Solar Geoengineering in a Regional Analytic Climate Economy

Felix Meier¹, Christian Traeger²

¹Kiel Institute for the World Economy

²Department of Economics, University of Oslo; ifo Institute; Frisch Centre

ASSA 2020, Politics of Environmental Policymaking

Motivation

Stratospheric Aerosol Injections (SAI)

- Idea (Crutzen, 2006): Create an artificial 'sunscreen' by injecting aerosols (e.g. sulfur) in the Earth's high atmosphere \rightarrow cooling effect
- Natural experiments: a series of volcanic eruptions including in particular Mount Pinatubo in 1991 \rightarrow cooling of around 0.5°C (Parker et al., 1996)

Photograph taken on June 12, 1991 by Dave Harlow

Literature

Analytic Integrated Assessment Models

- Golosov et al. (2014), Gerlagh and Liski (2017)
- Analytic Climate Economy (ACE) includes temperature dynamics and more general production (Traeger, 2018) ← our point of departure

Solar geoengineering

- Free driver incentive (Weitzman, 2015)
 - ► Low operational costs (Smith and Wagner, 2018; McClellan et al., 2012) ⇒ country or a club of countries could implement solar geoengineering at high levels at the expense of others
- Counter-geoengineering (Parker et al., 2018)
 - Neutralizing: Injection of a base into the stratosphere that decreases or even neutralizes the cooling effect of the aerosols
- Climate clash (Heyen et al., 2019)
 - ► If no moratorium treaty and no cooperative deployment is realized, a climate clash can result (depends on asymmetry in temperature preferences)

Main contributions

Geoengineering in an Analytic IAM

- Analyze these ideas in a full blown dynamic integrated assessment model
- Derive analytic formulas explaining actions & interactions
- 1. Global model
 - Optimal level of sulfur deployment & dependencies
 - Components of the social cost of carbon
 - Quantitative calibration
- 2. Regional model
 - Strategic interaction of heterogeneous regions within an IAM
 - SCC including non-cooperative interaction terms
 - Characterization of the Markov perfect equilibria of the dynamic game, including free-driving, climate clash, and climate match

Global economy

Slightly simplified version of ACE

Gross output is a function

 $Y_t = F(\boldsymbol{A}_t, \boldsymbol{N}_t, \boldsymbol{K}_t, \boldsymbol{E}_t) \quad \text{with } F(\boldsymbol{A}_t, \boldsymbol{N}_t, \gamma \boldsymbol{K}_t, \boldsymbol{E}_t) = \gamma^{\kappa} F(\boldsymbol{A}_t, \boldsymbol{N}_t, \boldsymbol{K}_t, \boldsymbol{E}_t)$

of technology (\mathbf{A}_t) , labor (\mathbf{N}_t) , capital (\mathbf{K}_t) , and energy (\mathbf{E}_t) vectors.

• The resource stocks for fossil fuels (\boldsymbol{E}_t^d) develop as

$$oldsymbol{R}_{t+1} = oldsymbol{R}_t - oldsymbol{E}_t^d, ext{ given }oldsymbol{R}_0.$$

• The capital stock (sum of all capital) evolves as

$$K_{t+1} = Y_t [1 - D_t (T_{1,t}, S_t, m_t)] - C_t.$$

Remark:

• We assume that damages increase in temperature

Global damages

• Damages are defined as a fraction of output

$$D_t(T_{1,t}, S_t, m_t) = 1 - \exp\left[-D_T(T_{1,t}) - \frac{D_G(S_t) - D_m(m_t)}{D_G(S_t)}\right]$$

(1) Temperature-based damages

$$D_T(T_{1,t}) = \xi_0 \exp(\xi_1 T_{1,t}) - \xi_0,$$

(2) Damages from geoengineering (e.g acid precipitation, ozone loss,...)

 $D_G(S_t)=d\,S_t,$

(3) Damages from increasing atmospheric carbon concentrations

$$D_m(m_t) = a(m_t - 1)$$

where $m_t = \frac{M_t}{M_{pre}}$ is carbon concentration relative to pre-industrial.

Climate dynamics

• Carbon stocks in the atmosphere (M_1) and ocean (M_2) develop according to

$$\begin{pmatrix} M_{1,t+1} \\ M_{2,t+1} \end{pmatrix} = \begin{pmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{pmatrix} \begin{pmatrix} M_{1,t} \\ M_{2,t} \end{pmatrix} + \begin{pmatrix} E_t + E_t^{exo} \\ 0 \end{pmatrix}$$

• Transformed temperature dynamics $\tau_i = \exp(\xi_1 T_{i,t})$

$$\begin{pmatrix} \tau_{1,t+1} \\ \tau_{2,t+1} \end{pmatrix} = \begin{pmatrix} 1 - \sigma_{\text{forc}} - \sigma_{21} & \sigma_{21} \\ & & \\ \sigma_{12} & 1 - \sigma_{12} \end{pmatrix} \begin{pmatrix} \tau_{1,t} \\ \tau_{2,t} \end{pmatrix} + \begin{pmatrix} \sigma_{\text{forc}} \exp\left(\frac{\log(2)}{\eta} F_t\right) \\ & \\ 0 \end{pmatrix}$$

• We approximate radiative forcing by (with degrees of freedom f_0 , f_1 , f_2 , f_3 , n)

$$F_t = \frac{\eta}{\log(2)} \log \left[f_0 + f_1 m_t + \left(f_2 - f_3 \left(\frac{m_t}{S_t} \right)^n \right) S_t \right]$$

and fit the function to data from Kleinschmitt et al. (2018) over $m_t \in [1.5, 3]$

Radiative forcing

Optimal level of sulfur

• Proposition 1: The optimal level of sulfur deployment is given by

$$S_t^* = z m_t$$

with geoengineering propensity

$$z = \left[\frac{(1-n)\gamma f_3}{d+\gamma f_2}\right]^{\frac{1}{n}},$$

climate impacts $\gamma=\beta\,\xi_{\rm 0}\,\tilde{\sigma}\,\sigma_{\rm forc}$ and temperature dynamics contribution $\tilde{\sigma}.$

- The optimal level of sulfur is increasing in
 - discount factor (β)
 - temperature damage coefficient (ξ₀)
 - ► sulfur efficiency (f₃)
 - relative atmospheric carbon stock (m_t) ,

and decreasing in

- ▶ geoengineering damage (d)
- ▶ non-linear efficiency loss of sulfur cooling (n)

Optimal sulfur deployment and radiative forcing

• We restrict the model to a "well-calibrated" region (well-defined in quantitative terms): intervals $[\underline{d}(m_t), \overline{d}(m_t)]$ for $m_t \in [1.5, 3]$.

Social cost of carbon

• **Proposition 2:** The SCC in money-measured consumption equivalents is given by

$$SCC = \frac{Y_t^{net}}{M_{pre}} \left[a + \gamma f_1 - \frac{n}{1 - n} \left(d + \gamma f_2 \right) z \right] \tilde{\phi}$$

with carbon dynamics contribution $\tilde{\phi}$ (long life-time of atmospheric CO₂) and, as above, geoengineering propensity $z = \left[\frac{(1-n)\gamma f_3}{d+\gamma f_2}\right]^{\frac{1}{n}}$ and climate impacts γ .

•
$$\frac{Y_t^{net}}{M_{pre}}$$
 sets the scale and units of the SCC

- in red usual IAM term
- in green ocean acidification
- in blue novel geoengineering term

 \Rightarrow The reduction in the optimal carbon tax *increases* in sulfur-based cooling efficiency and *falls* with geoengineering damages.

Social cost of carbon

Regional model - Geoengineering

Regional model - Geoengineering

Markov strategies

Proposition 3:

• If region B is inactive $(S_t^B = 0)$, region A's response function is $S_t^A = z_A^g m_t$. (similar structure as in global model)

Markov strategies

Proposition 3:

- If region B is inactive $(S_t^B = 0)$, region A's response function is $S_t^A = z_A^g m_t$. (similar structure as in global model)
- If both regions are cooling $(S_t^B > 0 \text{ and } S_t^A > 0)$, region A's response function is

$$S_t^A = \frac{m_t}{1 - \alpha_A \, \alpha_B} \left(z_A^g - \alpha_B z_B^g \right) > 0.$$

Markov strategies

Proposition 3:

- If region B is inactive $(S_t^B = 0)$, region A's response function is $S_t^A = z_A^g m_t$. (similar structure as in global model)
- If both regions are cooling $(S_t^B > 0 \text{ and } S_t^A > 0)$, region A's response function is

$$S_t^A = \frac{m_t}{1 - \alpha_A \, \alpha_B} \left(z_A^g - \alpha_B z_B^g \right) > 0.$$

• If region B uses counter-geoengineering $(S_t^B < 0)$ and region A uses geoengineering $(S_t^A > 0)$, region A's response function is

$$S_t^A = \frac{m_t}{1 - \alpha_A \, \alpha_B} \left(z_A^g - \alpha_B z_B^c \right) > 0,$$

where z_B^c shows region B's aversion to do counter-geoengineering.

Markov Nash-equilibria

Proposition 4: There are 5 qualitatively different Nash-equilibria. They are mutually exclusive and classified based on fundamental as follows:

Climate clash	$S_t^A > 0, S_t^B < 0$:	$\alpha_A^{-1} < h$
Free driver/rider	$S_t^A > 0, S_t^B = 0$:	$h \leq \alpha_A^{-1} \leq H$
Climate match	$S_t^A > 0, S_t^B > 0$:	$\alpha_B < H < \alpha_A^{-1}$
Free driver/rider	$S_t^A = 0, S_t^B > 0$:	$H \leq lpha_B \leq \hat{H}$
Climate clash	$S_t^A < 0, S_t^B > 0$:	$\hat{H} < lpha_{E}$

where

$$h = \frac{z_A^g}{z_B^c}$$
, $H = \frac{z_A^g}{z_B^g}$, and $\hat{H} = \frac{z_A^c}{z_B^g}$.

We note that $h \leq H \leq \hat{H}$ and that $\alpha_B \leq \alpha_A^{-1}$.

Nash-equilibria: An example

Variation of the damage parameters in two otherwise symmetric regions

Felix Meier, Christian Traeger

Region A's social cost of carbon

Proposition 5: If $S_t^B = 0$, the SCC is given by

$$SCC^{A} = \frac{Y_{A,t}^{net}}{M_{pre}} \left[a^{A} + f_{1} \gamma_{A} - \frac{n}{1-n} z_{A}^{g} \left(f_{2} \gamma_{A} + d_{AA}^{g} \right) \right] \tilde{\phi}_{A}$$

(same structure as in global model)

Region A's social cost of carbon

Proposition 5: If $S_t^B = 0$, the SCC is given by

$$SCC^{A} = \frac{Y_{A,t}^{net}}{M_{pre}} \left[a^{A} + f_{1} \gamma_{A} - \frac{n}{1-n} z_{A}^{g} \left(f_{2} \gamma_{A} + d_{AA}^{g} \right) \right] \tilde{\phi}_{A}.$$

(same structure as in global model)

If both regions are cooling ($S_t^B > 0$ and $S_t^A > 0$), the SCC gains additional term

$$SCC^{A} = \frac{Y_{A,t}^{net}}{M_{pre}} \left[\text{green} + \text{red} - \text{blue} + \underbrace{\frac{\alpha_{B}(z_{B}^{g} - \alpha_{A} z_{A}^{g})(d_{BA}^{g} - d_{AA}^{g})}{1 - \alpha_{A} \alpha_{B}}}_{\text{spillover effect }(+/-)} \right] \tilde{\phi}_{A}$$

Region A's social cost of carbon

Proposition 5: If $S_t^B = 0$, the SCC is given by

$$SCC^{A} = \frac{Y_{A,t}^{net}}{M_{pre}} \left[a^{A} + f_{1} \gamma_{A} - \frac{n}{1-n} z_{A}^{g} \left(f_{2} \gamma_{A} + d_{AA}^{g} \right) \right] \tilde{\phi}_{A}.$$

(same structure as in global model)

If both regions are cooling $(S_t^B > 0 \text{ and } S_t^A > 0)$, the SCC gains additional term

$$SCC^{A} = \frac{Y_{A,t}^{net}}{M_{pre}} \left[\text{green} + \text{red} - \text{blue} + \underbrace{\frac{\alpha_{B}(z_{B}^{g} - \alpha_{A} z_{A}^{g})(d_{BA}^{g} - d_{AA}^{g})}{1 - \alpha_{A} \alpha_{B}}}_{\text{spillover effect } (+/-)} \right] \tilde{\phi}_{A}$$

If region B uses counter-geoengineering $(S_t^B < 0)$ and region A uses geoengineering $(S_t^A > 0)$, the SCC is given by

$$SCC^{A} = \frac{Y_{A,t}^{net}}{M_{pre}} \left[\text{green} + \text{red} - \text{blue} + \underbrace{\frac{\alpha_{B}(z_{B}^{c} - \alpha_{A} z_{A}^{g})(d_{BA}^{c} - d_{AA}^{g})}{1 - \alpha_{A} \alpha_{B}}}_{\text{spillover effect } (+/-)} \right] \tilde{\phi}_{A}$$

Conclusions

Global IAM:

- Calibrated model of optimal sulfur injections
- Analytical formula for SCC including geoengineering

Dynamic strategic game in an IAM:

- Response functions & their dependencies
- Full classification of Markov Nash-equilibria: exhibit free riding, free driving, climate clash, and climate match
- Show how the SCC changes as a consequence of (counter-)geoengineering and non-cooperative interactions
- Perspective change: Equilibria result from asymmetry in geoengineering and climate *damages* (or perceptions), not from *temperature* preferences per se

Next step:

• Calibration of the regional model

References I

- Crutzen, P. J. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77(3-4):211–219.
- Gerlagh, R. and Liski, M. (2017). Consistent climate policies. Journal of the European Economic Association, 16(1):1–44.
- Golosov, M., Hassler, J., Krusell, P., and Tsyvinski, A. (2014). Optimal taxes on fossil fuel in general equilibrium. <u>Econometrica</u>, 82(1):41–88.
- Heyen, D., Horton, J., and Moreno-Cruz, J. (2019). Strategic Implications of Counter-Geoengineering: Clash or Cooperation? <u>Journal of Environmental</u> Economics and Management, 95:153–177.
- McClellan, J., Keith, D. W., and Apt, J. (2012). Cost analysis of stratospheric albedo modification delivery systems. Environmental Research Letters, 7(3):034019.
- Parker, A., Horton, J., and Keith, D. W. (2018). Stopping Solar Geoengineering Through Technical Means: A Preliminary Assessment of Counter-Geoengineering. Earth's Future, 6:1058–1065.

- Parker, D., Wilson, H., Jones, P. D., Christy, J., and Folland, C. K. (1996). The impact of mount pinatubo on world-wide temperatures. <u>International Journal of</u> Climatology: A Journal of the Royal Meteorological Society, 16(5):487–497.
- Smith, W. and Wagner, G. (2018). Stratospheric aerosol injection tactics and costs in the first 15 years of deployment. <u>Environmental Research Letters</u>, 13(12):124001.
- Tollefson, J. (2018). Global industrial carbon emissions to reach all-time high in 2018. Nature News.
- Traeger, C. P. (2018). ACE Analytic Climate Economy (with Temperature and Uncertainty).
- Weitzman, M. L. (2015). A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering. <u>Scandinavian Journal of</u> Economics, 117(4):1049–1068.