

Regulatory Races Revisited

Sanchari Choudhury¹; Jayjit Roy² ¹Saint Xavier University, ²Appalachian State University

Motivation

- Theory of regulatory arbitrage
 - \succ extensively discussed
 - \succ regulatory policies \Rightarrow converge over time
- Empirical evidence \Rightarrow inconclusive
 - \succ race to the bottom?
 - \succ race to the top?
 - \blacktriangleright neither? \Rightarrow not imitating policies of neighboring government
 - retaining "distinctive attractiveness" (Carruthers and Lamoreaux, 2016)

Data

- RegData \Rightarrow industry-specific federal regulations
 - \blacktriangleright disaggregated at four-digit level \Rightarrow 2007 North American Industrial Classification System (NAICS)
 - rigorous text analysis approach
 - > sample period: 1990 -2013
 - generate state-level measure (Autor et al. 2013)

•
$$R_{st} = \sum_{i} \left(\frac{Emp_{is,1990}}{Emp_{s,1990}} \right) * R_{it}$$

• State RegData \Rightarrow total regulatory restrictions in each state

- In the context of U.S.
 - > "The existing literature tends to investigate regulatory races in a balkanized" fashion, one issue area at a time, but a more synthetic perspective could well uncover influences and connections that such narrowly focused research overlooks." - (Carruthers and Lamoreaux, 2016)
 - \succ Empirical studies \Rightarrow regulatory burden in a specific context
 - 1. Labor
 - 2. Environmental
 - 3. Corporate Governance
 - 4. Banking and Finance
 - \succ These studies \Rightarrow valuable but limits the scope of an analysis

The Research Question

- Revisit the question of regulatory races for **all** industries
 - novel data set
 - RegData (Al-Ubaydli and McLaughlin, 2015)
 - first panel data set on federal regulation of all industries in the U.S.
 - State RegData (McLaughlin et al., 2019)
 - regulatory burden of all industries in each state
 - cross-sectional data at present

Federal Law and Strategic Interaction

- similar text analysis approach
- \blacktriangleright data reported \Rightarrow 2017/2018/2019

Preliminary Results

Elasticity between Neighboring and Own Regulatory Burden of Overall Federal Regulations

	Weighting Scheme						
	Contiguous		BEA Region		Crone Region		
	OLS	IV	OLS	IV	OLS	IV	
ln(Neighboring Burden)	0.893*	1.188*	0.762*	1.263*	-0.233	-0.153	
	(0.148)	(0.300)	(0.136)	(0.284)	(0.241)	(0.672)	
Underid Test		0.004		0.002		0.057	
F-stat		7.143		16.307		3.341	
Overid Test		0.656		0.719	0.841		
Endogeneity		0.235		0.031		0.509	
Ν	1200	1200	1200	1200	1200	1200	

* p<0.01. Robust standard errors in parentheses. Neighboring regulatory burden is instrumented for using log (neighboring per capita income), log (neighboring population), neighboring urbanization, and neighboring unemployment rate. Underid Test reports the p-value of the Kleibergen-Paap (2006) rk statistic with rejection implying identification. F-stat reports the Kleibergen-Paap F statistic for weak identification. Overid Test displays the p-value of Hansen J statistic with rejection implying invalid instruments. Endogeneity reports the p-value of endogeneity test of the endogenous regressors. Other covariates include: log (per capita income), log (population), urbanization, and unemployment rate, and state- and year-specific dummies.

Lemos (2011):

- \succ role of states in enforcing federal law \Rightarrow vital
- \succ can be conflicting with the federal enforcement strategy \Rightarrow hard to be prevented
- \succ can influence policy \Rightarrow both state and national level
- adjusting enforcement level, novel interpretations
- \blacktriangleright divergence widens \Rightarrow federal laws are vague, broadly defined

Methodology

Baseline model:

$$R_{st} = \alpha_s + \gamma_t + \delta \sum_{s} \omega_{sjt} R_{jt} + X_{st} \beta + \epsilon_{st}$$

- $\succ \delta \Rightarrow$ parameter of interest
- $\succ \omega_{sit} \Rightarrow$ weight attached by state s to state j
 - i. equal weight for all contiguous states; zero otherwise
 - ii. equal weight for all states in the same group according to BEA regional classification; zero otherwise
 - iii. equal weight for all states in the same group according to Crone regional classification; zero otherwise
- $R_{jt} \Rightarrow$ potentially endogenous \blacktriangleright reverse causality

Effect of Neighboring State-Level Regulation on Own Regulation

	Regulation					
—	Restrictions		Wo	ords		
	OLS	IV	OLS	IV		
ln(Neighboring Regulations)	-0.033	-0.072	0.132	0.013		
	(0.247)	(0.297)	(0.275)	(0.427)		
Underid Test		0.009		0.037		
F-stat		9.440		5.848		
Overid Test		0.918		0.444		
Endogeneity		0.779		0.418		
N	45	45	45	45		

* p<0.01. Robust standard errors in parentheses. Neighboring regulation is instrumented for using log (neighboring per capita income), log (neighboring population), neighboring urbanization, and neighboring unemployment rate. Underid Test reports the p-value of the Kleibergen-Paap (2006) rk statistic with rejection implying identification. F-stat reports the Kleibergen-Paap F statistic for weak identification. Overid Test displays the p-value of Hansen J statistic with rejection implying invalid instruments. Endogeneity reports the p-value of endogeneity test of the endogenous regressors. Other covariates include: log (per capita income), log (population), urbanization, and unemployment rate.

Discussion

- \succ omitted variables \Rightarrow business environment, discretionary power of bureaucrats, quality of politicians
- \blacktriangleright measurement error \Rightarrow *de-jure* versus *de-facto* regulation
 - official regulatory laws \rightarrow observed
 - actual implementation \rightarrow unobserved
- $\succ \sum_{s} \omega_{sit} X_{it} \Rightarrow$ valid instruments (Fredriksson and Millimet, 2002)

- For federal regulations:
 - instruments perform reasonably well for BEA region
 - \succ elasticity between the regulatory burden of a state and its neighbors is positive
 - caveat \Rightarrow strategic interaction between states or response to federal laws? \rightarrow work in progress...
- For state regulations (current analysis \Rightarrow only contiguous neighbors $\Rightarrow \omega_{sit}$ of (i) \succ instruments are weak \rightarrow work in progress...

Contact

Sanchari Choudhury Visiting Assistant Professor of Economics Graham School of Management Saint Xavier University, Chicago Email: schoudhury@sxu.edu Website: http://sancharichoudhury.weebly.com/

References

- 1. Al-Ubaydli, O., and P.A. McLaughlin (2015), "RegData: A Numerical Database on Industry-Specific Regulations for All United States Industries and Federal Regulations, 1997-2012," Regulation and Governance, 11, 109 - 123.
- 2. Autor, D.H., D. Dorn, and G.H. Hanson (2013), "The China Syndrome: Local Labor Market Effects of Import Competition in the United States," The American Economic Review, 103, 2121 – 2168.
- 3. Carruthers, B.G., and N. R. Lamoreaux (2016), "Regulatory Races: The Effects of Jurisdictional Competition on Regulatory Standards," Journal of *Economic Literature*, 54, 52 – 97.
- Fredriksson, P.G., and D.L. Millimet (2002), "Strategic Interaction and the Determination of Environmental Policy across U.S. States," Journal of Urban Economics, 51, 101-122.
- Lemos, M.H. (2011), "State Enforcement of Federal Law," 86 N.Y.U. L. REV., 698 -726.
- McLaughlin, P.A., O. Sherouse, D. Francis, J. Nelson, T. Powers, and W. Stover (2019), "State RegData", QuantGov, Mercatus Center at George Mason University.