Optimal Currency Exposure Under Risk and Ambiguity Aversion

Urban Ulrych^{a,b} Nikola Vasiljević^a

^aDepartment of Banking and Finance, University of Zürich ^bSwiss Finance Institute

Motivation

- Investors tend to hold portfolios with **global** exposure primarily for **diversification** benefits
- Recent studies of foreign currency exposure show that **full**

In-Sample Analysis

- Aim: Investigate historical optimality and the role of sampling error in the construction of the ex-post **efficient** currency exposures
- Here, we work with the demeaned historical returns and define a **loss** function as $\mathcal{L}(R_{t+1}^h) := -U(R_{t+1}^h)$

Data

- The empirical analysis employs the data of: exchange rates, short-term interest rates, equity broad market indices, and fixed income total return indices (for various maturities)
- The data series for seven **developed** economies: Australia, Canada, Switzerland, Eurozone, United Kingdom, Japan and United States, are available at a **daily** frequency

hedging is not optimal

- In addition to market risk, agents face **model uncertainty** of the probability laws governing the stochastic processes of asset and currency **returns**
- This paper:
- Explores the implications of **currency exposure** under **ambiguity** and sheds new light on optimal currency allocations
- Builds a bridge between the literatures on currency hedging and ambiguity aversion

Model

• For a fully hedged portfolio return R_{t+1}^{fh} , currency exposure $\psi_{c,t}$, foreign exchange rate return $e_{c,t+1}$ and forward premium $f_{c,t}$, we derive

 $R_{t+1}^h = R_{t+1}^{fh} + \sum_{c,t} \psi_{c,t} (e_{c,t+1} - f_{c,t})$

- This expression is **model-free**! No underlying dynamics for asset or currency returns are assumed
- Model uncertainty: The situation in which an investor is uncertain about the true probabilistic model governing the occurrence of different states
- For a coefficient of risk aversion λ and a coefficient of ambiguity aversion θ , a **risk** and **ambiguity averse** investor

• For a matrix of demeaned currency excess returns X, vector of demeaned fully hedged portfolio returns y, weighting matrix W, ambiguity matrix $\mathbf{Z} = \theta \operatorname{Var}_{\mu}(\operatorname{E}_{\mathbb{Q}}[R_{t+1}^{h}])$, optimal infinitely ambiguity averse currency exposure $\Psi_{t,amb}^*$, and a weighted L^2 -norm squared $\|\Psi_t\|_{\mathbf{D}}^2 = \Psi_t' \mathbf{D} \Psi_t$, we prove that the in-sample **efficient** currency exposure can be found as a generalized ridge regression

 $\operatorname{argmin}_{\boldsymbol{\Psi}_{t}} \mathcal{L}(R_{t+1}^{h}) = \operatorname{argmin}_{\boldsymbol{\Psi}_{t}} \left\| \mathbf{y} - \mathbf{X}(-\boldsymbol{\Psi}_{t}) \right\|_{\mathbf{W}}^{2} + \left\| (-\boldsymbol{\Psi}_{t}) - (-\boldsymbol{\Psi}_{t,amb}^{*}) \right\|_{\mathbf{Z}}^{2}$

- Ambiguity induces shrinkage (regularization) towards the infinitely ambiguity averse optimal exposure $\Psi_{t,amb}^*$ distorted by the **level** and structure of uncertainty from matrix Z
- The optimal in-sample currency weights produce a **pure** currency exposure which is **closest** in terms of penalized least squares **distance** to the fully hedged portfolio returns
- The generalized **penalty** term corresponds to the **utility loss** arising from **model uncertainty**. It geometrically implies a non-zero centered, ellipsoid parameter constraint

Empirical Analysis

Optimal Currency Exposure with Risk and Ambiguity Aversion

• The sample period starts in January 1999, when the euro was introduced to the world financial markets, and ends in June 2018

Figure 3: Optimal currency exposure and the corresponding bootstrapped 95% confidence intervals for CHF and EUR (for a USD based investor) in dependence of risk and ambiguity aversion parameters are plotted here.

maximizes her utility

$\max_{\boldsymbol{\Psi}_{t}} U(R_{t+1}^{h}) = \max_{\boldsymbol{\Psi}_{t}} \left\{ \mathrm{E}_{\bar{\mathbb{Q}}}[R_{t+1}^{h}] - \frac{\lambda}{2} \mathrm{Var}_{\bar{\mathbb{Q}}}(R_{t+1}^{h}) - \frac{\theta}{2} \mathrm{Var}_{\mu}(\mathrm{E}_{\mathbb{Q}}[R_{t+1}^{h}]) \right\}$

• The argument Ψ_t^* which maximizes the above expression is the **optimal currency exposure** in the presence of risk and ambiguity and is given by

 $\Psi_t^* = -\left[\lambda \operatorname{Var}_{\bar{\mathbb{Q}}}(\mathbf{e}_{t+1} - \mathbf{f}_t) + \theta \operatorname{Var}_{\mu}(\operatorname{E}_{\mathbb{Q}}[\mathbf{e}_{t+1} - \mathbf{f}_t])\right]^{-1}$ $\cdot \left[\lambda \operatorname{Cov}_{\bar{\mathbb{Q}}}(R_{t+1}^{fh}, \mathbf{e}_{t+1} - \mathbf{f}_t) + \theta \operatorname{Cov}_{\mu}(\operatorname{E}_{\mathbb{Q}}[R_{t+1}^{fh}], \operatorname{E}_{\mathbb{Q}}[\mathbf{e}_{t+1} - \mathbf{f}_t]) - \operatorname{E}_{\bar{\mathbb{Q}}}[\mathbf{e}_{t+1} - \mathbf{f}_t] \right]$

Example:

• Solve an optimal currency allocation problem by looking at the **domestic** assets position as purely **risky** and an exposure to **foreign** currencies as **ambiguous** • The **optimal** currency **exposure** is obtained as $\Psi_{t,expl}^* = -\left[\operatorname{Var}_{\bar{\mathbb{Q}}}(\mathbf{e}_{t+1} - \mathbf{f}_t) + \frac{\theta}{\lambda}\operatorname{Var}_{\mu}(\operatorname{E}_{\mathbb{Q}}[\mathbf{e}_{t+1} - \mathbf{f}_t])\right]^{-1}$

 $\cdot \left[\operatorname{Cov}_{\bar{\mathbb{Q}}}(R_{t+1}^{fh}, \mathbf{e}_{t+1} - \mathbf{f}_t) - \frac{1}{\lambda} \operatorname{E}_{\bar{\mathbb{Q}}}[\mathbf{e}_{t+1} - \mathbf{f}_t] \right]$

- In the limit when $\lambda \to \infty$, the optimal currency exposure converges to the **minimum variance** case
- When $\theta \to \infty$, the optimal currency exposure converges to zero (**full hedging**) and the entire currency exposure is kept solely in the **domestic** currency
- The puzzle of insufficient currency diversification (home-

Figure 1: Optimal currency exposure in CHF (for a EUR based investor) in dependence of risk and ambiguity aversion parameters is plotted here. We assume independent prediction models and the uncovered interest rate parity to hold.

Volatility and Sharpe ratios of Hedged Global Equity Portfolios with						
Ambiguity Aversion						
Base	No	Half	Full	Opt Min	Opt Mean	Opt Robust
Country	Hedge	Hedge	Hedge	Var Hedge	Var Hedge	Amb Hedge
Volatility						
Australia	11.88%	11.67%	13.12%	11.52%	12.35%	11.65%
Canada	12.65%	12.43%	13.12%	11.52%	12.35%	11.65%
Switzerland	16.31%	14.39%	13.12%	11.52%	12.35%	11.65%
Eurozone	13.97%	13.28%	13.12%	11.52%	12.35%	11.65%
UK	13.86%	13.13%	13.12%	11.52%	12.35%	11.65%
Japan	19.27%	15.80%	13.12%	11.52%	12.35%	11.65%
USA	15.79%	14.17%	13.12%	11.52%	12.35%	11.65%
Sharpe Ratio						
Australia	0.26	0.38	0.43	0.26	0.48	0.41
Canada	0.40	0.43	0.42	0.21	0.48	0.39
Switzerland	0.37	0.40	0.41	0.14	0.41	0.32
Eurozone	0.46	0.45	0.42	0.16	0.45	0.35
UK	0.48	0.46	0.42	0.19	0.48	0.39
Japan	0.44	0.44	0.41	0.10	0.40	0.31
USA	0.40	0.42	0.42	0.16	0.44	0.36

Table 1: This table reports annualized standard deviations and Sharpe ratios of portfolios featuring different uses of currencies for risk management. An equally weighted global equity portfolio and hedging at a quarterly horizon are assumed.

Main Results

 Closed form expressions of optimal currency exposure for a risk and ambiguity averse investor are derived in a model-free setting

currency bias) may be driven by investors' ambiguity aversion

References

- [1] Britten-Jones, Mark, 1999, The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights, The Journal of Finance 54, 655-671.
- [2] Campbell, John Y., Karine Serfaty-de Medeiros, and Luis M. Viceira, 2010, Global Currency Hedging, *The Journal of Finance* 65, 87-121.
- [3] Froot, Kenneth A., 2019, Currency Hedging Over Long Horizons, Annals of Economics and Finance 20, 37-66.
- [4] Maccheroni, Fabio, Massimo Marinacci, and Doriana Ruffino, 2013, Alpha as Ambiguity: Robust Mean-Variance Portfolio Analysis, *Econometrica* 81, 1075-1113.

Figure 2: Bootstrapped distribution of optimal currency exposure in CHF (for a USD based investor) for different values of risk and ambiguity aversion parameters is plotted here.

> **Contact Information** Email: urban.ulrych@bf.uzh.ch **Phone**: +41 76 667 31 92

- The in-sample efficient currency exposure capturing agent's dislike for **risk** as well as **model uncertainty** are found by a **generalized ridge regression**
- The penalty term corresponds to the utility loss arising from **model uncertainty**
- Empirically, **ambiguity** induces a **bias-variance trade-off** which leads to an **improved** in-sample **estimator** of optimal currency exposure
- Realized volatility and Sharpe ratios for the **ambiguity** adjusted **currency overlay** strategy lie between the minimum variance and mean-variance cases
- The investigated link between **model uncertainty** and **penalized regression** formally connects the areas of financial economics (asset allocation) and statistical **learning** (regularization)