Pitfalls of central clearing in the presence of systematic risk

Christian Kubitza, Loriana Pelizzon, Mila Getmansky Sherman

University of Bonn

Research Center SAFE, Goethe-University Frankfurt, Ca'Foscari University of Venice Isenberg School of Management, University of Massachusetts Amherst

January 5, 2020

AFA meeting

Derivative market and counterparty risk

• OTC derivative market

- not exchange-traded
- large: \$12 trillion gross market value (BIS 2019)
- core (dealer) periphery (end-user) structure
- pre 2007: largely unregulated
- Counterparty risk: Lehman fails on derivative payments.
- Regulators: reduce counterparty risk via central clearing of derivatives, *though* market participants, particularly end-users, are reluctant to centrally clear voluntarily (< 40% of CDS, IRD, FX transactions cleared pre-regulation)

This paper: central clearing \Rightarrow reduces counterparty risk?

Main finding:

Central clearing is no panacea: substantially benefits dealers but not end-users.

 \Rightarrow One possible explanation for reluctance to clear.

Central clearing

Suppose *Deutsche Bank* buys credit protection (CDS) from *Lehman* sells it to *JPM*. \Rightarrow Counterparty risk

Figure: Bilateral netting (left) and central clearing (right).

Central clearing mechanisms

- (1) Multilateral netting (MN)
 - Offsetting gains and losses across (original) counterparties
- (2) Loss sharing
 - Default losses are shared among surviving clearing members

Literature

Previous studies:

- <u>Netting</u>: sufficient *uncorrelated* multilateral netting opportunities → multilateral netting reduces counterparty risk exposure (Duffie and Zhu (2011), Cont and Kokholm (2014), Lewandowska (2015))
- Loss sharing: impact on a CCP's collateral and fee policy (Capponi et al. (2017), Capponi and Cheng (2018), Huang (2018)) and risk shifting (Biais et al. (2012, 2016), Capponi et al. (2019))

Our contribution:

- Counterparty risk: central clearing vs bilateral netting
- 2 components:
 - 1. single-factor that drives correlation of derivatives prices (systematic risk)
 - 2. portfolio directionality (dealer (flat) vs end-user (directional))
- 2 mechanisms:
 - 1. multilateral netting
 - 2. loss sharing

Overview

Central Clearing

Netting

Loss sharing

Bilateral netting

Net with each counterparty j across derivative classes k (e.g., CDS, IRS, FX,...)

Multilateral netting

Clearing class-K: multilateral pool with CCP across (original) counterparties j

Additional netting pool \Rightarrow Reduction of exposure?

Model (1)

- X_j^k =profit with j in class k. Counterparty risk exposure = LGD = max $(X_j^k, 0)$ Single-factor model: Profit $X_i^k = \beta M + \varepsilon_i^k \sim$ Normal with $\mathbb{E}[X_i^k] \equiv \mathbb{E}[M] = 0$
- Bilateral netting (BN) across K classes:

total counterparty risk exposure =
$$\mathbb{E}[E^{BN,K}] = \sum_{j=1}^{\gamma} \underbrace{\mathbb{E}\left[\max\left(\sum_{k=1}^{K} \mathbf{X}_{j}^{k}, 0\right)\right]}_{\text{Exposure to } j}$$

• Multilateral netting (MN) of class-K: $\mathbb{E}[E^{MN}] = \mathbb{E}\left[\max\left(\sum_{j=1}^{\gamma} \mathbf{X}_{j}^{\mathsf{K}}, 0\right)\right]$

total counterparty risk exposure = $\mathbb{E}[E^{BN+MN}] = \mathbb{E}[E^{MN}] + \mathbb{E}[E^{BN,K-1}]$

Model (2)

Measure:

$$\Delta E = \frac{\mathbb{E}[E^{BN+MN} - E^{BN,K}]}{\mathbb{E}[E^{BN,K}]} = \text{effect of MN on counterparty risk exposure}$$

 \Rightarrow If $\Delta E <$ 0, MN $\it reduces$ counterparty risk exposure.

Calibration: index CDS and S&P 500 ($cor(X_i^k, M) = \rho_{X,M} = 43\%$)

No systematic risk: Bilateral vs multilateral netting

Tradeoff : excluding class-*K* from $BN \Rightarrow exposure\uparrow vs. MN \Rightarrow exposure\downarrow$

Figure: Multilateral vs bilateral netting (no systematic risk: $\rho_{X,M} = 0$).

Sufficient counterparties & no systematic risk \Rightarrow MN beneficial (Duffie and Zhu (2011))

Central Clearing Netting Loss sharing References

Systematic risk

- End-user: MN benefit \downarrow
- Dealer: MN less affected than BN \Rightarrow MN benefit \uparrow

\Rightarrow MN favors dealers vs end-users.

Extreme events: Effect of netting conditional on $VaR^{M}(q)$

Wedge amplified: End-users **never** benefit & dealers **always** benefit. *Intuition:* large *M* dominates netting opportunities \Rightarrow MN benefit \downarrow Dealer: offset systematic risk exposure with MN \Rightarrow MN benefit \uparrow

Figure: Effect of netting conditional on event $M = VaR^{M}(q)$.

Overview

Central Clearing

Netting

Loss sharing

Loss sharing

Upon default losses, CCPs allocate losses to remaining clearing members

Loss allocation proportional to margins (≈ Nasdaq,...): Small margin ⇒ small contribution
 ⇒ Counterparty risk with central clearing is

$$\mathbb{E}[\mathcal{E}^{\textit{cleared}}] = \sum_{j} \mathbb{P}(\mathsf{default}_{j}) \mathbb{E}[\mathsf{bilateral\ exposure}_{j}^{\mathcal{K}-1}] + \mathbb{E}[\mathsf{contribution\ to\ CCP}^{\mathcal{K}}(\mathsf{margin})]$$

- \Rightarrow Dealers contribute less to loss sharing than end-users
- \Rightarrow Larger reduction in counterparty risk $\Delta E = \frac{\mathbb{E}[E^{\text{cleared}}] PD \cdot \mathbb{E}[E^{BN,K}]}{PD \cdot \mathbb{E}[E^{BN,K}]}$ for dealers

Loss sharing and systematic risk

Figure: Effect of central clearing with loss sharing.

 \Rightarrow Dealer benefits more from central clearing than end-user.

Conclusion

In terms of counterparty risk,...

- multilateral netting favors dealers over end-users,
- loss sharing favors dealers over end-users since proportional to margins,
- during extreme events (e.g., crises), wedge between dealers and end-users amplifies.
- \Rightarrow Small/no incentive to centrally clear for end-users.
- \Rightarrow Consistent with reluctance to voluntarily clear in practice, particularly by end-users.

Central Clearing Netting Loss sharing References

Thank you for your attention.

References

- Biais, B., Heider, F., and Hoerova, M. (2012). Clearing, counterparty risk, and aggregate risk. IMF Economic Review, 60(2):193–222.
- Biais, B., Heider, F., and Hoerova, M. (2016). Risk-sharing or risk-taking? Counterparty risk, incentives and margins. *Journal of Finance*, 71(4):1669–1698.
- Capponi, A. and Cheng, W. (2018). Clearinghouse margin requirements. Operations Research, forthcoming.
- Capponi, A., Cheng, W. A., and Sethuraman, J. (2017). Clearinghouse default waterfalls: Risk-sharing, incentives, and systemic risk. *Working Paper*.
- Capponi, A., Wang, J. J., and Zhang, H. (2019). Central counterparty and the design of collateral requirements. *Working Paper*.
- Cont, R. and Kokholm, T. (2014). Central clearing of OTC derivatives: Bilateral vs multilateral netting. *Statistics & Risk Modeling*, 31(1):3–22.
- Duffie, D. (2015). Resolution of failing central counterparties. In Jackson, T., Scott, K., and Taylor, J. E., editors, *Making Failure Feasible: How Bankruptcy Reform Can End 'Too Big To Fail*, chapter 4, pages 87–109. Hoover Institution Press.
- Duffie, D. and Zhu, H. (2011). Does a central clearing counterparty reduce counterparty risk? *Review of Asset Pricing Studies*, 1:74–95.
- Huang, W. (2018). Central counterparty capitalization and misaligned incentives. Working Paper.
- Lewandowska, O. (2015). OTC clearing arrangements for bank systemic risk regulation: A simulation approach. *Journal of Money, Credit and Banking*, 47(6):1177–1203.

Backup

Baseline Calibration

Variable	Value	Description
Exposure		
σ_X	0.01	Total contract volatility
$\rho_{X,M}$	0.43	Correlation between contract value and systematic risk factor M
σ_M	0.03	Systematic volatility
β	0.1433	Implied beta-factor contracts
σ	0.009	Implied idiosyncratic contract volatility
V	1	Initial market value
$\operatorname{cor}\left(r_{ii}^{k},r_{hl}^{m}\right)$	0.185	Implied pair-wise correlation of contracts
α_{BN}	0.99	Bilateral margin level
α_{MN}	0.99	Multilateral (CCP) margin level
Default model		
pd	0.05	Individual probability of default
$\rho_{A,A}$	0.05	Correlation of log assets conditional on M
$\bar{\sigma}_A$	1	Total log asset volatility
<i>ΡΑ</i> , <i>Μ</i>	0.1	Correlation between log asset and systematic risk factor M
β_A	3.33	Implied beta-factor of log assets
σ_{A}	0.2	Implied idiosyncratic log asset volatility

 Table: Baseline calibration (estimated for North American CDS indices from CDX series). We assume the same calibration for each entity.

Exposure and systematic risk

Systematic risk reduces multilateral netting efficiency

 \Rightarrow Increases lower limit to average exposure per counterparty: $\frac{E^{MN}}{\gamma-1} \ge |\rho_{X,M}|\sigma_X\varphi(0)|$

Figure: Reduction in average bilateral exposure, $BN^{K} - BN^{K-1}$, and increase in multilateral exposure upon multilaterally netting contract class K (scaled by 10⁴) per counterparty.

Loss sharing and distribution of counterparty risk

Figure: Effect of central clearing conditional on event $VaR^{M}(q)$.

- \Rightarrow Redistribution of risk from profitable to unprofitable states M.
- \Rightarrow Central clearing harmful in most states (> 80%). Intuition: Lower total margin with CCP \Rightarrow exposure \uparrow
- ⇒ Extreme wedge: no state with a benefit for everyone.

Role of margins

Figure: Effect of central clearing conditional on event $VaR^{M}(q)$ for end-users.

Smaller margin \Rightarrow larger exposure

 \Rightarrow If BN margin/exposure large (moderate *M*) and MN reduces margin, clearing increases risk. \Rightarrow Margins shift clearing benefits to distribution's tails.

Loss sharing vs no loss sharing

Figure: Loss sharing vs no loss sharing conditional on $M = \sigma_M \Phi^{-1}(q)$.

Loss sharing \approx catastrophe insurance: only insures end-users' tail risk \Rightarrow "insurance premium" eliminates multilateral netting benefits in less extreme states

Margin requirements

Derivative transactions typically include margins (i.e., collateral).

Current margin requirements: Clearing margin level α_{MN} < Bilateral margin level α_{BN}^*

* CCPs have incentives to set low margins to attract investors (e.g., Capponi and Cheng (2018)).

Uncollateralized exposure

If $\alpha_{MN} \ll \alpha_{BN}$, then multilateral netting does not reduce exposures - regardless of netting. \Rightarrow Under current margin requirements, multilateral netting likely increases counterparty risk.

Figure: Change in exposures for fixed bilateral margin level $\alpha_{BN} = 0.99$.

Intuition: Small margins raise exposure, dominating diversification.