

Andrei S. Gonçalves

AFA 2020

The Paper in a Nutshell...

- Longer-term (risky) cash flows have lower risk premia (Binsbergen, Brandt, and Koijen (2012); Binsbergen and Koijen (2017); Giglio, Maggiori, and Stroebel (2015); Giglio, Maggiori, Stroebel, and Weber (2018))
- How does cash flow maturity impact stock expected returns? (Dechow, Sloan, and Soliman (2004); Lettau and Wachter (2007, 2011); Hansen, Heaton, and Li (2008); Da (2009); Chen (2011); Weber (2018))
- This paper

The Paper in a Nutshell...

- Longer-term (risky) cash flows have lower risk premia (Binsbergen, Brandt, and Koijen (2012); Binsbergen and Koijen (2017); Giglio, Maggiori, and Stroebel (2015); Giglio, Maggiori, Stroebel, and Weber (2018))
- How does cash flow maturity impact stock expected returns? (Dechow, Sloan, and Soliman (2004); Lettau and Wachter (2007, 2011); Hansen, Heaton, and Li (2008); Da (2009); Chen (2011); Weber (2018))

The Paper in a Nutshell...

- Longer-term (risky) cash flows have lower risk premia (Binsbergen, Brandt, and Koijen (2012); Binsbergen and Koijen (2017); Giglio, Maggiori, and Stroebel (2015); Giglio, Maggiori, Stroebel, and Weber (2018))
- How does cash flow maturity impact stock expected returns? (Dechow, Sloan, and Soliman (2004); Lettau and Wachter (2007, 2011); Hansen, Heaton, and Li (2008); Da (2009); Chen (2011); Weber (2018))

- Constructs novel measure of equity cash flow duration
- Explores the short duration premium
- Duration subsumes Value and Profitability
- The short duration premium is explained by reinvestment risk

The Paper in a Nutshell...

- Longer-term (risky) cash flows have lower risk premia (Binsbergen, Brandt, and Koijen (2012); Binsbergen and Koijen (2017); Giglio, Maggiori, and Stroebel (2015); Giglio, Maggiori, Stroebel, and Weber (2018))
- How does cash flow maturity impact stock expected returns? (Dechow, Sloan, and Soliman (2004); Lettau and Wachter (2007, 2011); Hansen, Heaton, and Li (2008); Da (2009); Chen (2011); Weber (2018))

- · Constructs novel measure of equity cash flow duration
- Explores the short duration premium
- Duration subsumes Value and Profitability
- The short duration premium is explained by reinvestment risk

The Paper in a Nutshell...

- Longer-term (risky) cash flows have lower risk premia (Binsbergen, Brandt, and Koijen (2012); Binsbergen and Koijen (2017); Giglio, Maggiori, and Stroebel (2015); Giglio, Maggiori, Stroebel, and Weber (2018))
- How does cash flow maturity impact stock expected returns? (Dechow, Sloan, and Soliman (2004); Lettau and Wachter (2007, 2011); Hansen, Heaton, and Li (2008); Da (2009); Chen (2011); Weber (2018))

- Constructs novel measure of equity cash flow duration
- Explores the short duration premium
- Duration subsumes Value and Profitability
- The short duration premium is explained by reinvestment risk

The Paper in a Nutshell...

- Longer-term (risky) cash flows have lower risk premia (Binsbergen, Brandt, and Koijen (2012); Binsbergen and Koijen (2017); Giglio, Maggiori, and Stroebel (2015); Giglio, Maggiori, Stroebel, and Weber (2018))
- How does cash flow maturity impact stock expected returns? (Dechow, Sloan, and Soliman (2004); Lettau and Wachter (2007, 2011); Hansen, Heaton, and Li (2008); Da (2009); Chen (2011); Weber (2018))

- Constructs novel measure of equity cash flow duration
- Explores the short duration premium
- Duration subsumes Value and Profitability
- The short duration premium is explained by reinvestment risk

Conclusion

The Paper in a Nutshell...

- Longer-term (risky) cash flows have lower risk premia (Binsbergen, Brandt, and Koijen (2012); Binsbergen and Koijen (2017); Giglio, Maggiori, and Stroebel (2015); Giglio, Maggiori, Stroebel, and Weber (2018))
- How does cash flow maturity impact stock expected returns? (Dechow, Sloan, and Soliman (2004); Lettau and Wachter (2007, 2011); Hansen, Heaton, and Li (2008); Da (2009); Chen (2011); Weber (2018))

- Constructs novel measure of equity cash flow duration
- Explores the short duration premium
- Duration subsumes Value and Profitability
- The short duration premium is explained by reinvestment risk

An ICAPM with Reinvestment R

Variation in $\mathbb{E}[r] \implies$ Reinvestment Risk

≡	Q	FINANCIAL TIMES
HOME	WORLD US COMPANIES MARKETS OPINION	WORK & CAREERS LIFE & ARTS
	Pensions Industry + Add to myFT Pensions: Low yield	ds, high stress
	In the first article of a series, the Fin crisis	ancial Times examines a creeping social and politic
	номе	E Q HOME WORLD US COMPANIES MARKETS OPINION Pensions Industry + Add to myFT Pensions: Low yield In the first article of a series, the Fin crisis

"Low bond yields and expensive stocks are a challenge to everyone's retirement..."

"...if future returns drop by only two percentage points...savers will need to put aside almost 15 per cent of their income..." An ICAPM with Reinvestment R

Results Conclusion

Variation in $\mathbb{E}[r] \implies$ Reinvestment Risk

\equiv Q FINANCIAL TIM	IES
HOME WORLD US COMPANIES MARKETS OPINION WORK & CAREERS LIFE & ARTS	
Pensions Industry + Add to myFT Pensions: Low yields, high stress In the first article of a series, the Financial Times examines a creeping social a	nd political
CLIDID	

"Low bond yields and expensive stocks are a challenge to everyone's retirement..."

"...if future returns drop by only two percentage points...savers will need to put aside almost 15 per cent of their income..."

Variation in $\mathbb{E}[r] \implies$ Reinvestment Risk

≡ 0	FINANCIAL TIMES
HOME WO	RLD US COMPANIES MARKETS OPINION WORK & CAREERS LIFE & ARTS
	Pensions Industry + Add to myFT Pensions: Low yields, high stress In the first article of a series, the Financial Times examines a creeping social and political crisis

"Low bond yields and expensive stocks are a challenge to everyone's retirement ... "

"...if future returns drop by only two percentage points...savers will need to put aside almost 15 per cent of their income..."

Variation in $\mathbb{E}[r] \implies$ Reinvestment Risk

≡ Q	FINANCIAL TIMES
HOME WOR	RLD US COMPANIES MARKETS OPINION WORK & CAREERS LIFE & ARTS
	Pensions Industry + Add to myFT Pensions: Low yields, high stress
	In the first article of a series, the Financial Times examines a creeping social and political crisis

- ICAPM: variation in investment opportunities
 - Merton (1973); Campbell (1993, 1996); Ferson and Harvey (1999); Brennan, Wang, and Xia (2004); Campbell and Vuolteenaho (2004); Petkova (2006); Campbell, Polk, and Vuolteenaho (2009); Campbell, Giglio, Polk, and Turley (2017); Bali and Engle (2010); Cederburg (2019)...

- There is a short duration premium
- The premium is captured by an ICAPM (reinvestment risk)
- Duration subsumes Value and Profitability

• There is a short duration premium

• The premium is captured by an ICAPM (reinvestment risk)

Duration subsumes Value and Profitability

- There is a short duration premium
- The premium is captured by an ICAPM (reinvestment risk)
- Duration subsumes Value and Profitability

- There is a short duration premium
- The premium is captured by an ICAPM (reinvestment risk)
- Duration subsumes Value and Profitability

- There is a short duration premium
- The premium is captured by an ICAPM (reinvestment risk)
- Duration subsumes Value and Profitability

Outline

Introduction

Equity Duration Portfolios

An ICAPM with Reinvestment Risk

Further Results

Defining and Measuring Equity Duration

• Duration is a weighted average of cash flow maturities:

$$Dur_t = \sum_{h=1}^{\infty} w_{t,h} \cdot h$$

$$w_{t,h} = \left(\mathbb{E}_t \left[CF_{t+h}\right] \cdot e^{-h \cdot dr_t}\right) / V_t$$
$$\sum_{h=1}^{\infty} w_{t,h} = 1$$

- CF = PO (payout = dividends + repurchases issuances)
- V = ME, which implies:

$$ME_t = \sum_{h=1}^{\infty} \mathbb{E}_t \left[PO_{t+h} \right] \cdot e^{-h \cdot dr_t}$$

ment Risk Further Results

Defining and Measuring Equity Duration

• Duration is a weighted average of cash flow maturities:

$$Dur_t = \sum_{h=1}^{\infty} w_{t,h} \cdot h$$

$$w_{t,h} = (\mathbb{E}_t [CF_{t+h}] \cdot e^{-h \cdot dr_t}) / V_t$$

- CF = PO (payout = dividends + repurchases issuances)
- V = ME, which implies:

$$ME_t = \sum_{h=1}^{\infty} \mathbb{E}_t \left[PO_{t+h} \right] \cdot e^{-h \cdot dr_t}$$

tment Risk Further Result

Defining and Measuring Equity Duration

• Duration is a weighted average of cash flow maturities:

$$Dur_t = \sum_{h=1}^{\infty} w_{t,h} \cdot h$$

$$egin{aligned} & w_{t,h} = (\mathbb{E}_t \left[\mathsf{CF}_{t+h}
ight] \cdot e^{-h \cdot dr_t}) / V_t \ & \sum_{h=1}^\infty w_{t,h} = 1 \end{aligned}$$

- CF = PO (payout = dividends + repurchases issuances)
- V = ME, which implies:

$$ME_t = \sum_{h=1}^{\infty} \mathbb{E}_t \left[PO_{t+h} \right] \cdot e^{-h \cdot dr_t}$$

Defining and Measuring Equity Duration

• Duration is a weighted average of cash flow maturities:

$$Dur_t = \sum_{h=1}^{\infty} w_{t,h} \cdot h$$

$$egin{aligned} & w_{t,h} = \left(\mathbb{E}_t \left[\mathsf{CF}_{t+h}
ight] \cdot e^{-h \cdot dr_t}
ight) / \mathcal{V}_t \ & \sum_{h=1}^\infty w_{t,h} = 1 \end{aligned}$$

- *CF* = *PO* (payout = dividends + repurchases issuances)
- V = ME, which implies:

$$ME_t = \sum_{h=1}^{\infty} \mathbb{E}_t \left[PO_{t+h} \right] \cdot e^{-h \cdot dr_t}$$

Defining and Measuring Equity Duration

• Duration is a weighted average of cash flow maturities:

$$Dur_t = \sum_{h=1}^{\infty} w_{t,h} \cdot h$$

$$egin{aligned} & w_{t,h} = \left(\mathbb{E}_t \left[\mathsf{CF}_{t+h}
ight] \cdot e^{-h \cdot dr_t}
ight) / \mathcal{V}_t \ & \sum_{h=1}^\infty w_{t,h} = 1 \end{aligned}$$

- *CF* = *PO* (payout = dividends + repurchases issuances)
- V = ME, which implies:

$$ME_{t} = \sum_{h=1}^{\infty} \mathbb{E}_{t} \left[PO_{t+h} \right] \cdot e^{-h \cdot dr_{t}}$$

Validating Equity Duration Portfolios

% of ME paid within h years

- Shorter duration firms have a larger fraction of firm value associated with short term cash flows
- Longer duration firms comove more with the equity term structure $(R_{Equity} R_{Div})$

Validating Equity Duration Portfolios

- Shorter duration firms have a larger fraction of firm value associated with short term cash flows
- Longer duration firms comove more with the equity term structure $(R_{Equity} R_{Div})$

Decile	$\overline{r}_{t \to t+1}$	
Short	12.9%	
2	11.7%	
3	12.2%	
4	11.3%	
5	10.9%	
6	9.1%	
7	7.0%	
8	7.0%	
9	5.5%	
Long	3.7%	
L-S	-9.2%	
(t_{L-S})	(-3.79)	

Decile	$\overline{r}_{t \to t+1}$	$\overline{r}_{t \to t+5}$	$\overline{r}_{t+4\rightarrow t+5}$	
Short	12.9%	11.8%	11.6%	
2	11.7%	11.1%	10.7%	
3	12.2%	11.6%	11.4%	
4	11.3%	10.2%	8.1%	
5	10.9%	9.2%	7.4%	
6	9.1%	8.8%	8.8%	
7	7.0%	7.3%	7.7%	
8	7.0%	6.8%	6.8%	
9	5.5%	6.5%	7.3%	
Long	3.7%	4.7%	8.6%	
L-S	-9.2%	-7.1%	-3.0%	
(t_{L-S})	(-3.79)	(-3.97)	(-1.46)	

▶ Equal-Weighted ▶ Link 20Y Rolling Window

Decile	$\overline{r}_{t \to t+1}$	$\overline{r}_{t \to t+5}$	$\overline{r}_{t+4\rightarrow t+5}$	$\overline{r}_{t \rightarrow t+1}^{Large}$
Short	12.9%	11.8%	11.6%	10.4%
2	11.7%	11.1%	10.7%	9.8%
3	12.2%	11.6%	11.4%	10.7%
4	11.3%	10.2%	8.1%	10.6%
5	10.9%	9.2%	7.4%	6.0%
6	9.1%	8.8%	8.8%	6.6%
7	7.0%	7.3%	7.7%	5.7%
8	7.0%	6.8%	6.8%	5.6%
9	5.5%	6.5%	7.3%	4.8%
Long	3.7%	4.7%	8.6%	3.2%
L-S	-9.2%	-7.1%	-3.0%	-7.2%
(t_{L-S})	(-3.79)	(-3.97)	(-1.46)	(-2.55)

▶ Equal-Weighted ▶ Link 20Y Rolling Window

Decile	$\overline{r}_{t \to t+1}$	$\overline{r}_{t \to t+5}$	$\overline{r}_{t+4\rightarrow t+5}$	$\overline{r}_{t \rightarrow t+1}^{Large}$	\overline{r}/σ	$lpha_{ ext{CAPM}}$	$lpha_{ m 5F}$	$lpha_q$
Short	12.9%	11.8%	11.6%	10.4%	0.67	5.5%	0.8%	2.9%
2	11.7%	11.1%	10.7%	9.8%	0.65	4.7%	1.6%	3.2%
3	12.2%	11.6%	11.4%	10.7%	0.72	5.5%	2.2%	3.1%
4	11.3%	10.2%	8.1%	10.6%	0.69	4.6%	2.4%	2.9%
5	10.9%	9.2%	7.4%	6.0%	0.65	4.3%	2.4%	2.7%
6	9.1%	8.8%	8.8%	6.6%	0.57	2.7%	0.7%	1.0%
7	7.0%	7.3%	7.7%	5.7%	0.43	0.2%	0.2%	0.4%
8	7.0%	6.8%	6.8%	5.6%	0.41	-0.3%	-0.3%	0.2%
9	5.5%	6.5%	7.3%	4.8%	0.30	-2.6%	-2.6%	-1.2%
Long	3.7%	4.7%	8.6%	3.2%	0.18	-5.0%	-4.3%	-3.8%
L-S	-9.2%	-7.1%	-3.0%	-7.2%	-0.61	-10.5%	-5.1%	-6.8%
(t_{L-S})	(-3.79)	(-3.97)	(-1.46)	(-2.55)	[0.00]	(-3.94)	(-2.91)	(-3.08)

▶ Equal-Weighted ▶ Link 20Y Rolling Window

Var	[1]	
Dur	-9.1%	
Dur	(-4.09)	
BE	5.1%	
ME	(2.12)	
Corof	1.3%	
Gproi	(0.58)	
4 ~	-3.9%	
Ag	(-2.11)	
Sizo	-4.3%	
Size	(-1.82)	

Var	[1]	[2]	[3]	[4]	[5]
Dur	-9.1%	-10.2%	-12.7%	-10.6%	-10.2%
	(-4.09)	(-4.27)	(-4.48)	(-4.13)	(-4.44)
<u>BE</u> ME	5.1%	0.7%			
	(2.12)	(0.23)			
Corof	1.3%		-2.2%		
Gpioi	(0.58)		(-0.85)		
۸a	-3.9%			-3.0%	
Ag	(-2.11)			(-1.29)	
Sizo	-4.3%				-2.7%
Size	(-1.82)				(-1.06)

▶ Equal-Weighted ▶ 50 Port ▶ Fama-MacBeth Reg

Var	[1]	[2]	[3]	[4]	[5]	[6]
Dur	-9.1%	-10.2%	-12.7%	-10.6%	-10.2%	
	(-4.09)	(-4.27)	(-4.48)	(-4.13)	(-4.44)	
<u>BE</u> ME	5.1%	0.7%				12.6%
	(2.12)	(0.23)				(3.29)
Corof	1.3%		-2.2%			9.6%
Gpioi	(0.58)		(-0.85)			(2.70)
۸a	-3.9%			-3.0%		
Ag	(-2.11)			(-1.29)		
Size	-4.3%				-2.7%	
	(-1.82)				(-1.06)	

Equal-Weighted > 50 Port > Fama-MacBeth Reg

Var	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
Dur	-9.1%	-10.2%	-12.7%	-10.6%	-10.2%		-13.9%	
	(-4.09)	(-4.27)	(-4.48)	(-4.13)	(-4.44)		(-3.03)	
<u>BE</u> ME	5.1%	0.7%				12.6%	-1.5%	
	(2.12)	(0.23)				(3.29)	(-0.28)	
Corof	1.3%		-2.2%			9.6%	-2.5%	
Gpioi	(0.58)		(-0.85)			(2.70)	(-0.52)	
۸a	-3.9%			-3.0%				
Ag	(-2.11)			(-1.29)				
Size	-4.3%				-2.7%			
	(-1.82)				(-1.06)			

Equal-Weighted > 50 Port > Fama-MacBeth Reg

Var	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Dur	-9.1%	-10.2%	-12.7%	-10.6%	-10.2%		-13.9%	-15.8%
	(-4.09)	(-4.27)	(-4.48)	(-4.13)	(-4.44)		(-3.03)	(-2.62)
BE	5.1%	0.7%				12.6%	-1.5%	-4.1%
ME	(2.12)	(0.23)				(3.29)	(-0.28)	(-0.59)
Corof	1.3%		-2.2%			9.6%	-2.5%	-2.9%
Gpioi	(0.58)		(-0.85)			(2.70)	(-0.52)	(-0.50)
۸a	-3.9%			-3.0%				-3.8%
Аg	(-2.11)			(-1.29)				(-1.03)
Sizo	-4.3%				-2.7%			-3.0%
5120	(-1.82)				(-1.06)			(-1.05)

Equal-Weighted > 50 Port > Fama-MacBeth Reg

Outline

Introduction

Equity Duration Portfolios

An ICAPM with Reinvestment Risk

Further Results

- Investors maximize $\mathbb{E}_t[rac{1}{1-\gamma} \cdot W^{1-\gamma}_{t+H}]$
- With no labor income or consumption in the next H years:

- Expected wealth shocks = current wealth shocks (market risk) + news about long-term expected returns (reinvestment risk)
- The ICAPM SDF:

where $\lambda_{\mathbb{E}r} = (\gamma - 1) \cdot (1 - \phi_r^{H-1})/(1 - \phi_r)$

- Investors maximize $\mathbb{E}_t[\frac{1}{1-\gamma} \cdot W_{t+H}^{1-\gamma}]$
- With no labor income or consumption in the next H years:

 $W_{t+H} = W_t \cdot R_{w,t \to t+H}$

- Expected wealth shocks = current wealth shocks (market risk) + news about long-term expected returns (reinvestment risk)
- The ICAPM SDF:

where $\lambda_{\mathbb{E}r} = (\gamma-1)\cdot(1-\phi_r^{H-1})/(1-\phi_r)$

- Investors maximize $\mathbb{E}_t[\frac{1}{1-\gamma} \cdot W_{t+H}^{1-\gamma}]$
- With no labor income or consumption in the next *H* years:

$$W_{t+H} = W_t \cdot R_{w,t \to t+H}$$
$$\underset{t}{\Downarrow} \mathbb{E}_t[w_{t+H}] = w_t + \mathbb{E}_t[r_{w,t \to t+H}]$$

- Expected wealth shocks = current wealth shocks (market risk) + news about long-term expected returns (reinvestment risk)
- The ICAPM SDF:

where $\lambda_{\mathbb{E}r} = (\gamma-1)\cdot(1-\phi_r^{H-1})/(1-\phi_r)$

- Investors maximize $\mathbb{E}_t[\frac{1}{1-\gamma} \cdot W_{t+H}^{1-\gamma}]$
- With no labor income or consumption in the next *H* years:

$$W_{t+H} = W_t \cdot R_{w,t \to t+H} \\ \underset{t}{\Downarrow} \mathbb{E}_t[w_{t+H}] \stackrel{\forall}{=} w_t + \mathbb{E}_t[r_{w,t \to t+H}]$$

- Expected wealth shocks = current wealth shocks (market risk)
 + news about long-term expected returns (reinvestment risk)
- The ICAPM SDF:

- Investors maximize $\mathbb{E}_t[rac{1}{1-\gamma} \cdot W^{1-\gamma}_{t+H}]$
- With no labor income or consumption in the next *H* years:

$$W_{t+H} = W_t \cdot R_{w,t \to t+H}$$
$$\underset{t}{\Downarrow} \mathbb{E}_t[w_{t+H}] \stackrel{\forall}{=} w_t + \mathbb{E}_t[r_{w,t \to t+H}]$$

- Expected wealth shocks = current wealth shocks (market risk)
 + news about long-term expected returns (reinvestment risk)
- The ICAPM SDF:

$$\begin{aligned} -\widetilde{m}_t &= \gamma \cdot \widetilde{r}_{w,t} + (\gamma - 1) \cdot \widetilde{\mathbb{E}}_t \left[\Sigma_{h=1}^{H-1} r_{w,t+h} \right] \\ &= \gamma \cdot \widetilde{r}_{w,t} + \lambda_{\mathbb{E}^t} \cdot \widetilde{\mathbb{E}}_t r_w \end{aligned}$$

where $\lambda_{\mathbb{E}r} = (\gamma-1)\cdot(1-\phi_r^{H-1})/(1-\phi_r)$

- Investors maximize $\mathbb{E}_t[rac{1}{1-\gamma} \cdot W^{1-\gamma}_{t+H}]$
- With no labor income or consumption in the next *H* years:

$$W_{t+H} = W_t \cdot R_{w,t \to t+H} \\ \Downarrow \\ \mathbb{E}_t[w_{t+H}] \stackrel{\Downarrow}{=} w_t + \mathbb{E}_t[r_{w,t \to t+H}]$$

- Expected wealth shocks = current wealth shocks (market risk)
 + news about long-term expected returns (reinvestment risk)
- The ICAPM SDF:

$$-\tilde{m}_t = \gamma \cdot \tilde{r}_{w,t} + (\gamma - 1) \cdot \widetilde{\mathbb{E}}_t \left[\sum_{h=1}^{H-1} r_{w,t+h} \right]$$

where $\lambda_{\mathbb{E}r} = (\gamma-1)\cdot(1-\phi_r^{H-1})/(1-\phi_r)$

- Investors maximize $\mathbb{E}_t[rac{1}{1-\gamma} \cdot W^{1-\gamma}_{t+H}]$
- With no labor income or consumption in the next *H* years:

$$W_{t+H} = W_t \cdot R_{w,t \to t+H}$$
$$\underset{t}{\Downarrow} \mathbb{E}_t[w_{t+H}] \stackrel{\forall}{=} w_t + \mathbb{E}_t[r_{w,t \to t+H}]$$

- Expected wealth shocks = current wealth shocks (market risk)
 + news about long-term expected returns (reinvestment risk)
- The ICAPM SDF:

$$- \tilde{m}_t = \gamma \cdot \tilde{r}_{w,t} + (\gamma - 1) \cdot \widetilde{\mathbb{E}}_t \left[\sum_{h=1}^{H-1} r_{w,t+h} \right]$$
$$= \gamma \cdot \tilde{r}_{w,t} + \lambda_{\mathbb{E}} \cdot \widetilde{\mathbb{E}}_t r_w$$

where $\lambda_{\mathbb{E}r} = (\gamma - 1) \cdot (1 - \phi_r^{H-1})/(1 - \phi_r)$

Decile	r	
Short	13.5%	
2	12.1%	
3	12.9%	
4	12.2%	
5	11.6%	
6	9.9%	
7	7.2%	
8	7.2%	
9	5.6%	
Long	4.0%	
L-S	-9.5%	
(t_{L-S})	(-3.28)	

Decile	r	$lpha_{ m ICAPM}$
Short	13.5%	0.0%
2	12.1%	-0.5%
3	12.9%	-1.2%
4	12.2%	-1.7%
5	11.6%	2.3%
6	9.9%	-0.2%
7	7.2%	0.7%
8	7.2%	-0.5%
9	5.6%	-1.2%
Long	4.0%	-3.0%
L-S	-9.5%	-3.0%
(t_{L-S})	(-3.28)	(-1.00)

Decile	r	$lpha_{ m ICAPM}$	β_r	
Short	13.5%	0.0%	0.67	
2	12.1%	-0.5%	0.66	
3	12.9%	-1.2%	0.72	
4	12.2%	-1.7%	0.90	
5	11.6%	2.3%	0.85	
6	9.9%	-0.2%	0.90	
7	7.2%	0.7%	0.74	
8	7.2%	-0.5%	0.83	
9	5.6%	-1.2%	0.92	
Long	4.0%	-3.0%	1.19	
L-S	-9.5%	-3.0%	0.52	
(t_{L-S})	(-3.28)	(-1.00)	(4.92)	

Decile	r	$lpha_{ m ICAPM}$	β_r	$oldsymbol{eta}_{\mathbb{E}}$ r	
Short	13.5%	0.0%	0.67	-0.42	
2	12.1%	-0.5%	0.66	-0.49	
3	12.9%	-1.2%	0.72	-0.47	
4	12.2%	-1.7%	0.90	-0.92	
5	11.6%	2.3%	0.85	-1.27	
6	9.9%	-0.2%	0.90	-1.29	
7	7.2%	0.7%	0.74	-1.27	
8	7.2%	-0.5%	0.83	-1.36	
9	5.6%	-1.2%	0.92	-1.68	
Long	4.0%	-3.0%	1.19	-2.27	
L-S	-9.5%	-3.0%	0.52	-1.85	
(t_{L-S})	(-3.28)	(-1.00)	(4.92)	(-8.02)	

Equal-Weighted ICAPM Estimation S

ICAPM αs and βs

Decile	r	$lpha_{ m ICAPM}$	β_r	$oldsymbol{eta}_{\mathbb{E}}$ r	eta_{dp}	eta_{poy}
Short	13.5%	0.0%	0.67	-0.42	-0.24	-0.18
2	12.1%	-0.5%	0.66	-0.49	-0.25	-0.19
3	12.9%	-1.2%	0.72	-0.47	-0.26	-0.21
4	12.2%	-1.7%	0.90	-0.92	-0.29	-0.30
5	11.6%	2.3%	0.85	-1.27	-0.34	-0.46
6	9.9%	-0.2%	0.90	-1.29	-0.37	-0.39
7	7.2%	0.7%	0.74	-1.27	-0.38	-0.33
8	7.2%	-0.5%	0.83	-1.36	-0.43	-0.37
9	5.6%	-1.2%	0.92	-1.68	-0.44	-0.39
Long	4.0%	-3.0%	1.19	-2.27	-0.56	-0.51
L-S	-9.5%	-3.0%	0.52	-1.85	-0.31	-0.33
(t_{L-S})	(-3.28)	(-1.00)	(4.92)	(-8.02)	(-3.43)	(-2.37)

Equal-Weighted ICAPM Estimation S

Outline

Introduction

Equity Duration Portfolios

An ICAPM with Reinvestment Risk

Further Results

Further Results

- 1. Time variation in the short duration premium
- 2. Government and Corporate Bond Portfolios
- 3. Comparison Between *Dur* and Duration from Dechow, Sloan, and Soliman (2004)
- 4. Short Duration Premium: Alternative Duration Measures
- 5. General Robustness >

Outline

Introduction

Equity Duration Portfolios

An ICAPM with Reinvestment Risk

Further Results

- Stocks of firms with short duration cash flows pay a premium (long-lived and present among the largest firms)
- Value and profitability premia can be explained by the lower cash flow duration of value and profitable companies.
- The short duration premium is consistent with the ICAPM (reinvestment risk)
- Future research can further explore implications for:

- Stocks of firms with short duration cash flows pay a premium (long-lived and present among the largest firms)
- Value and profitability premia can be explained by the lower cash flow duration of value and profitable companies.
- The short duration premium is consistent with the ICAPM (reinvestment risk)
- Future research can further explore implications for:

- Stocks of firms with short duration cash flows pay a premium (long-lived and present among the largest firms)
- Value and profitability premia can be explained by the lower cash flow duration of value and profitable companies.
- The short duration premium is consistent with the ICAPM (reinvestment risk)
- Future research can further explore implications for:

- Stocks of firms with short duration cash flows pay a premium (long-lived and present among the largest firms)
- Value and profitability premia can be explained by the lower cash flow duration of value and profitable companies.
- The short duration premium is consistent with the ICAPM (reinvestment risk)
- Future research can further explore implications for:
 - Discount Rate Measurement
 - Construction of Risk factors
 - The Equity Term Structure

- Stocks of firms with short duration cash flows pay a premium (long-lived and present among the largest firms)
- Value and profitability premia can be explained by the lower cash flow duration of value and profitable companies.
- The short duration premium is consistent with the ICAPM (reinvestment risk)
- Future research can further explore implications for:
 - Discount Rate Measurement
 - Construction of Risk factors
 - The Equity Term Structure

- Stocks of firms with short duration cash flows pay a premium (long-lived and present among the largest firms)
- Value and profitability premia can be explained by the lower cash flow duration of value and profitable companies.
- The short duration premium is consistent with the ICAPM (reinvestment risk)
- Future research can further explore implications for:
 - Discount Rate Measurement
 - Construction of Risk factors
 - The Equity Term Structure

- Stocks of firms with short duration cash flows pay a premium (long-lived and present among the largest firms)
- Value and profitability premia can be explained by the lower cash flow duration of value and profitable companies.
- The short duration premium is consistent with the ICAPM (reinvestment risk)
- Future research can further explore implications for:
 - Discount Rate Measurement
 - Construction of Risk factors
 - The Equity Term Structure

• $Dur_t = -(\partial P_t / \partial dr_t) / P_t$, which is directly related to $-\beta_{\mathbb{E}r}$

$\sigma(Dur)$		
Low		
Moderate		
High		
R ²		

• $Dur_t = -(\partial P_t / \partial dr_t) / P_t$, which is directly related to $-\beta_{\mathbb{E}r}$

$\sigma(Dur)$	r _e		
Low	6.9%		
	(-)		
	7.9%		
woderate	(0.17)		
High	5.9%		
	(-0.14)		
R ²	-4.6%		

• $Dur_t = -(\partial P_t/\partial dr_t)/P_t$, which is directly related to $-\beta_{\mathbb{E}r}$

$\sigma(Dur)$	r _e	\overline{r}_{10-1}	
Law	6.9%	-4.8%	
LOW	(-)	(-)	
	7.9%	-5.6%	
wouerate	(0.17)	(-0.15)	
Ll:mb	5.9%	-20.8%	
пıgn	(-0.14)	(-2.29)	
R ²	-4.6%	11.1%	

• $Dur_t = -(\partial P_t/\partial dr_t)/P_t$, which is directly related to $-\beta_{\mathbb{E}r}$

$\sigma(Dur)$	r _e	\overline{r}_{10-1}	eta_{r}	
Low	6.9%	-4.8%	0.49	
	(-)	(-)	(-)	
Maalaasta	7.9%	-5.6%	0.52	
wouerate	(0.17)	(-0.15)	(0.11)	
Liah	5.9%	-20.8%	0.53	
пıgn	(-0.14)	(-2.29)	(0.18)	
R ²	-4.6%	11.1%		

• $Dur_t = -(\partial P_t/\partial dr_t)/P_t$, which is directly related to $-\beta_{\mathbb{E}r}$

$\sigma(Dur)$	r _e	\overline{r}_{10-1}	eta_{r}	$oldsymbol{eta}_{\mathbb{E}}$ r	
Low	6.9%	-4.8%	0.49	-1.01	
LOW	(-)	(-)	(-)	(-)	
Moderate	7.9%	-5.6%	0.52	-1.35	
	(0.17)	(-0.15)	(0.11)	(-0.25)	
High	5.9%	-20.8%	0.53	-2.55	
	(-0.14)	(-2.29)	(0.18)	(-1.19)	
R ²	-4.6%	11.1%			

•
$$Dur_t = -(\partial P_t / \partial dr_t) / P_t$$
, which is directly related to $-\beta_{\mathbb{E}r}$

$\sigma(Dur)$	r _e	\overline{r}_{10-1}	eta_{r}	$oldsymbol{eta}_{\mathbb{E}}$ r	eta_{dp}	$eta_{\it poy}$
Low	6.9%	-4.8%	0.49	-1.01	-0.18	0.58
LOW	(-)	(-)	(-)	(-)	(-)	(-)
Madarata	7.9%	-5.6%	0.52	-1.35	-0.47	-0.41
woderate	(0.17)	(-0.15)	(0.11)	(-0.25)	(-1.15)	(-1.84)
	5.9%	-20.8%	0.53	-2.55	-0.51	-0.89
пıgn	(-0.14)	(-2.29)	(0.18)	(-1.19)	(-1.34)	(-2.72)
R ²	-4.6%	11.1%				

Bond Portfolios >

Government Bond Portfolios

Bond Portfolios

