.0102	0.4705	0.0003	0.0401	0.5660
Finland	0.0010	0.1553	0.5613	0.0286	0.0771	0.1577
France	0.0005	0.0174	0.1984	0.0013	0.0186	0.8533
Germany	0.0020	0.0364	0.9881	0.0097	0.0293	0.2337
Ireland	0.0001	0.0003	0.6302	0.0311	0.0010	0.3206
Italy	0.0008	0.0585	0.0320	0.0010	0.0386	1.1194
Japan	0.0017	0.0599	1.1938	0.0009	0.0453	0.0449
Netherlands	0.0003	0.0428	0.5913	0.0004	0.1115	0.0862
Norway	0.0000	0.0058	0.7129	0.0001	0.0381	0.4106
Spain	0.0001	0.0251	0.4056	0.0019	0.0188	0.6034
Sweden	0.0013	0.0056	0.5618	0.0097	0.0059	0.3820
Switzerland	0.0021	0.0157	0.3633	0.0091	0.0100	0.8124
United Kingdom	0.0011	0.1206	0.5017	0.0147	0.1017	0.4723
United States	0.0007	0.1333	0.5041	0.0034	0.2482	0.6543
Average	0.0007	0.0467	0.5867	0.0067	0.0516	0.4125
Median	0.0005	0.0364	0.5618	0.0014	0.0347	0.3820

Table 3: The Campbell-Shiller Component Volatility Contribution (1999Q1-2007Q4)

Scott Luo, Jun Ma

Global Housing Markets

Jan 2020 17 / 28

■

- Motivation
- Overview
- **B** Empirical Model
- **4** Empirical Results: Variance Decomposition
- **6** Empirical Results: Understanding Global Housing Risk Premium
- **6** Conclusive Remarks
- References

Global and Local Factors in US Housing Risk Premium

Figure: U.S. Housing Risk Premium Factor Decomposition

Scott Luo, Jun Ma

Global Housing Markets

Jan 2020 19 / 28

 $\exists \rightarrow$

The Drving Force of Global Housing Risk Premium

• What are the driving forces of Global Housing Risk Premium?

The Drving Force of Global Housing Risk Premium

- What are the driving forces of Global Housing Risk Premium?
- Bruno and Shin (2015), Rey (2015), Miranda-Agrippino and Rey (2015) and Rey (2016): liquidity effect brought about by monetary policy shock in center country such as United States is likely to spillover to other countries, through the risk-taking channel or credit channel
 - **1** Risk-taking channel: risk metrics adopted by banks
 - 2 Credit channel: financial conditions

イロト 不得 トイラト イラト 二日

The Drving Force of Global Housing Risk Premium

- What are the driving forces of Global Housing Risk Premium?
- Bruno and Shin (2015), Rey (2015), Miranda-Agrippino and Rey (2015) and Rey (2016): liquidity effect brought about by monetary policy shock in center country such as United States is likely to spillover to other countries, through the risk-taking channel or credit channel
 - **1** Risk-taking channel: risk metrics adopted by banks
 - 2 Credit channel: financial conditions
- This paper: spillover of US monetary policy shock to global housing markets through risk-taking/credit channel? US Monetary Policy Shock → Global Housing Risk Premium → Housing Market Volatility

イロト 不得 トイラト イラト 二日

A SVAR Model Identified via IV Method

- Stock and Watson (2012) and Mertens and Ravn (2013): IV method to identify monetary policy shock
- As in Gertler and Karadi (2015), we instrument the policy indicator with the surprises in Fed Funds futures within a tight time window around Federal Open Market Committee (FOMC) announcement.
- In our SVAR model
 - US macro variables: CPI, Industrial Production
 - US financial indicators: Mortgage Spread, GZ Bond Premium, Commercial Paper Spread, T-Bill Rate
 - Global Housing Risk Premium , US Housing Risk Premium

イロト 不得下 イヨト イヨト 二日

A SVAR Model Identified via IV Method

- Stock and Watson (2012) and Mertens and Ravn (2013): IV method to identify monetary policy shock
- As in Gertler and Karadi (2015), we instrument the policy indicator with the surprises in Fed Funds futures within a tight time window around Federal Open Market Committee (FOMC) announcement.
- In our SVAR model
 - US macro variables: CPI, Industrial Production
 - US financial indicators: Mortgage Spread, GZ Bond Premium, Commercial Paper Spread, T-Bill Rate
 - Global Housing Risk Premium , US Housing Risk Premium
- We want to see if US monetary policy shock would affect housing risk premium, especially the global one.

イロト 不得下 イヨト イヨト 二日

Impulse Responses to A Monetary Tighening: IV Approach

Notes: This figure provides the impulse responses to 10 basis point increase in monetary policy indicator identified through instrumental variable method. The F-Statistics for the first stage regression is 25.08, and R^2 is 8.17%. Dotted lines are 90% confidence bands based on bootstrapping.

Scott Luo, Jun Ma

Jan 2020 22 / 28

• • • • • • • • • • • •

Impulse Responses to A Monetary Tighening: Cholesky

Notes: This figure provides the impulse responses to 10 basis point increase in monetary policy indicator identified through Cholesky scheme. Dotted lines are 90% confidence bands based on bootstrapping.

Scott Luo, Jun Ma

Global Housing Markets

Jan 2020 23 / 28

- Motivation
- Overview
- B Empirical Model
- **4** Empirical Results: Variance Decomposition
- 6 Empirical Results: Understanding Global Housing Risk Premium
- **6** Conclusive Remarks
- References

Conclusion

Two Most Important Takeaways

- For an average country, the global housing market implied risk premium is a key determinant of the housing market volatility, especially for the years before financial crisis.
- Risk or credit cost related to the global housing market experiences a significant and persistent increase after an unexpected U.S. monetary policy tightening.

Conclusion

Two Most Important Takeaways

- For an average country, the global housing market implied risk premium is a key determinant of the housing market volatility, especially for the years before financial crisis.
- Risk or credit cost related to the global housing market experiences a significant and persistent increase after an unexpected U.S. monetary policy tightening.

Main Contributions

- Add evidence on the global financial cycle with a focus on the international housing markets
- Among the first to uncover risk-taking or credit channel of monetary policy spillover in global housing markets

イロト 不得 トイラト イラト 二日

The end

Many thanks !

Comments are welcomed !

Scott Luo, Jun Ma

Global Housing Markets

Jan 2020 26 / 28

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Motivation
- Overview
- B Empirical Model
- **4** Empirical Results: Variance Decomposition
- 5 Empirical Results: Understanding Global Housing Risk Premium
- 6 Conclusive Remarks
- References

- Bruno, Valentina, and Hyun Song Shin. 2015. "Capital flows and the risk-taking channel of monetary policy." Journal of Monetary Economics, 71: 119 – 132.
- Gertler, Mark, and Peter Karadi. 2015. "Monetary Policy Surprises, Credit Costs, and Economic Activity." American Economic Journal: Macroeconomics, 7(1): 44–76.
- Mertens, Karel, and Morten O. Ravn. 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States." American Economic Review, 103(4): 1212–47.
- Miranda-Agrippino, Silvia, and Helene Rey. 2015. "World Asset Markets and the Global Financial Cycle." National Bureau of Economic Research Working Paper 21722.
- Rey, Helene. 2015. "Dilemma not Trilemma: The global Financial Cycle and Monetary Policy Independence." National Bureau of Economic Research Working Paper 21162.
- **Rey, Helene.** 2016. "International Channels of Transmission of Monetary Policy and the Mundellian Trilemma." *IMF Economic Review*, 64(1): 6–35.
- Stock, James, and M. Watson. 1989. "New Indexes of Coincident and Leading Economic Indicators." NBER Macroeconomics Annual, 351–393.
- Stock, James H., and Mark W. Watson. 2012. "Disentangling the Channels of the 2007-2009 Recession." National Bureau of Economic Research Working Paper 18094.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - ののべ