Hypotheses and Data		Endogeneity 00000000	Network Effect	

What Drives the Covariation of Cryptocurrency Returns?

Amin Shams The Ohio State University

January 4, 2020

What Drives the Covariation of Cryptocurrency Returns?

Intro ●0000000	Hypotheses and Data		Endogeneity 00000000	Network Effect	

Motivation

Number of Cryptocurrencies Over Time

Intro 0●000000	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Motiva	tion				

- What drives cryptocurrency prices?
- ▶ What determines the return structure of cryptocurrencies?
- Why are cryptocurrencies so volatile?
- What is the source of the underlying value?
- How do investors think about the value?

Intro 0●000000	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Motiva	tion				

- What drives cryptocurrency prices?
- ► What determines the return structure of cryptocurrencies?
- Why are cryptocurrencies so volatile?
- What is the source of the underlying value?
- How do investors think about the value?

Intro 0●000000	Hypotheses and Data		Endogeneity 00000000	Network Effect 00000000	
Motiva	tion				

- What drives cryptocurrency prices?
- ► What determines the return structure of cryptocurrencies?
- Why are cryptocurrencies so volatile?
- What is the source of the underlying value?
- How do investors think about the value?

Intro 0●000000	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Motiva	tion				

- What drives cryptocurrency prices?
- What determines the return structure of cryptocurrencies?
- Why are cryptocurrencies so volatile?
- What is the source of the underlying value?
- How do investors think about the value?

Intro 0●000000	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Motiva	tion				

- What drives cryptocurrency prices?
- What determines the return structure of cryptocurrencies?
- Why are cryptocurrencies so volatile?
- What is the source of the underlying value?
- How do investors think about the value?

Intro 0●000000	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Motiva	tion				

- What drives cryptocurrency prices?
- ► What determines the return structure of cryptocurrencies?
- Why are cryptocurrencies so volatile?
- What is the source of the underlying value?
- How do investors think about the value?

1. Medium of exchange

- Off the platform (e.g. Bitcoin)
- On the platform (e.g. Filecoin)
- 2. In addition to investors, users and developers have a demand for holding cryptocurrencies.
- 3. Underlying value depends on the network effect.
 - "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
 - "More developer activity and use cases = higher user adoption = more demand for req = higher req price"
 - "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."

Image: A matrix and a matrix

- 1. Medium of exchange
 - Off the platform (e.g. Bitcoin)
 - On the platform (e.g. Filecoin)
- 2. In addition to investors, users and developers have a demand for holding cryptocurrencies.
- 3. Underlying value depends on the network effect.
 - "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
 - "More developer activity and use cases = higher user adoption = more demand for req = higher req price"
 - "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."

Image: A matrix and a matrix

- 1. Medium of exchange
 - Off the platform (e.g. Bitcoin)
 - On the platform (e.g. Filecoin)
- 2. In addition to investors, users and developers have a demand for holding cryptocurrencies.
- 3. Underlying value depends on the network effect.
 - "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
 - "More developer activity and use cases = higher user adoption = more demand for req = higher req price"
 - "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."

- 1. Medium of exchange
 - Off the platform (e.g. Bitcoin)
 - On the platform (e.g. Filecoin)
- 2. In addition to investors, users and developers have a demand for holding cryptocurrencies.
- 3. Underlying value depends on the network effect.
 - "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
 - "More developer activity and use cases = higher user adoption = more demand for req = higher req price"

"How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."

- 1. Medium of exchange
 - Off the platform (e.g. Bitcoin)
 - On the platform (e.g. Filecoin)
- 2. In addition to investors, users and developers have a demand for holding cryptocurrencies.
- 3. Underlying value depends on the network effect.
 - "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
 - "More developer activity and use cases = higher user adoption = more demand for req = higher req price"
 - "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."

 Intro
 Hypotheses and Data
 Connectivity
 Comovement
 Endogeneity
 Network Effect
 Conclusion

 00000000
 000
 0000000
 00000000
 00000000
 00000000
 0

Characterizing Cryptocurrencies

- 1. Medium of exchange
 - Off the platform (e.g. Bitcoin)
 - On the platform (e.g. Filecoin)
- 2. In addition to investors, users and developers have a demand for holding cryptocurrencies.
- 3. Underlying value depends on the network effect.
 - "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
 - "More developer activity and use cases = higher user adoption = more demand for req = higher req price"
 - "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."

 Intro
 Hypotheses and Data
 Connectivity
 Comovement
 Endogeneity
 Network Effect
 Conclusion

 00000000
 000
 0000000
 00000000
 00000000
 00000000
 0

Characterizing Cryptocurrencies

- 1. Medium of exchange
 - Off the platform (e.g. Bitcoin)
 - On the platform (e.g. Filecoin)
- 2. In addition to investors, users and developers have a demand for holding cryptocurrencies.
- 3. Underlying value depends on the network effect.
 - "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
 - "More developer activity and use cases = higher user adoption = more demand for req = higher req price"

"How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."

- 1. Medium of exchange
 - Off the platform (e.g. Bitcoin)
 - On the platform (e.g. Filecoin)
- 2. In addition to investors, users and developers have a demand for holding cryptocurrencies.
- 3. Underlying value depends on the network effect.
 - "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
 - "More developer activity and use cases = higher user adoption = more demand for req = higher req price"
 - "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."

1. Wide variation in the pairwise correlation of cryptocurrency returns

Intro 000●0000	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Fmniri	cal Facts				

1. ... and this variation is persistent over time.

Empirical Facts

2. Wide variation in trading platforms of cryptocurrencies

-

Overview of Results

1. Cryptocurrencies with a similar investor base comove substantially more than currencies with different investors.

- a) One standard deviation higher "connectivity" is associated with approximately 0.2 standard deviations higher correlations.
- b) This effect cannot be explained by similarities in technological features or other characteristics.
- c) Exogenous changes in the investor base cause significant changes in comovement.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 1. Cryptocurrencies with a similar investor base comove substantially more than currencies with different investors.
 - a) One standard deviation higher "connectivity" is associated with approximately 0.2 standard deviations higher correlations.
 - b) This effect cannot be explained by similarities in technological features or other characteristics.
 - c) Exogenous changes in the investor base cause significant changes in comovement.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 1. Cryptocurrencies with a similar investor base comove substantially more than currencies with different investors.
 - a) One standard deviation higher "connectivity" is associated with approximately 0.2 standard deviations higher correlations.
 - b) This effect cannot be explained by similarities in technological features or other characteristics.
 - c) Exogenous changes in the investor base cause significant changes in comovement.

< ロ > < 同 > < 回 > < 回 > < 回 >

- 1. Cryptocurrencies with a similar investor base comove substantially more than currencies with different investors.
 - a) One standard deviation higher "connectivity" is associated with approximately 0.2 standard deviations higher correlations.
 - b) This effect cannot be explained by similarities in technological features or other characteristics.
 - c) Exogenous changes in the investor base cause significant changes in comovement.

< ロ > < 同 > < 回 > < 回 > < 回 >

- 1. Cryptocurrencies with a similar investor base comove substantially more than currencies with different investors.
 - a) One standard deviation higher "connectivity" is associated with approximately 0.2 standard deviations higher correlations.
 - b) This effect cannot be explained by similarities in technological features or other characteristics.
 - c) Exogenous changes in the investor base cause significant changes in comovement.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. The <u>network effect</u> plays an important role in explaining the magnitude of the results.

- a) Exposure to similar investor bases translates into 40 to 50% additional comovement for currencies that heavily rely on the network externalities arising from user and developer participation.
- b) More network-based cryptocurrencies exhibit higher volatility.

- 2. The <u>network effect</u> plays an important role in explaining the magnitude of the results.
 - a) Exposure to similar investor bases translates into 40 to 50% additional comovement for currencies that heavily rely on the network externalities arising from user and developer participation.
 - b) More network-based cryptocurrencies exhibit higher volatility.

イロト イ押ト イヨト イヨト

- 2. The <u>network effect</u> plays an important role in explaining the magnitude of the results.
 - a) Exposure to similar investor bases translates into 40 to 50% additional comovement for currencies that heavily rely on the network externalities arising from user and developer participation.
 - b) More network-based cryptocurrencies exhibit higher volatility.

< ロ > < 同 > < 回 > < 回 > < 回 >

Intro 000000●0	Hypotheses and Data		Endogeneity 00000000	Network Effect	
D 1 (1.1.1.				

- 1. A growing literature on cryptocurrencies:
 - Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2016); Schilling and Uhlig (2018).
 - Mining activities and transaction costs: Cong, He, and Li (2018); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2018).
 - Consensus mechanism and adoption problem: Hinzen, John, and Saleh (2019a) and Hinzen, John, and Saleh (2019b).
 - Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2019).
 - ▶ Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2018); Li and Mann (2018); Malinova and Park (2017).
 - **Exchange frictions:** Kroeger and Sarkar (2017); Makarov and Schoar (2018).
 - Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
 - Network effect: Li and Mann (2018); Cong, Li, and Wang (2019); Sockin and Xiong (2018); Gandal and Halaburda (2016).

Intro 000000●0	Hypotheses and Data		Endogeneity 00000000	Network Effect	
D 1 (1				

- 1. A growing literature on cryptocurrencies:
 - Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2016); Schilling and Uhlig (2018).
 - Mining activities and transaction costs: Cong, He, and Li (2018); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2018).
 - Consensus mechanism and adoption problem: Hinzen, John, and Saleh (2019a) and Hinzen, John, and Saleh (2019b).
 - Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2019).
 - ▶ Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2018); Li and Mann (2018); Malinova and Park (2017).
 - **Exchange frictions:** Kroeger and Sarkar (2017); Makarov and Schoar (2018).
 - Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
 - Network effect: Li and Mann (2018); Cong, Li, and Wang (2019); Sockin and Xiong (2018); Gandal and Halaburda (2016).

Intro 000000●0	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Dalata	1 I itomotumo				

- 1. A growing literature on cryptocurrencies:
 - Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2016); Schilling and Uhlig (2018).
 - Mining activities and transaction costs: Cong, He, and Li (2018); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2018).
 - Consensus mechanism and adoption problem: Hinzen, John, and Saleh (2019a) and Hinzen, John, and Saleh (2019b).
 - Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2019).
 - ▶ Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2018); Li and Mann (2018); Malinova and Park (2017).
 - **Exchange frictions:** Kroeger and Sarkar (2017); Makarov and Schoar (2018).
 - Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
 - Network effect: Li and Mann (2018); Cong, Li, and Wang (2019); Sockin and Xiong (2018); Gandal and Halaburda (2016).

Intro 000000●0	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Dalata	1 Litoroturo				

- 1. A growing literature on cryptocurrencies:
 - Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2016); Schilling and Uhlig (2018).
 - Mining activities and transaction costs: Cong, He, and Li (2018); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2018).
 - Consensus mechanism and adoption problem: Hinzen, John, and Saleh (2019a) and Hinzen, John, and Saleh (2019b).
 - Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2019).
 - ▶ Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2018); Li and Mann (2018); Malinova and Park (2017).
 - **Exchange frictions:** Kroeger and Sarkar (2017); Makarov and Schoar (2018).
 - Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
 - Network effect: Li and Mann (2018); Cong, Li, and Wang (2019); Sockin and Xiong (2018); Gandal and Halaburda (2016).

Intro 000000●0	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Dalata	1 Litaratura				

- 1. A growing literature on cryptocurrencies:
 - Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2016); Schilling and Uhlig (2018).
 - Mining activities and transaction costs: Cong, He, and Li (2018); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2018).
 - Consensus mechanism and adoption problem: Hinzen, John, and Saleh (2019a) and Hinzen, John, and Saleh (2019b).
 - Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2019).
 - ▶ Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2018); Li and Mann (2018); Malinova and Park (2017).
 - **Exchange frictions:** Kroeger and Sarkar (2017); Makarov and Schoar (2018).
 - Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
 - Network effect: Li and Mann (2018); Cong, Li, and Wang (2019); Sockin and Xiong (2018); Gandal and Halaburda (2016).

Intro 000000●0	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Dalata	1 Litoroturo				

- 1. A growing literature on cryptocurrencies:
 - Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2016); Schilling and Uhlig (2018).
 - Mining activities and transaction costs: Cong, He, and Li (2018); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2018).
 - Consensus mechanism and adoption problem: Hinzen, John, and Saleh (2019a) and Hinzen, John, and Saleh (2019b).
 - Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2019).
 - Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2018); Li and Mann (2018); Malinova and Park (2017).
 - Exchange frictions: Kroeger and Sarkar (2017); Makarov and Schoar (2018).
 - Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
 - Network effect: Li and Mann (2018); Cong, Li, and Wang (2019); Sockin and Xiong (2018); Gandal and Halaburda (2016).

Intro 000000●0	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Dalata	1 Litoroturo				

- 1. A growing literature on cryptocurrencies:
 - Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2016); Schilling and Uhlig (2018).
 - Mining activities and transaction costs: Cong, He, and Li (2018); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2018).
 - Consensus mechanism and adoption problem: Hinzen, John, and Saleh (2019a) and Hinzen, John, and Saleh (2019b).
 - Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2019).
 - Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2018); Li and Mann (2018); Malinova and Park (2017).
 - Exchange frictions: Kroeger and Sarkar (2017); Makarov and Schoar (2018).
 - Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
 - Network effect: Li and Mann (2018); Cong, Li, and Wang (2019); Sockin and Xiong (2018); Gandal and Halaburda (2016).

Intro 000000●0	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Dalata	1 Litaratura				

- 1. A growing literature on cryptocurrencies:
 - Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2016); Schilling and Uhlig (2018).
 - Mining activities and transaction costs: Cong, He, and Li (2018); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2018).
 - Consensus mechanism and adoption problem: Hinzen, John, and Saleh (2019a) and Hinzen, John, and Saleh (2019b).
 - Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2019).
 - ▶ Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2018); Li and Mann (2018); Malinova and Park (2017).
 - Exchange frictions: Kroeger and Sarkar (2017); Makarov and Schoar (2018).
 - Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
 - Network effect: Li and Mann (2018); Cong, Li, and Wang (2019); Sockin and Xiong (2018); Gandal and Halaburda (2016).

2. Literature on return comovement: Barberis, Shleifer, and Wurgler (2005), Greenwood (2007), Coval and Stafford (2007), Greenwood and Thesmar (2011), Anton and Polk (2014), and Bartram et al. (2015).

3. Literature on cross-listing and market fragmentation: Werner and Kleidon (1996), Froot and Dabora (1999), Chan, Hameed, and Lau (2003), De Jong, Rosenthal, and Van Dijk (2009), and Brealey, Cooper, and Kaplanis (2009).

This paper examines a novel channel that amplifies the price impact of common demand shocks.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Intro Hypotheses and Data Connectivity Comovement Endogeneity Network Effect Conclusion 0000000 000 0000000 00000000 00000000 00000000 0

Related Literature

2. Literature on return comovement: Barberis, Shleifer, and Wurgler (2005), Greenwood (2007), Coval and Stafford (2007), Greenwood and Thesmar (2011), Anton and Polk (2014), and Bartram et al. (2015).

3. Literature on cross-listing and market fragmentation: Werner and Kleidon (1996), Froot and Dabora (1999), Chan, Hameed, and Lau (2003), De Jong, Rosenthal, and Van Dijk (2009), and Brealey, Cooper, and Kaplanis (2009).

This paper examines a novel channel that amplifies the price impact of common demand shocks.

イロト イ理ト イヨト イヨ

Intro Hypotheses and Data Connectivity Comovement Endogeneity Network Effect Conclusion 0000000 000 0000000 00000000 00000000 00000000 0

Related Literature

2. Literature on return comovement: Barberis, Shleifer, and Wurgler (2005), Greenwood (2007), Coval and Stafford (2007), Greenwood and Thesmar (2011), Anton and Polk (2014), and Bartram et al. (2015).

3. Literature on cross-listing and market fragmentation: Werner and Kleidon (1996), Froot and Dabora (1999), Chan, Hameed, and Lau (2003), De Jong, Rosenthal, and Van Dijk (2009), and Brealey, Cooper, and Kaplanis (2009).

This paper examines a novel channel that amplifies the price impact of common demand shocks.

Main Testable Hypotheses

- 1. Cryptocurrencies with similar investor bases should exhibit strong comovement in returns and order imbalance beyond what can be explained by their characteristics and technology.
 - Exogenous changes in the investor base should cause changes in comovement.

2. This effect should be larger for cryptocurrencies that derive more value from the network effect because of the additional price impact of the common demand shocks.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

Main Testable Hypotheses

- 1. Cryptocurrencies with similar investor bases should exhibit strong comovement in returns and order imbalance beyond what can be explained by their characteristics and technology.
 - Exogenous changes in the investor base should cause changes in comovement.

2. This effect should be larger for cryptocurrencies that derive more value from the network effect because of the additional price impact of the common demand shocks.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

Main Testable Hypotheses

- 1. Cryptocurrencies with similar investor bases should exhibit strong comovement in returns and order imbalance beyond what can be explained by their characteristics and technology.
 - Exogenous changes in the investor base should cause changes in comovement.

2. This effect should be larger for cryptocurrencies that derive more value from the network effect because of the additional price impact of the common demand shocks.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Data					

1. Trading and Price Data

- CoinAPI: Minute-level price and trading volume on 70 exchanges
- Kaiko: The entire order book for 26 exchanges
- CoinMarketCap: Daily price and aggregate trading volume

2. Technological Features

• E.g. coins versus tokens, cryptographic algorithm and consensus mechanism, token's industry, etc.

3. Social Media Data

12 million currency-specific comments from Reddit

	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Data					

1. Trading and Price Data

- *CoinAPI*: Minute-level price and trading volume on 70 exchanges
- Kaiko: The entire order book for 26 exchanges
- CoinMarketCap: Daily price and aggregate trading volume
- 2. Technological Features
 - E.g. coins versus tokens, cryptographic algorithm and consensus mechanism, token's industry, etc.

3. Social Media Data

12 million currency-specific comments from Reddit

	Hypotheses and Data		Endogeneity 00000000	Network Effect	
Data					

1. Trading and Price Data

- *CoinAPI*: Minute-level price and trading volume on 70 exchanges
- Kaiko: The entire order book for 26 exchanges
- CoinMarketCap: Daily price and aggregate trading volume
- 2. Technological Features
 - E.g. coins versus tokens, cryptographic algorithm and consensus mechanism, token's industry, etc.
- 3. Social Media Data
 - 12 million currency-specific comments from Reddit

Hypotheses and Data		Network Effect	
000			

Number of Cryptocurrencies Over Time

Month	N Currencies	EW Daily Ret (%)	VW Daily Ret (%)
2017M01	50	0.60	0.03
2017M02	59	0.21	0.86
2017M03	237	3.52	2.14
2017M04	132	1.74	2.21
2017M05	133	2.96	3.99
2017M06	193	1.45	1.52
2017M07	218	-0.86	0.40
2017M08	237	1.84	3.04
2017M09	275	-0.03	0.20
2017M10	264	-0.37	1.37
2017M11	315	1.34	3.71
2017M12	372	3.92	4.70
2018M01	549	-0.06	0.50
2018M02	499	-0.92	0.41
2018M03	512	-1.87	-1.22
2018M04	599	2.17	2.57
2018M05	574	-0.92	-0.38
2018M06	554	-1.58	-0.67

▲□▶ ▲圖▶ ▲厘≯

What Drives the Covariation of Cryptocurrency Returns?

 Intro
 Hypotheses and Data
 Connectivity
 Comovement
 Endogeneity
 Network Effect
 Conclusion

 00000000
 000
 00000000
 000000000
 000000000
 000000000
 0

Geographical Distribution of Exchanges

(日)

The Trading Environment

1. Differences in Cryptocurrency Exchanges

- Geographical restrictions
- Identity verification requirements
- Limitations on deposits, withdrawals, and use of fiat currencies
- Transaction fees
- 2. Frictions Across Exchanges
 - Cross-country capital restrictions
 - Slow confirmation and risks in withdrawal and deposit
 - KYC regulations and risks in disclosing sensitive information

イロト イポト イヨト イヨ

- \blacktriangleright \rightarrow Investing in a limited set of exchanges
- 3. Variation in Share of Cryptocurrencies on Different Exchanges

The Trading Environment

1. Differences in Cryptocurrency Exchanges

- Geographical restrictions
- Identity verification requirements
- Limitations on deposits, withdrawals, and use of fiat currencies
- Transaction fees

2. Frictions Across Exchanges

- Cross-country capital restrictions
- Slow confirmation and risks in withdrawal and deposit
- KYC regulations and risks in disclosing sensitive information

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

▶ \rightarrow Investing in a limited set of exchanges

3. Variation in Share of Cryptocurrencies on Different Exchanges

The Trading Environment

1. Differences in Cryptocurrency Exchanges

- Geographical restrictions
- Identity verification requirements
- Limitations on deposits, withdrawals, and use of fiat currencies
- Transaction fees

2. Frictions Across Exchanges

- Cross-country capital restrictions
- Slow confirmation and risks in withdrawal and deposit
- KYC regulations and risks in disclosing sensitive information

イロト イポト イヨト

▶ \rightarrow Investing in a limited set of exchanges

3. Variation in Share of Cryptocurrencies on Different Exchanges

Proxy for Exposure to Similar Investor Base

A pairwise *Connectivity* measure:

Connectivity_{*i*,*j*,*t*} =
$$1 - \frac{1}{2} \sum_{k=1}^{K} |p_{i,k,t} - p_{j,k,t}|$$

where

$$p_{i,k,t} = \frac{V_{i,k,t}}{\sum_{n=1}^{K} V_{i,n,t}}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Heterogeneity in Connectivity

3

What Drives the Covariation of Cryptocurrency Returns?

 Intro
 Hypotheses and Data
 Connectivity
 Comovement
 Endogeneity
 Ne

 0000000
 000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 000000000
 000000000
 00000000
 00000000
 00000000
 000000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 000000000
 000000000
 <t

Vetwork Effect C

▶ ∢ Ξ

Within Cluster Heterogeneity

What Drives the Covariation of Cryptocurrency Returns?

 Intro
 Hypotheses and Data
 Connectivity
 Comovement
 Endogeneity
 Network Effect
 Conclusion

 00000000
 000
 0000000
 00000000
 00000000
 00000000
 0

Connectivity and Comovement

Pairwise Setting:

 $Corr_{i,j,t} = \beta_0 + \beta_1 Connectivity_{i,j,t-1} + \beta^{Char} Similarity_{i,j,t-1}^{Char} + \delta_t + \varepsilon_{i,j,t}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Connectivity and Comovement

 Intro
 Hypotheses and Data
 Connectivity
 Comovement
 Endogeneity
 Network Effect
 Conclusion

 00000000
 000
 00000000
 000000000
 000000000
 000000000
 000000000
 0

Connectivity and Comovement

Sorting Within Exchanges

Hypotheses and Data	Comovement	Network Effect	
	0000000		

Connectivity and Comovement

	ŀ	All Currencie	es	La	arge Currenc	ies
	(1)	(2)	(3)	(4)	(5)	(6)
Connectivity	0.189***	0.174***	0.172***	0.213***	0.190***	0.187***
	(20.21)	(19.72)	(19.82)	(11.36)	(12.05)	(12.22)
Similarity ^{Volume}		0.068***	0.068***		0.204***	0.199***
		(7.67)	(7.58)		(4.00)	(3.92)
Similarity ^{NExch}		0.040^{*}	0.039*		0.057^{*}	0.057^{*}
		(2.30)	(2.29)		(2.51)	(2.54)
Similarity ^{CoinToken}			0.037**			0.042
			(2.99)			(1.72)
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	447771	444592	444592	62549	61537	61537
Adjusted R^2	.179	.185	.185	.176	.186	.187
Dyadic Clustering	Yes	Yes	Yes	Yes	Yes	Yes

Hypotheses and Data	Comovement	Endogeneity	Network Effect	
	00000000			

Technological Features

		Coin Pairs			Token Pairs	
	(1)	(2)	(3)	(4)	(5)	(6)
Connectivity	0.196***		0.190***	0.194***		0.180***
	(11.99)		(11.32)	(16.97)		(16.21)
SimilarityProofType		0.079^{*}	0.063*			
		(2.29)	(2.06)			
Similarity ^{HashAlgo}		0.055	0.028			
		(1.73)	(0.98)			
SimilarityFork		0.081	0.086			
		(1.21)	(1.43)			
Similarity Volume			0.035*			0.076***
			(2.38)			(6.91)
Similarity ^{Platform}					0.032	0.004
					(1.07)	(0.17)
Similarity ^{Industry}					0.121**	0.098**
					(3.07)	(2.97)
Similarity ^{TokenType}					-0.060	-0.044
					(-1.89)	(-1.63)
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	82588	82588	82588	111386	111386	111386
Adjusted R^2	0.180	0.143	0.182	0.206	0.168	0.210
Double Cluster	Yes	Yes	Yes	Yes	Yes	Yes

What Drives the Covariation of Cryptocurrency Returns?

Connected Portfolio Returns

Summarizing the returns of all currencies connected to currency *i*:

$$R_{i,t}^{Con} = \sum_{j=1}^{N} w_{j,t} R_{j,t}$$

$$w_{j,t} = \frac{Connectivity_{i,j,t-1} Volume_{j,t-1}}{\sum_{n=1}^{N} Connectivity_{i,n,t-1} Volume_{n,t-1}}$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト

Fama-MacBeth Regression of Returns on Connected Portfolio Returns

Comovement

	12hr	1.1	2d	3d	4d	54	6d	
Connected Ret	0.30***	0.32***	0.38***	0.41***	0.39**	0.40	0.53**	0.57**
Connected Ret	(7.60)	(5.31)	(3.89)	(3.98)	(2.72)	(1.87)	(2.79)	(2.84)
Constant	0.0026*	0.0044	0.010	0.013	0.017	0.025	0.030	0.043*
	(2.14)	(1.70)	(1.80)	(1.58)	(1.55)	(1.73)	(1.83)	(2.17)
Observations	2623410	2578365	2506383	2443071	2386977	2335407	2287855	2244988

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Hypotheses and Data	Comovement 000000000	Endogeneity 00000000	Network Effect	

Cross-Predictability

J	K=	12hr	1 <i>d</i>	2d	3d	4d	5d	6d	7 <i>d</i>
12hr		0.0064	0.0052	0.0048	0.0029	0.0024	0.0027	0.0031	0.0028
		(3.53)	(3.36)	(3.92)	(2.92)	(2.74)	(3.06)	(3.58)	(3.16)
1d		0.0065	0.0071	0.0052	0.0036	0.0027	0.0030	0.0037	0.0031
		(3.31)	(3.68)	(3.25)	(2.67)	(2.34)	(2.59)	(3.30)	(2.87)
2d		0.0104	0.0075	0.0040	0.0033	0.0038	0.0045	0.0044	0.0034
		(4.80)	(3.58)	(1.97)	(1.82)	(2.30)	(2.88)	(3.20)	(2.46)
3d		0.0068	0.0046	0.0028	0.0029	0.0044	0.0045	0.0038	0.0026
		(3.16)	(2.11)	(1.23)	(1.40)	(2.30)	(2.49)	(2.31)	(1.59)
4d		0.0056	0.0049	0.0055	0.0062	0.0065	0.0059	0.0049	0.0040
		(2.55)	(2.19)	(2.36)	(2.69)	(2.93)	(2.76)	(2.43)	(1.97)
5d		0.0073	0.0072	0.0073	0.0073	0.0067	0.0056	0.0049	0.0038
		(3.03)	(2.77)	(2.71)	(2.80)	(2.73)	(2.45)	(2.20)	(1.71)
6d		0.0082	0.0080	0.0074	0.0062	0.0052	0.0047	0.0037	0.0029
		(3.22)	(2.90)	(2.57)	(2.29)	(2.02)	(1.88)	(1.59)	(1.32)
7d		0.0077	0.0074	0.0061	0.0044	0.0041	0.0036	0.0029	0.0025
		(3.08)	(2.68)	(2.18)	(1.69)	(1.60)	(1.45)	(1.25)	(1.16)

What Drives the Covariation of Cryptocurrency Returns?

Intro Hypotheses and Data Connectivity Comovement Endogeneity Network Effect Conclusion 00000000 000 0000000 00000000 00000000 00000000 0

Takeaways:

Connected currencies exhibit significantly higher comovement;

- More than what all other characteristics can explain
- This effect increases in time-horizon
- Leads to cross-predictability

Next:

Are these results driven by unobservable characteristics that determine both returns and trading location?

Intro Hypotheses and Data Connectivity Comovement Endogeneity Network Effect Conclusion 00000000 000 0000000 00000000 00000000 0 0

Takeaways:

Connected currencies exhibit significantly higher comovement;

- More than what all other characteristics can explain
- This effect increases in time-horizon
- Leads to cross-predictability

Next:

Are these results driven by unobservable characteristics that determine both returns and trading location?

< ロ > < 同 > < 回 > < 回 > < 回 >

Evidence from a Quasi-Natural Experiment

- The Chinese government shut down all Chinese crypto exchanges in September 2017.
- The shutdown created an exogenous shock to certain cryptocurrencies trading locations and, hence, to their connectivity.
- The shock can be used to construct an instrument for changes in connectivity.

Evidence from a Quasi-Natural Experiment

- The Chinese government shut down all Chinese crypto exchanges in September 2017.
- The shutdown created an exogenous shock to certain cryptocurrencies trading locations and, hence, to their connectivity.
- The shock can be used to construct an instrument for changes in connectivity.

Evidence from a Quasi-Natural Experiment

- The Chinese government shut down all Chinese crypto exchanges in September 2017.
- The shutdown created an exogenous shock to certain cryptocurrencies trading locations and, hence, to their connectivity.
- The shock can be used to construct an instrument for changes in connectivity.

IntroHypotheses and DataConnectivityComovementEndogeneityNetwork EffectConclusion00

Example for Currencies Affected by the Shock

イロト イポト イヨト イヨト

Changes in Pairwise Correlations

Hypotheses and Data		Endogeneity 000€0000	Network Effect	

2SLS Estimation

First stage:

 $\Delta Connectivity_{i,j} = \gamma_0 + \gamma_1 Connectivity_{i,j}^{Chinese} + \gamma^{Char} \Delta Similarity_{i,j}^{Char} + \delta_c + \varepsilon_{i,j}$

Second stage:

$$\Delta Corr_{i,j} = \beta_0 + \beta_1 \Delta \widehat{Connectivity}_{i,j} + \beta^{Char} \Delta Similarity_{i,j}^{Char} + \delta_c + \varepsilon_{i,j}$$

Control group: Ten closest pairs based on the pairwise connectivity and the monthly trading volume of the two currencies in the month prior to shutdown.

- 4 伊 ト 4 三 ト 4 三

Hypotheses and Data		Endogeneity 000€0000	Network Effect	

2SLS Estimation

First stage:

 $\Delta Connectivity_{i,j} = \gamma_0 + \gamma_1 Connectivity_{i,j}^{Chinese} + \gamma^{Char} \Delta Similarity_{i,j}^{Char} + \delta_c + \varepsilon_{i,j}$

Second stage:

$$\Delta Corr_{i,j} = \beta_0 + \beta_1 \Delta \widehat{Connectivity}_{i,j} + \beta^{Char} \Delta Similarity_{i,j}^{Char} + \delta_c + \varepsilon_{i,j}$$

Control group: Ten closest pairs based on the pairwise connectivity and the monthly trading volume of the two currencies in the month prior to shutdown.

- 4 伊 ト 4 三 ト 4 三

Hypotheses and Data		Endogeneity 000€0000	Network Effect	

2SLS Estimation

First stage:

 $\Delta Connectivity_{i,j} = \gamma_0 + \gamma_1 Connectivity_{i,j}^{Chinese} + \gamma^{Char} \Delta Similarity_{i,j}^{Char} + \delta_c + \varepsilon_{i,j}$

Second stage:

$$\Delta Corr_{i,j} = \beta_0 + \beta_1 \Delta \widehat{Connectivity}_{i,j} + \beta^{Char} \Delta Similarity_{i,j}^{Char} + \delta_c + \varepsilon_{i,j}$$

Control group: Ten closest pairs based on the pairwise connectivity and the monthly trading volume of the two currencies in the month prior to shutdown.

イロト イ押ト イヨト イヨト

IntroHypotheses and DataConnectivityComovementEndogeneityNetwork EffectConclusion00

Instrumental Variables Estimation

	ΔCorr	ΔCorr
ΔConnectivity	0.188***	0.174**
	(3.34)	(2.78)
∆SameVol		0.032
		(1.09)
Cohort FE	Yes	Yes
Observations	40,887	40,887
Dyadic Clustering	Yes	Yes
First-Stage F statistics	21.42	21.22

▲ロト ▲圖 と ▲ 国 と ▲ 国 と -

æ

IntroHypotheses and DataConnectivityComovementEndogeneityNetwork EffectConclusion00

New Exchange Listings and Changes in Comovement

Difference-in-Differences Estimation:

$$Corr_{i,j,t} = \beta_0 + \beta_1 \operatorname{Treated}_{i,j} + \sum_{t=-1}^{3} \gamma_t \operatorname{Treated}_{i,j} * M_t + \beta^{Char} \operatorname{Similarity}_{i,j,t-1}^{Char} + \sum_{t=-1}^{3} \gamma_t^{Char} \operatorname{Similarity}_{i,j,t-1}^{Char} * M_t + \delta_{c,t} + \delta_{i,j} + \varepsilon_{i,j,t}$$

Control group: Ten closest pairs based on connectivity and trading volume of the two currencies in the month prior to listing.

イロト イポト イヨト イヨト
Hypotheses and Data		Endogeneity	Network Effect	
		00000000		

New Exchange Listings and Changes in Comovement

	(1)	(2)	(3)	(4)
Treated	-0.058	-0.049	-0.050	-0.049
	(-1.35)	(-1.13)	(-1.15)	(-1.14)
Treated*M=-1	0.026	0.017	0.019	0.018
	(0.58)	(0.37)	(0.42)	(0.39)
Treated*M=0	0.008	-0.000	0.007	0.010
	(0.17)	(-0.01)	(0.16)	(0.22)
Treated*M=1	0.142*	0.135*	0.129*	0.126*
	(2.46)	(2.28)	(2.18)	(2.12)
Treated*M=2	0.192*	0.185*	0.184^{*}	0.183*
	(2.54)	(2.42)	(2.36)	(2.35)
Treated*M=3	0.301***	0.294***	0.294***	0.294***
	(3.42)	(3.37)	(3.33)	(3.33)
Similarity ^{Volume}		-0.008	-0.021	-0.020
		(-0.56)	(-1.39)	(-1.33)
Similarity ^{SameNExch}		-0.001	-0.001	-0.003
		(-0.02)	(-0.02)	(-0.11)
Cohort-Time FE	Yes	Yes	Yes	Yes
Pair FE	Yes	Yes	Yes	Yes
Observations	225011	224466	224466	224466
Dyadic Clustering	Yes	Yes	Yes	Yes
Similarity Volume * M	No	No	Yes	Yes
Similarity ^{SameNExch} *M	No	No	No	Yes

-≣⇒

What Drives the Covariation of Cryptocurrency Returns?

Takeaways:

- Connected currencies exhibit significantly higher comovement.
- Exogenous changes in connectivity cause changes in the comovement.

Next:

Does the <u>network effect</u> play an important role in explaining the results?

イロト イポト イヨト イヨト

Takeaways:

- Connected currencies exhibit significantly higher comovement.
- Exogenous changes in connectivity cause changes in the comovement.

Next:

Does the <u>network effect</u> play an important role in explaining the results?

イロト イポト イヨト イヨト

Amplifying Effect of Network Externalities

Hypothesis:

Network externalities should amplify the effect of common demand shocks on comovement.

Empirical Strategy:

Exploiting cross-sectional variation in importance of the network effect for different cryptocurrencies.

イロト イ理ト イヨト イヨト

Amplifying Effect of Network Externalities

Hypothesis:

Network externalities should amplify the effect of common demand shocks on comovement.

Empirical Strategy:

Exploiting cross-sectional variation in importance of the network effect for different cryptocurrencies.

イロト イ押ト イヨト イヨト

Capturing Cross-Sectional Variation in the Network Effect

- Quantifying the extent that investors and community of different cryptocurrencies "believe" the currency's underlying value is derived from the network effect.
- Using 12 million currency-specific comments on Reddit to capture this variation:
 - 1. Reading and labeling 10,000 comments as a training sample.
 - 2. Using random forest to extract important features that distinguishes the comments.
 - 3. Feeding the rest of 12M comments into the model for labeling.
 - 4. Quantifying the percentage of comments that are labeled *1* for each cryptocurrency.

Capturing Cross-Sectional Variation in the Network Effect

- Quantifying the extent that investors and community of different cryptocurrencies "believe" the currency's underlying value is derived from the network effect.
- Using 12 million currency-specific comments on Reddit to capture this variation:
 - 1. Reading and labeling 10,000 comments as a training sample.
 - 2. Using random forest to extract important features that distinguishes the comments.
 - 3. Feeding the rest of 12M comments into the model for labeling.
 - 4. Quantifying the percentage of comments that are labeled *1* for each cryptocurrency.

< ロ > < 同 > < 回 > < 回 > < 回 >

Examples of Comments

- You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
- "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."
- "I think the point is network effect. The bubbles bring in more userbase thus increasing network effect."
- "Bitcoin is growing at its fastest pace in history in terms of network effect/user adoption. Bull run is not over until BTC is past gold/10 trillion."

Intro Hypotheses and Data Connectivity Comovement Endogeneity Network Effect Conclusion 00000000 00000000 00000000 00000000 00000000 0

Examples of Comments

- "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
- "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."
- "I think the point is network effect. The bubbles bring in more userbase thus increasing network effect."
- "Bitcoin is growing at its fastest pace in history in terms of network effect/user adoption. Bull run is not over until BTC is past gold/10 trillion."

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples of Comments

- "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
- "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."
- "I think the point is network effect. The bubbles bring in more userbase thus increasing network effect."
- "Bitcoin is growing at its fastest pace in history in terms of network effect/user adoption. Bull run is not over until BTC is past gold/10 trillion."

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples of Comments

- You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
- "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."
- "I think the point is network effect. The bubbles bring in more userbase thus increasing network effect."
- "Bitcoin is growing at its fastest pace in history in terms of network effect/user adoption. Bull run is not over until BTC is past gold/10 trillion."

Random Forest Feature Importance

What Drives the Covariation of Cryptocurrency Returns?

The Network Measure for Top Currencies

Hypotheses and Data		Network Effect	
		00000000	

The Network Measure for Top Currencies

N	Ticker	Perc_Comm	PlatToken
1	ETH	3.4	1
2	ADA	2.5	1
3	IOTA	2.3	0
4	EOS	2.2	1
5	BTC	1.6	0
6	BCH	1.6	0
7	TRX	1.5	0
8	XLM	1.5	0
9	LTC	1.3	0
10	XRP	0.8	0

Binscatter of the Network Measure and Volatility

Hypotheses and Data		Network Effect	
		0000000	

Amplifying Effect of Network Externalities

	(1)	(2)	(3)	(4)
Connectivity	0.151***	0.137***	0.138***	0.139***
	(10.75)	(9.53)	(7.87)	(7.99)
Hi_Commun	0.184***	0.176***	0.177***	0.157**
	(3.94)	(3.78)	(3.79)	(3.16)
Connectivity*Hi_Commun	0.066**	0.070***	0.070***	0.075**
	(3.29)	(3.47)	(3.49)	(3.17)
Similarity ^{Volume}		0.074***	0.074***	0.075***
		(4.58)	(4.61)	(3.73)
Similarity ^{CoinToken}		0.022		
-		(1.83)		
Connectivity*Similarity ^{Volume}			0.000	
			(0.03)	
Time FE	Yes	Yes	Yes	Yes
Observations	80940	80940	80940	40123
Adjusted R ²	0.229	0.230	0.230	0.230
Dyadic Clustering	Yes	Yes	Yes	Yes

A D > <
 A P >
 A

э

What Drives the Covariation of Cryptocurrency Returns?

Hypotheses and Data		Endogeneity 00000000	Network Effect	Conclusion

Conclusion

This paper documents a strong comovement structure in cryptocurrency returns and the amplifying effect of network externalities.

- 1. Cryptocurrencies that have similar investor bases comove substantially more than currencies with different investors.
 - a) Cryptocurrencies with one standard deviation higher "connectivity" exhibit approximately 0.2 standard deviations higher correlations.
 - b) This effect cannot be explained by similarities in technological features or other characteristics.
 - c) Exogenous changes in the investor base cause significant changes in comovement.
 - d) The effect increases in time-horizon and leads to a strong cross-predictability.
- 2. The network effect plays an important role in explaining the magnitude of the results.