Model	Result	Proof	Stochastic Monitoring	Conclusion

Slow Observational Learning and Reputation Failures

HARRY PEI Department of Economics, Northwestern University

Jan 6th, 2020 AEA Meeting, San Diego, CA

Model	Result	Proof	Stochastic Monitoring	Conclusion
Model				

- Time: t = 0, 1, 2, ...
- Long-lived P1 (e.g., seller), chooses a_t ∈ A, discount δ ∈ (0, 1).
 Short-lived P2s (e.g., buyers), choose b_t ∈ B, with A and B finite.
- Stage game payoffs: $u_1(a_t, b_t)$ and $u_2(a_t, b_t)$.
- Seller has two possible types:
 - 1. with prob $\pi_0 \in (0,1)$, mechanically plays pure Stackelberg action,
 - 2. with prob $1 \pi_0$, strategic type that maximizes payoff.

Model	Result	Proof	Stochastic Monitoring	Conclusio
Model:	Reputation	Building Th	rough Social Learn	ing

Period t buyer observes:

- 1. buyers' actions from 0 to t 1, namely, b_0, b_1, \dots, b_{t-1} .
- 2. and a bounded (possibly stochastic) subset of seller's past actions.

Most of this talk: Period t buyer observes:

```
• b_0, ..., b_{t-1},
```

and $a_{t-K}, ..., a_{t-1}$, with $K \in \mathbb{N}$ a parameter.

By the end: Stochastic network monitoring.

• private monitoring of P1's actions, private learning of P1's type.

Model	Result	Proof	Stochastic Monitoring
3.6	0 17 1		

Motivation & Takeaway

Heterogenous accessibility of different types of information:

- buyer can skim through online reviews and observe how frequent each product was purchased and the time trend;
- buyer needs to read reviews carefully to figure out seller's action, and she has limited capacity to process such detailed info.

Effectiveness of reputation building through social learning:

• info about seller's actions is dispersed among buyers.

Result: Exist equilibria s.t. patient seller receives low payoff.

• Contrasts to Fudenberg and Levine (89,92) in which patient seller guarantees high payoff.

Why?

- Learning cannot stop, buyers cannot herd on bad actions.
- The speed of observational learning vanishes to 0 as $\delta \rightarrow 1$.

Model	Result	Proof	Stochastic M

Assumption on Stage-Game Payoffs

Assumption 1

 u_1 and u_2 satisfy:

- 1. *P1 has a unique pure Stackelberg action, denoted by* $a^* \in A$.
- 2. P2 has a unique best reply against a^* , denoted by $b^* \in B$.
- 3. There exists a pure strategy Nash Equilibrium in the stage-game.

Interesting case: P1 can strictly benefit from committing to a^* .

-	Т	N
Η	2,1	$^{-1,0}$
L	3, -1	0 ,0

Model	Result	Proof	Stochastic Monitoring	Conclusion
Result:	Reputation	Failure		

Let \underline{v}_1 be P1's worst pure stage-game NE payoff, and $\underline{\delta} \in (0,1)$ is a cutoff discount factor that depends only on u_1 and u_2 .

Theorem 1

If u_1 and u_2 satisfy Assumption 1,

then for every $K \in \mathbb{N}$, there exists $\overline{\pi}_0 \in (0, 1)$,

such that for every $\pi_0 \in (0, \overline{\pi}_0)$ and $\delta > \underline{\delta}$,

 \exists a sequential equilibrium s.t. strategic P1 receives payoff \underline{v}_1 .

Recall: In Fudenberg and Levine (1989, 1992) and Gossner (2011),

• Fix π_0 and let $\delta \to 1$,

P1's payoff in all equilibria is no less than $u_1(a^*, b^*)$.

Model	Result	Proof	Stochastic Monitoring	Conclusion
Remar	k: No Bad He	erd		

Proposition 1

At every on-path history h^t of every Bayes Nash equilibrium,

if P2 attaches positive probability to P1 being committed at h^t ,

then P2s cannot herd on any action that is not b^* at h^t .

Model		Resu	lt	Proof	Stochastic Monitoring	Conclusion
D	C C1 /	1	C [T]	1		

Proof Sketch of Theorem 1

Focus on Product Choice Game with Public Randomization

_	Т	N
Η	2,1	-1,0
L	3, -1	0,0

I construct a three-phase equilibrium:

1. Reputation-building phase.

Play starts from here, P1's payoff is \underline{v}_1 *, P2 slowly learns.*

2. Reputation-maintenance phase.

Play eventually moves here, P1's payoff is $u_1(a^*, b^*)$. Learning stops on-path.

3. Punishment phase.

Only reached off-path, P1's payoff is \underline{v}_1 . Learning stops.

Model	Result	Proof	Stochastic Monitoring	Conclusion
Reputati	on-Building	g Phase		

Play starts from a reputation-building phase, in which:

D L D C

- P2 plays N.
- Strategic P1 mixes between H and L s.t. P2 believes that H is played with prob 1/2 (more sophisticated construction under private learning).

Phase transition: By the end of period *t*,

- If $a_t = L$, then remains in the reputation-building phase in period t + 1.
- If $a_t = H$, then transits to the reputation-maintenance phase in period t + 1 with probability:

$$p(\delta) \equiv \frac{1-\delta}{2\delta},$$

determined by public randomization in the beginning of t + 1.

 This transition prob makes P1 indifferent between H and L, which vanishes to 0 as δ → 1.

Model	Result	Proof	Stochastic Monitoring	Conclusion

Reputation-Maintenance Phase & Punishment Phase

After play transits to reputation-maintenance phase.

• P1 plays *H* and P2 plays *T* on the equilibrium path.

Phase transition: In period t + 1,

- Play remains in the reputation-maintenance phase if $(a_t, b_t) = (H, T)$.
- Otherwise, play transits to the punishment phase.

Punishment phase is absorbing, in which P1 plays L and P2 plays N.

• Future P2 knew play is in the punishment phase when N occurs after T.

In the $t \to \infty$ limit:

Play reaches the reputation maintenance phase with probability 1.
 But the number of periods it takes goes to infinity as δ → 1.

Model Result	Proof	Stochastic Monitoring	Conclusion
How to Square th	is with Gossne	r(2011)?	

Gossner's upper bound on the sum of P2s' 1-step-ahead prediction errors:

$$\mathbb{E}^{a^*} \Big[\sum_{t=0}^{\infty} d\Big(y_t(\cdot | a^*) \Big| \Big| y_t \Big) \Big] \le -\log \pi_0$$

The above inequality implies a payoff lower bound for P1 if

• whenever P2 does not have strict incentive to play b^* , $d(y_t(\cdot|a^*)||y_t)$ is bounded from below by a positive number.

 $u(f(|u|)||f|) \approx countee from below of a positive number$

- This implies at most a bounded number of bad periods.
- As $\delta \rightarrow 1$, the payoff consequence of bad periods vanishes.

Gossner's upper bound on the sum of P2s' 1-step-ahead prediction errors:

$$\mathbb{E}^{a^*} \Big[\sum_{t=0}^{\infty} d\Big(y_t(\cdot | a^*) \Big| \Big| y_t \Big) \Big] \le -\log \pi_0$$

My model applying to the product choice game (or any MSM game):

- If P1 plays a^* in every period, then either $d(y_t(\cdot|a^*)||y_t) > 0$ or $b_t = b^*$ or $b_{t+i} = b^*$ for all $i \in \{1, 2, ..., K\}$.
- As $\delta \to 1$, $d(y_t(\cdot | a^*) | | y_t)$ goes to 0, and expected number of bad periods explodes.
- As $\delta \rightarrow 1$, the payoff consequence of bad periods is not negligible.

Model	Result	Proof	Stochastic Monitoring	С
Remark	: Low Cons	umer Welfare		

Suppose a social planner discounts future consumers' payoffs by δ .

• \underline{v}_2 is P2's worst pure stage-game NE payoff.

Proposition 2

For every $K \in \mathbb{N}$ *and* $\varepsilon > 0$ *,*

there exist $\overline{\pi}_0 \in (0,1)$ and $\underline{\delta} \in (0,1)$,

such that for every $\pi_0 \in (0, \overline{\pi}_0)$ and $\delta \geq \underline{\delta}$,

 \exists a sequential equilibrium s.t. *P2's welfare is less than* $\underline{v}_2 + \varepsilon$.

In product choice game, exists equilibrium s.t. both players' payoffs are close to their minmax payoff.

Model	Result

Extension to Stochastic Monitoring

Stochastic network among buyers: $\mathcal{N} \equiv \{\mathcal{N}_t\}_{t=1}^{\infty}$, with

 $\mathcal{N}_t \in \Delta\left(2^{\{0,1,\ldots,t-1\}}\right), \text{ with } N_t \text{ the realization of } \mathcal{N}_t.$

Buyer in period *t* observes:

- $b_0, b_1, ..., b_{t-1}$.
- Realization of \mathcal{N}_t and $\{a_j\}_{j \in N_t}$.

Seller does not observe the realization of \mathcal{N}_t .

In MSM games (e.g., product choice game), my result generalizes when:

Assumption 2

For every $t \neq s$, \mathcal{N}_t and \mathcal{N}_s are independent random variables.

There exist $K \in \mathbb{N}$ *and* $\gamma \in (0, 1)$ *such that for every* $t \ge 1$ *,*

$$\Pr\left(|\mathscr{N}_t| \leq K\right) = 1 \text{ and } \Pr\left(t - 1 \in \mathscr{N}_t\right) \geq \gamma.$$

Model	Result	Proof	Stochastic Monitoring	Conclusion
Challenge	s			

Period t player 2 observes:

$$h_2^t \equiv \left\{ N_t, b_0, b_1, ..., b_{t-1}, (a_s)_{s \in N_t} \right\}.$$

Player 1 observes:

$$h_1^t \equiv \left\{ b_0, b_1, \dots, b_{t-1}, a_0, a_1, \dots, a_{t-1} \right\}$$

Two challenges in constructing equilibrium:

- 1. Private monitoring of player 1's past actions.
- 2. Player 2s' private learning about player 1's type.

Proof uses a combination of belief-free approach and belief-based approach.

Model	Result	Proof	Stochastic Monitoring	Conclusion
Conclusion				

Reputation model in which short-run player observes:

- all his predecessors' actions,
- a bounded subset of long-run player's past actions.

In a large class of games,

• reputation fails since the speed of learning vanishes as $\delta \rightarrow 1$.

Novel questions on social learning:

- Social learning about endogenous actions rather than exogenous state.
- Speed of social learning rather than asymptotic beliefs.
- Discounted payoff rather than long-run outcomes.

Related Literature

 Social learning: Banerjee (92), Bikhchandani, Hirshleifer, and Welch (92), Smith and Sørensen (00).

Difference: Speed and welfare consequences instead of $t \rightarrow +\infty$.

- Efficiency of social learning: Rosenberg and Vieille (19).
 Difference: My efficiency standard takes discounting into account.
- Reputation effects: Fudenberg and Levine (89,92), Gossner (11).
 Difference: Players' endogenous actions as public signals.
- Reputation with limited memory: Liu (11), Liu and Skrzypacz (14).
 Difference: Their models deliberately shut down social learning.
- Bad reputation: Ely and Valimaki (03), Ely, Fudenberg and Levine (08) Difference: P2's action can statistically identify P1's past actions.
- 6. Logina, Lukyanov and Shamruk (19)Difference: P2 observes current P1's action versus P1's past actions.P1 can strictly benefit from commitment or not.

Construction without Public Randomization

Reputation Building Phase:

1. P2 has never played *T* before & $a_{t-1} = L$,

P1 mixes between H and L s.t. overall prob of H is 1/2. P2 plays N with prob 1.

2. P2 has never played *T* before & $a_{t-1} = H$,

P1 mixes between *H* and *L* s.t. overall prob of *H* is 1/2. P2 plays *T* with prob $\frac{1-\delta}{2\delta}$.

Construction without Public Randomization

Reputation Maintenance Phase:

- P2 plays *T* for the first time in period *t* − 1 & *a*_{*t*−1} = *L*,
 P1 plays *H* for sure.
 P2 plays *T* with prob ^{4δ−δ²−1}/_{3−δ}.
- 2. P2 plays *T* for the first time in period $t 1 \& a_{t-1} = H$, P1 plays *H* for sure & P2 plays *T* for sure.
- 3. *N* has never occurred after *T*, *T* occurs at least twice & $a_{t-1} = H$, P1 plays *H* for sure & P2 plays *T* for sure.

Construction without Public Randomization

Punishment Phase:

1. *N* has never occurred after *T*, *T* occurs at least twice & $a_{t-1} = L$, P1 plays *L* for sure & P2 plays *N* for sure.

2. *N* has occurred after *T*,

P1 plays L for sure & P2 plays N for sure.