The Wild Bootstrap with a Small Number of Large Clusters

Ivan A. Canay

Andres Santos

Azeem M. Shaikh

Northwestern

UCLA

U. Chicago

January 4, 2020

The Question

Wild Bootstrap

- Prevalent inference method in linear models with few clusters.
- Due to remarkable simulations by Cameron, Gelbach & Miller (2008).
- Simulations show size control with as few as five clusters.

Examples

- Meng, Qian, and Yared (2015, REStud): 19 clusters.
- Acemoglu, Cantoni, Johnson, Robinson (2011, AER): 13 clusters.
- Giuliano and Spilimbergo (2014, REStud): 9 clusters.
- Kosfeld and Rustagi (2015, AER): 5 clusters.

The Problem:

- Available theory requires # clusters → infinity.
- Asymptotic properties with few clusters remain unknown.

The Question

What We Know

- Simulations have shown wild bootstrap can fail to control size
 but not easy to find these designs.
- Justifications are asymptotic as number of clusters diverges
 ... but why does it work with as few as five clusters?
- Small changes to the procedure can affect simulation performance
 e.g. why do Rademacher weights do better than Mammen weights?

This Paper

- Study the performance of the Wild bootstrap with few clusters.
- Study in asymptotic framework where number of clusters is fixed.
- Will Show Wild bootstrap can be valid with few clusters.
- Result requires clusters to be suitably "homogenous."

1 Setup and Notation

2 Main Result

3 Simulation Evidence

The Model

$$Y_{i,j} = W'_{i,j}\gamma + Z'_{i,j}\beta + \epsilon_{i,j}$$

where $\gamma \in \mathbf{R}^{d_w}$, $\beta \in \mathbf{R}^{d_z}$ and $E[Z_{i,j}\epsilon_{i,j}] = 0$ and $E[W_{i,j}\epsilon_{i,j}] = 0$ $(\forall i,j)$.

Notation

- We index clusters by $j \in J$.
- We index number of clusters by q = |J|.
- We index units in the j^{th} cluster by $i \in I_{n,j}$.
- We index number of units in cluster j by $n_j = |I_{n,j}|$.

- β is main coefficient of interest (e.g. $Z_{i,j} \in \mathbf{R}$).
- γ is a nuisance parameter (e.g. $W_{i,j}$ are fixed effects).

The Test

For some $c \in \mathbf{R}^{d_z}$ and $\lambda \in \mathbf{R}$ we consider the hypothesis testing problem

$$H_0: c'\beta = \lambda$$
 $H_1: c'\beta \neq \lambda$

Test Statistic

$$T_n \equiv |\sqrt{n}(c'\hat{\beta}_n - \lambda)|$$

where $\hat{\beta}_n$ is the ordinary least squares estimator of β .

Wild Bootstrap Test

$$\phi_n = 1\{T_n > \hat{c}_n(1-\alpha)\}$$

where $\hat{c}_n(1-\alpha)$ is computed using a specific variant of the wild bootstrap.

Note: Will comment on properties of the Studentized test statistic later.

Critical Values

Work with a very specific variant of the wild bootstrap.

Step 1

- Run a restricted regression of $Y_{i,j}$ on $(W_{i,j}, Z_{i,j})$ subject to $c'\beta = \lambda$.
- Let $\hat{\gamma}_n^{\mathsf{r}} \in \mathbf{R}^{d_w}$ and $\hat{\beta}_n^{\mathsf{r}} \in \mathbf{R}^{d_z}$ be restricted estimators.
- Let $\hat{\epsilon}_{i,j}^{\mathrm{r}}$ be the corresponding residuals from restricted regression.

Step 2

- Let $\{\omega_j\}_{j\in J}$ be i.i.d. with $P(\omega_j=1)=P(\omega_j=-1)=1/2$ for all $j\in J$.
- Define $\omega = \{\omega_j\}_{j \in J}$, and for each ω denote the new outcomes

$$Y_{ij}^*(\omega) \equiv W_{i,j}' \hat{\gamma}_n^{\mathsf{r}} + Z_{i,j}' \hat{\beta}_n^{\mathsf{r}} + \omega_j \hat{\epsilon}_{i,j}^{\mathsf{r}}$$

- Run an unrestricted regression of $Y_{i,j}^*(\omega)$ in $(W_{i,j}, Z_{i,j})$.
- Let $\hat{\gamma}_n^*(\omega)$ and $\hat{\beta}_n^*(\omega)$ be corresponding unrestricted coefficients.

Critical Values

Step 3

• Compute the $1-\alpha$ quantile of bootstrap statistic conditional on the data

$$\hat{c}_n(1-\alpha) \equiv \inf\{u \in \mathbf{R} : P(|\sqrt{n}(c'\hat{\beta}_n^*(\omega) - \lambda)| \le u|\mathsf{Data}) \ge 1-\alpha\}$$

• In practice $\hat{c}_n(1-\alpha)$ approximated via simulation of bootstrap samples.

- Bootstrap uses $\hat{\beta}_n^{\rm r}$ satisfying $c'\hat{\beta}_n^{\rm r}=\lambda$ (impose the null).
- Use of Rademacher weights is essential for our results.
- Importance of Rademacher vs alternatives known from simulations.

Setup and Notation

2 Main Result

3 Simulation Evidence

Preliminary Notation

ullet Let $\hat{\Pi}_n$ be the $d_w imes d_z$ matrix satisfying the orthogonality conditions

$$\sum_{j \in J} \sum_{i \in I_{n,j}} (Z_{i,j} - \hat{\Pi}'_n W_{i,j}) W'_{i,j} = 0$$

• $(Z_{i,j} - \hat{\Pi}'_n W_{i,j})$ is residual from regressing $Z_{i,j}$ on $W_{i,j}$ on whole sample.

$$\tilde{Z}_{i,j} \equiv (Z_{i,j} - \hat{\Pi}'_n W_{i,j})$$

ullet Let $\hat{\Pi}_{n,j}^{\, {
m c}}$ be a $d_w imes d_z$ matrix satisfying the orthogonality conditions

$$\sum_{i \in I_{n,j}} (Z_{i,j} - (\hat{\Pi}_n^{\mathbf{c}})' W_{i,j}) W'_{i,j} = 0$$

Note: $\hat{\Pi}_{n,j}^{\text{c}}$ may not be uniquely defined (e.g. include cluster fixed effects)

Weak Assumption

Assumption W

(i) The following statistic converges in distribution as n diverges to infinity

$$\frac{1}{\sqrt{n}} \sum_{j \in J} \sum_{i \in I_{n,j}} \begin{pmatrix} W_{i,j} \epsilon_{i,j} \\ Z_{i,j} \epsilon_{i,j} \end{pmatrix}$$

(ii) The following statistic converges (in prob.) to a positive definite matrix

$$\frac{1}{n} \sum_{j \in J} \sum_{i \in I_{n,j}} \begin{pmatrix} W_{i,j} W'_{i,j} & W_{i,j} Z'_{i,j} \\ Z_{i,j} W'_{i,j} & Z_{i,j} Z'_{i,j} \end{pmatrix}$$

- Requirements for showing $\hat{\beta}_n$ and $\hat{\beta}_n^r$ converge in distribution.
- Implicit requirement dependence within cluster weak enough for CLT.
- Imply $\hat{\Pi}_n$ converges in probability to a well defined limit.

Homogeneity Assumption

Assumption H

(i) For independent $\{\mathcal{Z}_j\}_{j\in J}$ with $\mathcal{Z}_j\sim N(0,\Sigma_j)$ and $\Sigma_j>0$ we have

$$\{\frac{1}{\sqrt{n_j}} \sum_{i \in I_{n,j}} \tilde{Z}_{i,j} \epsilon_{i,j} : j \in J\} \stackrel{d}{\to} \{\mathcal{Z}_j : j \in J\}$$

(ii) For each $j \in J$, $n_i/n \to \xi_i > 0$.

- Requirement (i) requires convergence of cluster level "score".
- Requirement (ii) requires clusters not be "too" imbalanced.

Homogeneity Assumption

Assumption H

(iii) There are $a_j>0$ and $\Omega_{\tilde{Z}}$ positive definite such that for each $j\in J$

$$\frac{1}{n_j} \sum_{i \in I_{n,j}} \tilde{Z}_{i,j} \tilde{Z}'_{i,j} \xrightarrow{p} a_j \Omega_{\tilde{Z}}$$

(iv) For each $j \in J$ it follows that

$$\frac{1}{n_j} \sum_{i \in I_{n,j}} \|W'_{i,j}(\hat{\Pi}_n - \hat{\Pi}_{n,j}^{\mathsf{c}})\|^2 \stackrel{p}{\to} 0$$

- If $Z_{i,j} \in \mathbf{R}$, H(iii) means nonzero limit of $\sum_{i \in I_{n,j}} \tilde{Z}_{i,j}^2/n_j$.
- H(iv) requires convergence of full sample and cluster level projections.

Some Discussion

For $\gamma \in \mathbf{R}$, $E[\epsilon_{i,j}] = 0$ and $E[Z_{i,j}\epsilon_{i,j}] = 0$ for all $i \in I_{n,j}$ and $j \in J$ suppose

$$Y_{i,j} = \gamma + Z'_{i,j}\beta + \epsilon_{i,j}$$

Note: Since here $W_{i,j} = 1$ for all $i \in I_{n,j}$ and $j \in J$ we therefore we have

$$\hat{\Pi}_n' W_{i,j} = \frac{1}{n} \sum_{j \in J} \sum_{i \in I_{n,j}} Z_{i,j} \qquad \qquad (\hat{\Pi}_n^{\text{c}})' W_{i,j} = \frac{1}{n_j} \sum_{i \in I_{n,j}} Z_{i,j}$$

- Hence, Assumption H(iv) (asymptotic equivalence of projections) needs
 Cluster level means are the same (asymptotically)
- While, Assumption H(iii) needs same covariance matrices (up to scaling).

Some Discussion

For $\gamma \in \mathbf{R}$, $E[\epsilon_{i,j}] = 0$ and $E[Z_{i,j}\epsilon_{i,j}] = 0$ for all $i \in I_{n,j}$ and $j \in J$ suppose

$$Y_{i,j} = \gamma + Z'_{i,j}\beta + \epsilon_{i,j}$$

Note: Same model, but estimate with cluster level fixed effects $(W_{i,j})$

$$\hat{\Pi}'_n W_{i,j} = \frac{1}{n_j} \sum_{i \in I_{n,j}} Z_{i,j} \qquad \qquad (\hat{\Pi}^{\texttt{c}}_n)' W_{i,j} = \frac{1}{n_j} \sum_{i \in I_{n,j}} Z_{i,j}$$

- Hence, Assumption H(iv) (equivalence of projections) is automatic.
- While, Assumption H(iii) needs same covariance matrices (up to scaling).

Main Result

Theorem If Assumptions W and H hold and $c'\beta = \lambda$, then it follows that

$$\alpha - \frac{1}{2^{q-1}} \le \liminf_{n \to \infty} P(T_n > \hat{c}_n(1 - \alpha))$$

$$\le \limsup_{n \to \infty} P(T_n > \hat{c}_n(1 - \alpha))$$

$$< \alpha$$

- Wild bootstrap controls size for any number of clusters.
- ullet Conservative, but difference decreases exponentially with # of clusters.
- Because q fixed, $\hat{c}_n(1-\alpha)$ is not consistent.
- Theorem valid for IV under similar assumptions.

Additional Comments

Main Conclusion

- Wild bootstrap provides size control with fixed # clusters.
- Procedure also works if $q \uparrow \infty$, so Wild bootstrap is "robust" to q.

Proof Comments

- The wild bootstrap is not consistent (i.e. $\hat{c}_n(1-\alpha)$ does not converge). ... instead show asymptotic equivalence to randomization test.
- Fundamental to use restricted estimator $\hat{\beta}_n^{\rm r}$ and Rademacher weights ... both these observations are folklore from simulations.
- Similar arguments under studentization, but "ties" are not controlled ... instead can show size distortion bounded by 2^{1-q} .

Extension: Score Bootstrap

For non-linear models, score bootstrap applies to test statistics satisfying

$$T_n = F(\frac{1}{\sqrt{n}} \sum_{j \in J} \sum_{i \in I_{n,j}} \psi(X_{i,j})) + o_P(1)$$

for known function F and unknown influence function ψ .

Using estimator $\hat{\psi}_n$ for ψ obtain critical value from conditional quantile of

$$F(\frac{1}{\sqrt{n}}\sum_{j\in J}\omega_j\sum_{i\in I_{n,j}}\hat{\psi}_n(X_{i,j}))$$

- Asymptotically valid as $q \uparrow \infty$ without "homogeneity" assumptions.
- With "homogeneity" and q fixed, size distortion bounded by 2^{1-q} .
- Must use "restricted" estimator $\hat{\psi}_n$ and Rademacher weights.

Setup and Notation

2 Main Result

3 Simulation Evidence

Simulation Design

$$Y_{i,j} = \gamma + Z'_{i,j}\beta + \sigma(Z_{i,j})(\eta_j + \epsilon_{i,j})$$

for $1 \leq i \leq n$ and $1 \leq j \leq q$ where we explore four parameter specifications.

The Good Specifications

- Model 1: $Z_{i,j} = A_j + \zeta_{i,j}$, $\sigma(Z_{i,j}) = Z_{i,j}^2$, $\gamma = 1$. All variables N(0,1).
- Model 2: As in M.1, but $Z_{i,j} = \sqrt{j}(A_j + \zeta_{i,j})$.

Note: Models 1 and 2 need fixed effects to satisfy our assumptions.

Simulation Design

$$Y_{i,j} = \gamma + Z'_{i,j}\beta + \sigma(Z_{i,j})(\eta_j + \epsilon_{i,j})$$

for $1 \le i \le n$ and $1 \le j \le q$ where we explore four parameter specifications.

The Bad Specifications

- Model 3: As in M.1, but $A_j \sim N(0, I_3)$, $\zeta_{i,j} \sim N(0, \Sigma_j)$, $\beta = (\beta_1, 1, 1)$.
- Model 4: As in M.1, but $\beta = (\beta_1, 2), \, \sigma(Z_{i,j}) = (Z_{i,j}^{(1)} + Z_{i,j}^{(2)})^2$ with

$$Z_{i,j} \sim N(\mu_1, \Sigma_1) ext{ for } j > q/2$$

 $Z_{i,j} \sim N(\mu_2, \Sigma_2) ext{ for } j \leq q/2$

where
$$\mu_1 = (-4, -2)$$
, $\mu_2 = (2, 4)$, $\Sigma_1 = I_2$ and $\Sigma_2 = \begin{pmatrix} 10 & 0.8 \\ 0.8 & 1 \end{pmatrix}$.

Size Under Homogeneity

		Rade - with FEs			Rade	Rade - without FEs			Mammen - with FEs		
	Test	5	<i>q</i> 6	8	5	q 6	8	5	q 6	8	
$\begin{array}{c} \text{Model 1} \\ n = 50 \end{array}$	Non-Stud.	9.90	9.34	9.42	14.48	13.80	12.48	14.42	13.06	12.16	
	Stud.	10.42	9.54	9.76	10.80	10.04	9.86	6.26	5.16	4.58	
$\begin{array}{c} \text{Model 2} \\ n = 50 \end{array}$	Non-Stud.	9.02	9.70	9.98	15.84	15.60	15.42	13.62	13.78	13.72	
	Stud	9.44	9.72	10.08	10.38	10.06	11.04	5.92	4.60	4.10	
$\begin{array}{c} \text{Model 1} \\ n = 300 \end{array}$	Non-Stud.	9.72	9.46	10.16	15.48	14.32	14.24	14.78	13.48	12.88	
	Stud	10.22	9.64	10.16	11.24	10.42	10.86	6.88	5.30	4.58	
$\begin{array}{c} \text{Model 2} \\ n = 300 \end{array}$	Non-Stud.	9.68	9.74	10.12	17.74	16.20	15.26	14.86	14.08	13.34	
	Stud	10.16	9.86	10.16	10.96	10.28	10.66	6.18	4.80	4.34	

Table: Rejection prob. (in %) under H_0 . 5,000 replications. $\alpha = 10\%$

Size Without Homogeneity

	Rade - with Fixed effects					Rade	Rade - without Fixed effects			
	_	q					q			
	Test	4	5	6	8	4	5	6	8	
$\begin{array}{c} \text{Model 3} \\ n = 50 \end{array}$	Non-Stud	11.58	13.90	13.32	13.24	26.68	37.16	32.38	26.12	
	Stud	11.14	12.74	11.94	11.44	19.98	18.62	14.54	12.66	
$\begin{array}{c} \text{Model 4} \\ n = 50 \end{array}$	Non-Stud	12.96	17.70	16.30	12.96	12.44	22.64	18.00	14.22	
	Stud	13.00	16.34	14.62	10.88	15.24	22.68	17.22	12.84	
$\begin{array}{c} \text{Model 3} \\ n = 300 \end{array}$	Non-Stud	12.26	15.10	13.52	12.66	30.10	39.08	33.26	26.06	
	Stud	12.32	13.52	11.40	10.96	22.00	19.38	15.44	12.96	
$\begin{array}{c} \text{Model 4} \\ n = 300 \end{array}$	Non-Stud	13.54	17.18	15.94	12.84	14.72	24.38	17.56	13.78	
	Stud	13.40	15.78	14.94	11.72	17.12	25.10	17.66	12.58	

Table: Rejection prob. (in %) under H_0 . 5,000 replications. $\alpha = 10\%$

Conclusion

The Wild Bootstrap

- Valid under a fixed number of clusters (and still if $q \uparrow \infty$)
- Specific to implementatin with Rademacher weight and " $\hat{\beta}_n^r$ ".
- Including cluster level fixed effects eases conditions.

Related to Folklore

- Rademacher weights outperform Mammen despite large q theory.
- "Imposing the null" has dramatic effects in simulations.
- Certain "heterogeneous" designs negatively affect wild bootstrap.

Extensions

- Results apply to nonlinear models through the score bootstrap.
- Can be shown to over-reject by at most 2^{1-q}.
- "Homogeneity" assumptions can be stringent due to nonlinearity.