School Spending and Student Outcomes: Evidence from Revenue Limit Elections in Wisconsin

Jason Baron Ph.D. Candidate in Economics Florida State University

January 3, 2020

This study examines the relationship between K-12 public school spending and student outcomes.

- Ooes additional public school spending improve student outcomes?
- If so, what is the magnitude of the effect? What are the mechanisms?
- Which types of expenditures are most effective? (e.g., instructional versus capital)

= 200

Introduction Motivation

1.5

- The total amount that a school district in WI can spend is capped by state-imposed revenue limits.
- If a district wishes to exceed these caps, it must seek voter approval in a local referendum.
- The empirical strategy leverages close elections in a dynamic regression discontinuity design.
- By law, school districts must hold separate elections for operational and capital expenditure increases.

= 900

Narrowly passing an "operational referendum" leads to:

- A \$500 (5%) increase in per-pupil operational expenditures (no change in capital outlays)
- Improvements in school inputs (reductions in class sizes and teacher turnover, increases in teacher compensation and experience)
- Improvements in student outcomes (test scores, dropout rates, postsecondary enrollment)

In contrast, I find no evidence that narrowly approving a "bond referendum" leads to improvements in student outcomes.

EL SQA

Does money matter in public education?

• Early observational studies found no evidence that additional spending improves student outcomes (Hanushek, 2003; Coleman et al., 1966).

New, quasi-experimental studies generally find more positive effects. However, these studies either:

- Estimate the joint impact of increases in operational and capital expenditures (Candelaria and Shores, 2019; Lafortune et al., 2018; Jackson et al., 2015)
- Or focus exclusively on capital expenditure effects (Rauscher, 2019; Hong and Zimmer, 2016; Martorell et al., 2016; Cellini et al., 2010)

My study shows that additional spending can improve student outcomes, but how the additional resources are allocated matters.

EL SQA

School District Revenue by Source (2014-15)

= 990

Time Series of Wisconsin's School Mill Rate

ъ.

- The only means of exceeding revenue limits is through the passage of a local referendum.
- A simple majority vote from residents in the district is required for the initiative to pass.
- Residents who vote in favor implicitly agree to an increase in property taxes.
- Since 1993, roughly 80% of school districts have attempted at least one operational referendum (1,213 individual questions).

= 900

Wisconsin Department of Public Instruction

- Operational Referenda: referendum-level data (type, the amount, intended purpose, actual wording, vote share, voter turnout)
- District-level student outcomes (WKCE test scores, dropout rates, postsecondary enrollment)
- Individual-level teacher data (average teacher experience, student-staff ratios, teacher turnover, and teacher compensation)

National Center for Education Statistics

• Detailed district-level expenditure and revenue data

Summary Stats

EL SQA

- Ideally, randomly assign additional spending to some school districts and not others.
- While such an experiment is infeasible, the RD research design uses close elections to approximate it.
- Traditional RD analysis is complicated by the dynamic nature of referenda.
- Cellini et al. (2010) developed dynamic RD estimators that extend the usual RD in a cross-sectional analysis.
- The estimator can be adjusted to any setting in which an entity holds multiple elections.

ELE NOR

- Suppose that district d holds a referendum in year $t \tau$ and that the referendum receives vote share $v_{d,t-\tau}$. Let $P_{d,t-\tau}$ be equal to one if district d passes a referendum in year $t \tau$ and zero otherwise.
- A district outcome in year *t* can be specified as a function of the full history of referendum passages:

$$y_{dt} = \sum_{\tau=0}^{\bar{\tau}} P_{d,t-\tau} \beta_{\tau} + \varepsilon_{dt}$$
(1)

- In general, we might expect $E[\varepsilon_{dt}P_{d,t-\tau}] \neq 0$.
- A simple regression like (1) is likely to yield a biased estimate of the β_{τ} 's.

• Under the standard RD assumption, endogeneity can be addressed by augmenting equation (1) in the following way:

$$y_{dt} = \sum_{\tau=0}^{\bar{\tau}} (P_{d,t-\tau}\beta_{\tau} + m_{d,t-\tau}\kappa_{\tau} + f_g(v_{d,t-\tau})) + \mu_d + \theta_t + \varepsilon_{dt}$$
(2)

- $m_{d,t-\tau}$ is an indicator for presence of a referendum on the ballot in year $t-\tau$
- $f_g(v_{d,t-\tau})$ is a flexible function of the vote share
- μ_d , θ_t represent district and year FEs, respectively
- β_{τ} measures the impact of passing a referendum in a narrow election in time $t \tau$ on outcomes in year t

313 990

Operational Referenda Results First Stage

January 3, 2020 14 / 22

Operational Referenda Results First Stage

Detailed Support Services

Jason Baron (FSU)

Placebo for Bond Measures

January 3, 2020 16

16 / 22

Operational Referenda Results Second Stage

January 3, 2020 17 / 22

Second Stage

Robustness Heterogeneity by Institution Type

Jason Baron (FSU)

January 3, 2020 18 / 22

Mechanisms

Effects by Staff Category

Jason Baron (FSU)

Mechanisms

January 3, 2020 20 / 22

- Earlier studies found little association between school spending and student outcomes, though they were unable to draw causal claims.
- Exploiting a novel source of plausibly exogenous variation in school spending, I find substantial improvements in test scores, retention, and postsecondary enrollment.
- Importantly, in the paper I show that how the additional resources are allocated matters: operational expenditures appear to be more effective at impacting student outcomes.

- Additional Questions or Comments?
- E-mail: ejb15c@my.fsu.edu
- Website: www.ejasonbaron.com

-

- Calonico, S., M. D. Cattaneo, and R. Titiunik (2014). Robust nonparametric confidence intervals for regression-discontinuity designs. *Econometrica 82*(6), 2295–2326.
- Candelaria, C. A. and K. A. Shores (2019). Court-ordered finance reforms in the adequacy era: Heterogeneous causal effects and sensitivity. *Education Finance and Policy* 14(1), 31–60.
- Cellini, S. R., F. Ferreira, and J. Rothstein (2010). The value of school facility investments: Evidence from a dynamic regression discontinuity design. *The Quarterly Journal of Economics* 125(1), 215–261.
- Coleman, J., E. Campbell, C. Hobson, J. McPartland, A. Mood,F. Weinfeld, and R. York (1966). Equality of educational opportunity. Washington, D.C.: U.S. Government Printing Office.

(日本)

References II

- Hanushek, E. A. (2003). The failure of input-based schooling policies. *The Economic Journal 113*(485), F64–F98.
- Hong, K. and R. Zimmer (2016). Does Investing in School Capital Infrastructure Improve Student Achievement? *Economics of Education Review 53*, 143–158.
- Jackson, C. K., R. C. Johnson, and C. Persico (2015). The effects of school spending on educational and economic outcomes: Evidence from school finance reforms. *The Quarterly Journal of Economics* 131(1), 157–218.
- Lafortune, J., J. Rothstein, and D. W. Schanzenbach (2018). School finance reform and the distribution of student achievement. *American Economic Journal: Applied Economics* 10(2), 1–26.
- Martorell, P., K. Stange, and I. McFarlin Jr (2016). Investing in schools: capital spending, facility conditions, and student achievement. *Journal of Public Economics 140*, 13–29.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Rauscher, E. (2019). Delayed Benefits: Effects of California School District Bond Elections on Achievement by Socioeconomic Status. *Working Paper*.

Dependent Variable	All	Never	Proposed	Diff
	Districts	Proposed	At Least One	(2)-(3)
Fiscal Outcomes				
Revenue Limits PP	9,767	9,853	9,738	115
	(1,800)	(2,726)	(1,346)	(63)
Total Expenditures PP	10,598	10,528	10,622	-94
	(1,992)	(2,847)	(1,599)	(66)
Inst. Expenditures PP	6,373	6,340	6,384	-45
	(1,042)	(1,430)	(871)	(34)
Support Services PP	3,817	3,806	3,821	-15
	(1,060)	(1,508)	(856)	(35)
Other Expenditures PP	408	383	417	-34
	(125)	(146)	(116)	(4)
Number of School Districts	421	314	107	421

Dependent Variable	All Districts	Never Proposed	Proposed At Least One	Diff (2)-(3)
Student Outcomes				
Dropout Rate	1.51	2.68	1.01	1.67
% Adv or Prof. 10th Grade	(1.97) (2.91) Iv or Prof. 10th Grade 45.67 43.94		(1.03) 46.16	(0.31) - 2.22
Destas en deux Franklissent	(12.81)	(13.48)	(12.57)	(0.55)
Postsecondary Enrollment	(0.43)	(0.42)	0.44 (0.11)	- 0.02 (0.01)
Number of School Districts	421	314	107	421

Go back

三日 のへで

イロト イヨト イヨト

Results First Stage: Detailed Support Services Accounts

(d) Student Transportation

Back to First Stage Results

- Linear, quadratic specification of the vote share
- District-level demographics
- Non-parametric RD with optimal bandwidth (Calonico et al., 2014)
- ITT Estimator
- Controls for election turnout
- Controls for the presence of a bond measure
- Controls for recurring vs nonrecurring
- End analysis prior to Act 10
- Estimate leads and leave out the year prior to the election

Results Robustness: Linear and Quadratic Specifications

ъ

Results

Robustness: Linear and Quadratic Specifications

(c) Postsecondary Enrollment

= 200

(a) Share of Economically Disadvantaged

(b) Share of Minority Students

Go Back to Second Stage

January 3, 2020 12 / 14

	Year Relative to the Election			
Dependent Variable	1 yr	2 yrs	3 yrs	4 yrs
Student-Total Staff Ratio	-0.19	-0.24	-0.19	-0.28
	(0.10)	(0.11)	(0.12)	(0.13)
Student-Licensed Staff Ratio	-0.28	-0.28	-0.24	-0.38
	(0.13)	(0.14)	(0.17)	(0.19)
Student-Support Staff Ratio	-1.15	-1.79	-1.63	-1.78
	(0.75)	(0.79)	(0.85)	(0.89)
Student-Administrative Staff Ratio	11.72	2.67	0.01	7.23
	(13.44)	(10.80)	(11.60)	(11.46)

Go Back to Mechanisms

三日 のへの

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Heterogeneity by district demographics and socioeconomic characteristics / before and after Act 10
- Additional outcomes (crime, disciplinary incidents, test score gaps)
- Within-district effects: how do districts allocate the additional money across schools?
- Do increases in property taxes crowd out local private contributions?
- School finance effects: after 1993, state aid increases and property taxes decline where does the additional money come from (e.g., income taxes)?