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Analytical Framework

Consider this IV model
Y = Y1D + Y0(1− D)

D = D1Z + D0(1− Z)

W = ϕ(Z, ε)

(1)

I Y ∈ Y ⊂ R, D ∈ {0, 1}, W ∈ W are observed data;
I Y0 and Y1 are potential outcomes, D0 and D1 are potential treatments;
I Z ∈ {0, 1} is unobserved.

Application: returns to college
I Y is earnings, D is a college degree (at least 16 years of schooling);
I Z is an indicator for low college cost (depends on financial cost,

opportunity cost, psychological cost);
I W is college proximity. It can be seen as a proxy for Z (Card 1995, 2001).



Analytical Framework

The variables D and Z partition the population into 4 unobserved
groups: types (Angrist, Imbens and Rubin, 1996) or strata (Frangakis
and Rubin, 2002).
I D0 = D1 = 1: always-takers (a) D0 = D1 = 0: never-takers (n)

I D0 = 0, D1 = 1: compliers (c) D0 = 1, D1 = 1: defiers (df )

Let T ∈ {a, c, n, df} denote the random type of an individual.
Main Assumption

(Z,W) |= Yd|T



State of the art

LATE Assumptions
I Selection on Types (ST): Z |= Yd|T for all d ∈ {0, 1}.

I Unconfounded Type (UT): Z |= T .

I Monotonicity (M): No-defiers, i.e., T ∈ {a, c, n}.
Under ST, UT and M, the standard IV estimand identifies
E[Y1 − Y0|T = c] when Z is observed, which the literature calls local
average treatment effect (LATE). See Imbens and Angrist (1994).

In my framework, the instrument Z violates UT and is mismeasured.



Contribution

In this paper, I allow for confounded types and mismeasured instruments.

I show that with the help of a proxy for the instrument, the potential
outcome distributions are partially identified for the compliers.
I Under some tail restrictions, these distributions are point-identified.

I provide an easy-to-implement inference procedure.

I illustrate my methodology on the NLSYM data and find that getting a
college degree increases the average hourly wage by 17 – 35% for the
compliers.
I I use college proximity as a proxy for low college cost.



Identification

Assumption (Selection on Types: ST)
There exists W s.t. (Z,W) |= Yd|T for each d ∈ {0, 1}.

Assumption (Monotonicity: M)
There exist no defiers, i.e., T ∈ {a, c, n}.

Notation
αd(w) ≡ P(T = c|D = d,W = w), F(y|d,w) ≡ P(Y ≤ y|D = d,W = w),
F1a(y) ≡ P(Y1 ≤ y|T = a), and F1c(y) ≡ P(Y1 ≤ y|T = c).



Identification

Under Assumptions ST and M, we have the following mixture models

F(y|1,w) = α1(w)F1c(y) + (1− α1(w))F1a(y),

and

F(y|0,w) = α0(w)F0c(y) + (1− α0(w))F0n(y).



Identification

By differencing F(y|1,w) w.r.t. w, we can write

F(y|1, 1)− F(y|1, 0)︸ ︷︷ ︸
identified from data

=

within group difference︷ ︸︸ ︷
(α1(1)− α1(0)) [F1c(y)− F1a(y)] ,︸ ︷︷ ︸

between group difference

which implies under the assumption that α1(1) 6= α1(0) that

F1c(y) = F1a(c) +
1

α1(1)− α1(0)
[F(y|1, 1)− F(y|1, 0)] .



Identification

After some manipulations, we obtain that

F1a(y) = F(y|1, 0)− δ1 [F(y|1, 1)− F(y|1, 0)] ,

F1c(y) = F(y|1, 0) +
(
γ1 − δ1) [F(y|1, 1)− F(y|1, 0)] , (2)

α1(w) =
1
γ1

(
δ1 + ∆1(w)

)
,

where

∆1(w) =
F(y1|1,w)− F(y1|1, 0)

F(y1|1, 1)− F(y1|1, 0)

for some y1 ∈ Y .



Identification

Assumption (Relevance: REL)
There exist w1

0 and w1
1 such that α1(w1

0) 6= α1(w1
1).

Theorem
Under Assumptions ST, M and REL, the distribution of Y1 is set-identified for
the always-takers and compliers:

F1a(y) = F(y|1, 0)− δ1 [F(y|1, 1)− F(y|1, 0)] ,

F1c(y) = F(y|1, 0) +
(
γ1 − δ1) [F(y|1, 1)− F(y|1, 0)] .

Moreover, θ1 ≡
(
γ1, δ1

)
is set-identified: θ1 ∈ Θ1. The set Θ1 is sharp.



Sharp bounds on LATE

µθ
d

dc the expectation of Yd for compliers for a given value of θd.

Proposition
Under Assumptions CI, M and REL, the LATE is set-identified:

inf
θ1∈Θ1

µθ
1

1c − sup
θ0∈Θ0

µθ
0

0c ≤ E [Y1 − Y0|T = c] ≤ sup
θ1∈Θ1

µθ
1

1c − inf
θ0∈Θ0

µθ
0

0c .

These bounds are sharp.



Point-identification

Assumption (TR)
limy↓y`

F0c(y)
F0n(y) = 0 and limy↑yu

1−F1c(y)
1−F1a(y) = 0.

Proposition
Under Assumptions ST, M, REL and TR, the distributions F1(y|1, 0) and
F0(y|1, 0) are point-identified as follows:

F0c(y) = F(y|0,w0
0) + 1

1−ζ0(w0
1,w

1
0)

[
F(y|0,w0

1)− F(y|0,w0
0)
]
,

F1c(y) = F(y|1,w1
0) + 1

1−π1(w1
1,w

1
0)

[
F(y|1,w1

1)− F(y|1,w1
0)
]
,

where

ζ0(w0
1,w

0
0) = lim

y↓y`
F(y|0,w0

1)

F(y|0,w0
0)
, and π1(w1

1,w
1
0) = lim

y↑yu

1− F(y|1,w1
1)

1− F(y|1,w1
0)
.



Inference

The identified set for θ1 is given by the following restrictions:

inf
(y,w)∈Y×W

β1(y,w; θ1) ≥ 0, (3)

where

β1(y,w; θ1) =



f (y|1, 0)− δ1 [f (y|1, 1)− f (y|1, 0)]

f (y|1, 0) +
(
γ1 − δ1

)
[f (y|1, 1)− f (y|1, 0)]

1
γ1

(
δ1 + ∆1(w)

)
1− 1

γ1

(
δ1 + ∆1(w)

)


.

and f (y|d,w) denotes the density (or probability mass) function of Y
conditional on (D = d,W = w).



Inference

Assume that W is discrete.
Let f (y) denote the density (probability mass) function of Y . Using
Bayes’ rule, we have:

f (y|d,w) =
P(D = d,W = w|Y = y)f (y)

P(D = d,W = w)
.

Then the first inequality becomes:

P(D = 1|Y = y)f (y)
P(D = 1)

−δ1

[
P(D = 1,W = w1

1|Y = y)f (y)
P(D = 1,W = w1

1)
−

P(D = 1,W = w1
0|Y = y)f (y)

P(D = 1,W = w1
0)

]
≥ 0.
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Inference

Theorem
The identified set for θ1 is given by the following restrictions: infy∈Y E[m1

0(θ1,D,W)|Y = y] ≥ 0

infw∈W E[m1
1(θ1,Y)|D = 1,W = w] ≥ 0

(4)

So we have a standard conditional moment inequality model.
I Use Chernozhukov, Kim, Lee and Rosen’s (2015) or Andrews, Kim and

Shi’s (2016) stata packages.

When W is continuous, replace
{

W = w1
`

}
by
{

W ∈ A1
`

}
where

P(W ∈ A1
`) > 0 (` = 0, 1).



Empirical illustration: returns to college

NLSYM data: Card (1995).

Table 1: Summary statistics

Total

Observations 3,010

log wage (in cents) 6.2618 (0.4438)
college degree 0.2714 (0.4448)
college proximity 0.6821 (0.4658)

Average and standard deviation (in the parentheses)



Empirical illustration: returns to college

Table 2: Confidence sets for parameters

Parameters 95% conf. LB 95% conf. UB

γ1 -0.3 0.4
γ0 -0.75 1.5
δ1 -0.4 -0.1
δ0 -0.9 -0.5
E[Y1|T = c] 6.3663 6.3953
E[Y0|T = c] 6.0960 6.2128
LATE 0.1534 0.2993

17% 35%

conf.: confidence; LB: lower bound; UB: upper bound.



Summary

This paper develops a new identification strategy when the LATE
exogeneity assumption is violated and the instrument is mismeasured.
I show that with the help of a proxy for the instrument, the potential
outcome distributions are partially identified for the compliers.
I Under some tail restrictions, these distributions are point-identfied.

I apply the results to the NLSYM data and find that getting a college
degree increases the average wage by 17 – 35% for the people who
attend college only because they judge the cost low.



Thank you!!!


