The Transmission of Quasi-Sovereign Default Risk: Evidence from Puerto Rico

Anusha Chari UNC-Chapel Hill & NBER Ryan Leary The Brattle Group Toan Phan FRB Richmond*

The Puerto Rican Debt Crisis Paper Session ASSA 2020 Annual Meeting January 5, 2020

^{*} The views expressed do not necessarily reflect the position of the Federal Reserve

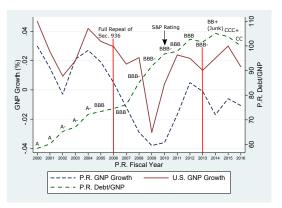
Bank of Richmond or the Federal Reserve System.

Overview

- Empirical challenge for sovereign debt literature: Identify effects of default risk on the macroeconomy.
 - Difficult to isolate default risk from risks of banking/currency crisis, or of gov interference on private contracts (eg, Argentina, Greece).
 - Reverse Causality: Economic activity may drive default risk.
- ► This paper provides a novel setting to extract macro effects of default risk: Puerto Rican debt crisis.
- Document a government demand channel: increase default risk affects macroeconomy through reduced government spending.

Puerto Rico's Quasi-Sovereign Status

- ▶ U.S. territories cannot by law abandon the U.S. dollar (US Constitution, Article I, Sections 8 and 10).
- Banks are protected by the FDIC.
- ▶ P.R. government lacks legal authority to make banking system interventions → limit deposit withdrawals/capital controls (Puerto Rico Federal Relations Act (1950) & Contracts Clause (U.S. Constitution).
- Contracts Clause provides U.S. constitutional protection on government interference with private contracts (Commonwealth of Puerto Rico v. Franklin California Tax-Free Trust et al., October 2015)
- ▶ P.R. subsidiaries cannot access Chapter 9 (U.S. Bankruptcy Code)


What does this paper do?

- ► Given P.R. backdrop, we provide evidence for a government-demand-driven channel for the transmission of sovereign default risk.
 - Develop a simple theoretical model that illustrates a mechanism connecting sovereign default risk with austerity risk.
- Provide evidence for this mechanism using monthly employment data for Puerto Rican industries
 - Exploit the cross-sectional variation in ex-ante government demand dependence across industries.

Related Literature

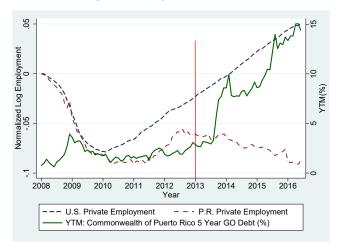
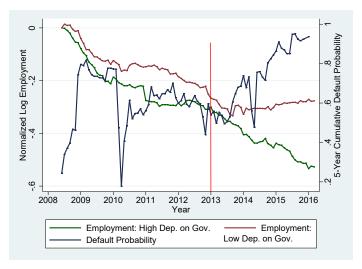

- Empirical literature on the costs of sovereign default: Hébert & Schreger (2017) → Argentina; Zettelmeyer et. al. (2013) → Greece.
- ightharpoonup Yeyati & Panizza (2011) ightharpoonup output contractions precede defaults ightharpoonup default anticipation drives the costs of default.
- Austerity & Growth: Auerbach & Gorodnichenko (2012); Jordá & Taylor (2016); Blanchard & Leigh (2014); Chari & Henry (2015); House & Tesar (2015)
- Theoretical literature on sovereign debt: Survey by Aguiar et. al. (2014).
- ▶ Effect of sovereign risk on bank loan supply (Popov & Van Horen (2015); De Marco (2016); Becker & Ivashina (2018); Bofondi et al. (2017)), & transmission of sovereign risk via reduced bank loan supply to the employment of affected firms (Balduzzi et al. (2015); Acharya et al. (2018).
- ► Add to this literature by using the unique natural experiment of Puerto Rico & higher frequency monthly employment data.

Figure: P.R. vs U.S. GNP

- P.R.'s final default (June 30, 2016) preceded by several years of economic malaise.
- ightharpoonup Output and employment costs precede default ightharpoonup default anticipation may explain it (Yeyati & Panizza, 2011).


Figure: Employment and Yields

▶ Post-2012, close relationship of real activity in Puerto Rico with the U.S. mainland breaks down: P.R. activity lags behind.

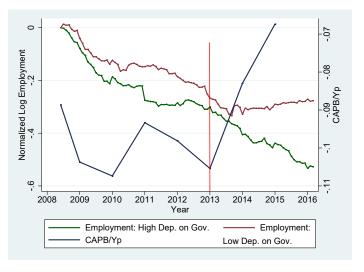

Default Risk and Government Demand

Figure: Employment by Dependence on Government Demand & Default Probability

Austerity and Government Demand

Figure: Employment by Dependence on Government Demand and CAPB

What do we find?

- 1. Increased default risk associated with slower employment growth in government demand-dependent industries
 - Effects amplified when default risk is interacted with austerity measures.
- 2. Austerity associated with reduced output growth through a local fiscal multiplier effect.
- 3. Increased default risk associated with:
 - ► Slower employment growth in external finance-dependent industries.
 - Impact on government demand-dependent industries quantitatively strengthens when we control for external finance dependence.

Simple Model

- ► Two-period NK SOE (Galí Monacelli 2005 + Benigno 2015)
- Add sovereign borrowing
- ► Add multiple sectors w. heterogeneous exposure to gov demand.

Setup

- SOE, representative hh, benevolent government
- ightharpoonup t=0 (short run) and t=1 (long run)
 - Nominal wage flexible in t = 1
 - but fixed at \overline{W} in t=0
- Domestic economy has two sectors
 - m: more exposed to government demand
 - I: less exposed to government demand
 - hh also consume imported foreign good f

$$u(C) + v(G) + \beta E \left[u(C') + v(G')\right]$$

$$C = \left[(C_m)^{1-\lambda} (C_l)^{\lambda} \right]^{1-\chi} (C_f)^{\chi}$$

$$C' = \dots$$

Labor market

- **>** hh supply labor inelasticaly up to \bar{h}
 - Short run $h \leq \bar{h}$ (sticky wage); Long run $h' = \bar{h}$ (flexible wage)

$$P_{m}C_{m} + P_{I}C_{I} + P_{f}C_{f} = \overline{W}h + \Pi - T$$

 $P'_{m}C'_{m} + P'_{I}C'_{I} + P'_{f}C'_{f} = W'\bar{h} + \Pi' - T'$

▶ Firms in sector $j \in \{m, l\}$:

$$\Pi_{j} = \max_{h_{j}} P_{j} A h_{j}^{\alpha} - \overline{W} h_{j}$$

$$\Pi'_{j} = \max_{h'_{j}} P'_{j} A' h_{j}^{'\alpha} - W' h'_{j}$$

Aggregate labor demand:

$$h = h_m + h_l$$

$$h' = h'_m + h'_l$$

Closing the model: Import/Export

Imported good price:

$$P_f = P'_f = 1$$

- ▶ Law of one price: $P_f = eP_f^*$
- Fixed exchange rate e = 1
- Normalize $P_f^* = 1$
- **Export**: exogenous foreign demand X_j for domestic goods $j \in \{m, l\}$

$$X_j \equiv \zeta P_j^{-\rho}$$

 $X'_j \equiv \zeta' P_j^{'\rho}$.

Asymmetric exposure to government demand

► Government provides public good *G*, with input *only* from domestic sector *m*:

$$G = f(G_m), G' = f(G'_m)$$

- ► Finances spending by lump-sum tax + borrowing from abroad
- ▶ Faces fiscal constraint: can tax at most \bar{T} and \bar{T}'

$$P_mG_m \leq \bar{T} + qB$$

 $P'_mG'_m \leq \bar{T}' - (1 - def)B.$

▶ t = 1: If default, gov receives cont. payoff \underline{V}

$$q = \frac{1 - Pr(def)}{1 + r^*}$$

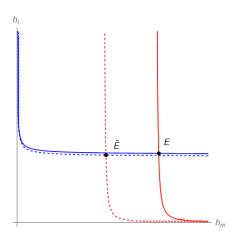
Asymmetric effects of government spending

Short-run goods market clearing:

$$C_m + \zeta P_m^{-\rho} + G = A h_m^{\alpha}$$

$$C_l + \zeta P_l^{-\rho} = A h_l^{\alpha}$$

Combined with short-run labor market clearing $\Rightarrow h_m$ more sensitive to gov demand


$$\overbrace{(1-\lambda)\frac{1-\chi}{\chi}\left(qB+\bar{\omega}h_m^{(1-\alpha)(1-\rho)}+\bar{\omega}h_l^{(1-\alpha)(1-\rho)}\right)}^{\text{domestic demand}} + \overbrace{\bar{U}}^{\text{foreign demand}}_{\bar{U}} + \underbrace{(\bar{I}+qB)}^{\text{gov demand}}_{\bar{U}} = \underbrace{\frac{1}{\alpha}\bar{W}h_m}^{\text{supply}}_{\bar{U}} + \underbrace{(1-\lambda)\frac{1-\chi}{\chi}\left(qB+\bar{\omega}h_m^{(1-\alpha)(1-\rho)}+\bar{\omega}h_l^{(1-\alpha)(1-\rho)}\right)}_{\bar{U}} + \underbrace{\bar{U}}^{\text{foreign demand}}_{\bar{U}} + \underbrace{(\bar{I}+qB)}^{\text{gov demand}}_{\bar{U}} = \underbrace{\frac{1}{\alpha}\bar{W}h_m}_{\bar{U}} + \underbrace{\bar{U}}^{\text{foreign demand}}_{\bar{U}} + \underbrace{\bar{U}}^{\text{foreign demand}}_{\bar{U}}$$

where $\bar{\omega} \equiv (\frac{\overline{W}}{A\alpha})^{1ho} \ \zeta$

Proposition 1 An increase in the default risk reduces the competitive equilibrium employment in the short run, with the effect stronger on sector m, which is more exposed to government demand. Specifically, a negative shock to the default value \underline{V} raises $\Pr(def)$ and reduces h_l and especially h_m :

$$\frac{\partial h_m}{\partial \underline{V}} < \frac{\partial h_l}{\partial \underline{V}} < 0.$$

Asymmetric effects of default risk

Shock to default risk:

- $ightharpoonup \underline{V} \uparrow (\text{or } A' \downarrow) \Longrightarrow q \downarrow \Longrightarrow q \ B(q) \downarrow \Rightarrow \text{austerity}$
- ▶ Austerity \Rightarrow employment \downarrow esp. in more exposed sector m

Empirical analysis

Key Datasets

Macro Data

▶ P.R. fiscal balance: P.R. financial statements: 2000-2016

► P.R. GNP: GDB: 2000-2016

► FRED for U.S. GDP

Micro Data

- Employment 3-digit NAICS: BLS: 2000Jan-2016June (73 industries)
- Output 3-digit NAICS: PR Planning Board: 2002-2015 (19 industries)
- Share of sales to P.R. Government: 2012: Economic Census of Island Areas
- Banking balance sheet data for P.R. banks: FDIC Call Reports
- External finance-dependence: Compustat/CRSP: 2000-2015

Financial Market Data

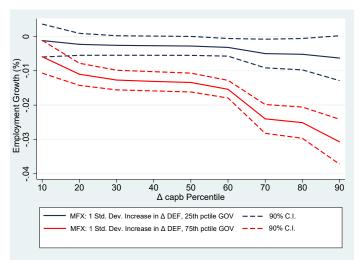
▶ CDS spreads: JP Morgan Markit: 2008-2015 Daily

Main Specification

$$\Delta E_{it} = \alpha_i + \mu_t + \nu S H_{it-1} + \sum_{j=1}^{12} \delta_{t-j} * GOV_i * \Delta DEF_{t-j} + \beta * GOV_i$$

$$* \Delta capb_{prioryear} + \sum_{j=1}^{12} \gamma_{t-j} * GOV_i * \Delta DEF_{t-j} * \Delta capb_{prioryear} + \epsilon_{it}$$

$$(1)$$


- $ightharpoonup \Delta E_{it}$: employment growth for industry *i* in month *t*.
- ▶ SH_{it-1} : total private employment share for industry i in month t-1.
- $ightharpoonup \Delta DEF_t$: change in the monthly average of default probability in month t.
- ▶ GOV_i : share of sales to the government for industry i.
- ightharpoonup $\Delta capb$: annual first difference in cyclically-adjusted primary balance (% Y_P).
- \triangleright α_i : industry fixed effects. μ_t : month fixed effects.

Results

	(1)	(2)	(3)
Constant	0.0116	0.0024	0.0154*
	(0.0076)	(0.0035)	(0.0086)
SH_{t-1}	-2.2381***	3827	-2.2426***
	(0.6420)	(0.4113)	(0.6215)
$GOV * \Delta CAPB_{prioryear}$		-3.6859**	2.182507
	'	(1.3132)	(1.9278)
$\sum_{i=1}^{12} GOV * \Delta DEF_{t-i}$	-3.3875***		-5.9455***
$\sum_{j=1}^{12} GOV * \Delta DEF_{t-j} \ \sum_{j=1}^{12} GOV * \Delta DEF_{t-j} * \Delta CAPB_{prioryear}$			-271.5450***
Observations	1,343	2,907	1,343
Industry Fixed Effects	Υ	Υ	Υ
Time Fixed Effects	Υ	Υ	Υ
F test $GOV * \Delta DEF$ jointly significant	5.67***		6.66***
$Prob \! > \! F$	0.0009		0.0003
F test $GOV * \Delta DEF * \Delta CAPB_{prioryear}$ jointly significant			151.55***
$Prob \! > \! F$			0.0000

Marginal Effects

Figure: Marginal Effects of Default Risk Across Austerity

Economic Significance

	ΔDEF	ΔDEF	ΔDEF
	25th pctile	75th pctile	90th pctile
GOV 25th pctile	-0.0012	-0.0023	-0.0034
GOV 75th pctile	0.0002	-0.0049	-0.0101
Difference	0.0015	-0.0026	-0.0068
Percent of average monthly employment growth	40.3%	71.6%	188.2%
	Δ capb	$\Delta capb$	Δcapb
	25th pctile	75th pctile	90th pctile
GOV 25th pctile	0.0003	-0.0001	-0.0003
GOV 75th pctile	0.0007	-0.0014	-0.0022
Difference	0.0003	-0.0013	-0.0019
Percent of average monthly employment growth	9.7%	35.7%	53.4%

Summary: Government Demand Channel

- ▶ Increased default risk→
 - Significantly reduced employment growth in government demand-dependent industries.
 - austerity measures amplify the impact of default risk.
- Findings consistent with the government demand channel.
 - Increased default risk → anticipation of future austerity measures → employment more sensitive in industries dependent on government demand.

The Local Fiscal Multiplier

$$\Delta Y_{it} = \alpha + \beta \Delta Y_{it-1} + \gamma \Delta capb_t + \epsilon_{it}$$
 (2)

Table: Austerity and Default Risk Have Real Effects on the Output Growth of Puerto Rican Manufacturers

(1)	(2)	(3)
-0.0088	-0.0095***	-0.0053
(0.0066)	(0.0010)	(0.0274)
0.2349**	0.1464	0.1750*
(0.1113)	(0.1118)	(0.0972)
-0.9470***	-1.0703***	, ,
(0.2890)	(0.3101)	l
· · ·	· · ·	-6.2783*
		(3.0879)
266	266	136
Ν	Υ	Υ
N	N	Y
	-0.0088 (0.0066) 0.2349** (0.1113) -0.9470*** (0.2890)	-0.0088 -0.0095*** (0.0066) (0.0010) 0.2349** 0.1464 (0.1113) (0.1118) -0.9470*** -1.0703*** (0.2890) (0.3101) 266

Alternative Explanation: External Finance Dependence

Default Risk & External Finance: Specification

Difference-in-difference approach (Rajan and Zingales 1998, Dell'Ariccia et al. 2008):

$$\Delta E_{it} = \alpha_i + \mu_t + \nu S H_{it-1} + \sum_{j=1}^{12} \delta_{t-j} * GOV_i * \Delta DEF_{t-j} + \sum_{j=1}^{12} \gamma_{t-j} * EXTFIN_i^{US} * \Delta DEF_{t-j} + \sum_{j=1}^{12} \beta_{t-j} * LD_i * \Delta DEF_{t-j} + \epsilon_{it}$$
(3)

- ► $EXTFIN_i^{US}$: the Rajan and Zingales (1998) measure of dependence on external finance for industry i.
- ► *LD_i*: Industry-level measure of local demand dependence.

Default Risk & External Finance: Results

	(1)	(0)	(2)
	(1)	(2)	(3)
Constant	0.0189**	0.0170**	0.0155*
	(0.0078)	(0.0072)	(0.0077)
SH_{t-1}	-2.7585***	-2.6101***	-2.5770***
	(0.7085)	(0.5855)	(0.5877)
$\sum_{i=1}^{12} EXTFIN^{US} * \Delta DEF_{t-j}$	-0.0313	-0.0931	-0.0814
$\sum_{i=1}^{12} LD * \Delta DEF_{t-j}$		-0.0628	0.2438
$\sum_{i=1}^{12} GOV * \Delta DEF_{t-i}$			-6.5147
Observations	1,501	1,422	1,343
Industry Fixed Effects	Υ	Υ	Υ
Time Fixed Effects	Υ	Υ	Υ
F test $EXTFIN^{US} * \Delta DEF$ jointly significant	25.90***	36.35***	31.41***
Prob; F	0.0000	0.0000	0.0000
F test $LD * \Delta DEF$ jointly significant		12.33***	108.13***
$Prob \! > \! F$		0.0000	0.0000
F test $GOV * \Delta DEF$ jointly significant			171.63***
Prob> F			0.0000

Default Risk & External Finance: Summary

- ▶ Increased default risk \rightarrow significantly reduced employment in *external* finance dependent industries.
- ► Government demand channel quantitatively stronger when controlling for the external finance channel.
 - Credit Supply: Commercial and industrial loan activity declines by 35.6% between 2008-2015.
 - Non-Puerto Rican banks do not act as substitutes→ lending declined from 19% in 2008 to 4% in 2016.
 - ▶ Puerto Rican banks significantly exposed to P.R. debt \rightarrow 40% of capital loans to P.R. municipalities.
 - A Quasi-Sovereign ceiling operates → bond financing does not substitute for the bank credit crunch.
 - Findings consistent with the external finance channel: Puerto Rican banks holding government debt take losses \rightarrow constrained ability to raise capital and lend \rightarrow cost passed on to private employers.

Robustness Tests

- Population shocks
- Recession risk
- Housing price shocks
- Industry-specific shocks
- Puerto Rican industry-specific shocks
- Alternative measure of default probability
- Restricting the sample to the period after the global financial crisis
- Alternative calculation periods for EXTFINUS and GOV

Conclusion

- Provide theoretical framework and empirical evidence for the (relatively unexplored) government demand channel.
 - Default anticipation can have significant real economic effects → in this paper via fiscal austerity and government demand dependence.
 - Importantly, our results suggest that firms can anticipate government spending cuts and reduce hiring when default risk increases.