Jumps and the Correlation Risk Premium: Evidence from Equity Options Nicole Branger, <u>René Marian Flacke</u>, T. Frederik Middelhoff

Theoretical Motivation

Summary

This paper breaks the correlation risk premium down into two components: a premium related to the correlation of continuous stock price movements and a premium for bearing the risk of **co-jumps**. We propose a novel way to identify both premiums based on dispersion trading strategies that go long an index option portfolio and short a basket of option portfolios on the constituents. The **option portfolios** are constructed to only load on either diffusive volatility or jump risk. We document that both risk premiums are economically and statistically significant for the **S&P 100 index**. In particular, selling insurance against co-jumps generates a sizable annualized Sharpe ratio of 0.85.

Index Variance Risk Premium

Investors dislike times of stock market turbulence

- investors fear stock market volatility
- \rightarrow pay variance risk premium (VRP) to hedge against states of high market volatility • stock correlations go up when markets are volatile
- \rightarrow pay correlation risk premium (CRP) to eliminate the risk of high correlations

There is a close theoretical link between the two risk premiums

• index variance is the sum of individual stocks' variances and covariances

$$VRP_{I,t} = \sum_{i=1}^{N} \omega_{i,t}^2 VRP_{i,t} + CovRP_t$$

• literature shows that index VRP is largely driven by CRP (e.g. Driessen et al., 2009, Carr and Wu, 2009, Buss et al., 2018)

Research question: What are the drivers of the CRP?

Stock correlations may stem from...

- 1 continuous movements in the same direction
- 2 common discontinuous movements on rare occasions (co-jumps)

Continuous and Discontinuous Co-Movements

The index comprises constituents i = 1, ..., N whose stock prices follow **jump-diffusions**

$$\begin{aligned} \frac{dS_{i,t}}{S_{i,t-}} &= \mu_{S_i} dt + \sqrt{V_{i,t}} dW_t^{S_i} + \frac{\Delta S_{i,t}}{S_{i,t-}} \\ dV_{i,t} &= \mu_{V_i} dt + \sigma_{V_i} \sqrt{V_{i,t}} dW_t^{V_i} \end{aligned}$$

The index is the weighted sum of all constituents

$$S_{I,t} = \sum_{i=1}^{N} \omega_{i,t} S_{i,t} \quad \text{and} \quad V_{I,t} = \sum_{i=1}^{N} \omega_{i,t}^2 V_{i,t} + \sum_{i=1}^{N} \sum_{\substack{j=1\\j \neq i}}^{N} \omega_{i,t} \omega_{j,t} \sqrt{V_{i,t}} \sqrt{V_{j,t}} \rho_{ij,t}$$

The index variance risk premium can be decomposed into

$$VRP_{I,t} = \sum_{i=1}^{N} \omega_{i,t}^{2} \underbrace{\left(E_{t}^{\mathbb{P}}[CV_{i,[t,t+\tau]}] - E_{t}^{\mathbb{Q}}[CV_{i,[t,t+\tau]}]\right)}_{\text{continuous variation risk premium}} + \sum_{i=1}^{N} \omega_{i,t}^{2} \underbrace{\left(E_{t}^{\mathbb{P}}[JV_{i,[t,t+\tau]}] - E_{t}^{\mathbb{Q}}[JV_{i,[t,t+\tau]}]\right)}_{\text{jump variation risk premium}} + \sum_{i=1}^{N} \sum_{j=1}^{N} \omega_{i,t} \omega_{j,t} \left(E_{t}^{\mathbb{P}}[CV_{ij,[t,t+\tau]}] - E_{t}^{\mathbb{Q}}[CV_{ij,[t,t+\tau]}]\right) + \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \omega_{i,t} \omega_{j,t} \left(E_{t}^{\mathbb{P}}[JV_{ij,[t,t+\tau]}] - E_{t}^{\mathbb{Q}}[IV_{ij,[t,t+\tau]}]\right) + \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \omega_{i,t} \omega_{j,t} \left(E_{t}^{\mathbb{P}}[JV_{ij,[t,t+\tau]}] - E_{t}^{\mathbb{Q}}[JV_{ij,[t,t+\tau]}]\right) + \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \omega_{i,t} \omega_{j,t} \left(E_{t}^{\mathbb{P}}[JV_{ij,[t,t+\tau]}] - E_{t}^{\mathbb{Q}}[JV_{ij,[t,t+\tau]}]\right)$$

Investors pay the index VRP for very different reasons

\rightarrow how large are the risk premiums for continuous correlation and co-jumps?

Empirically identifying these risk premiums is challenging

- option returns contain rich information about several risk premiums
- specifically constructed **option portfolios** provide a simple and legitimate way to solve the identification problem

The price of any option follows

 $dO_{i,t} - r_{f,t}O_{i,t}$

 $dCRP_V$

 $dCRP_{JUN}$

 \Rightarrow portfolios pay the risk premiums for continuous correlation and co-jumps, respectively

Data

Every day, we construct VOL and JUMP portfolios for the S&P 100 index and all constituents • set up straddles with different times to maturity between 14 and 365 days • select the **2** straddles that are nearest-the-money

We hold the positions for 1 trading day and calculate excess returns at recorded closing prices \rightarrow if necessary, we interpolate using a kernel smoother (maturity, moneyness, put-call identifier)

Empirical Strategy

Option Returns

$${}_{,t}dt \approx \frac{\partial O_i}{\partial S_i} \left(dS_{i,t} - E_t^{\mathbb{Q}} \left[dS_{i,t} \right] \right)$$

$$+ \frac{\partial O_i}{\partial V_i} \underbrace{\left(dV_{i,t} - E_t^{\mathbb{Q}} \left[dV_{i,t} \right] \right)}_{\text{volatility risk premium}} + \frac{1}{2} \frac{\partial^2 O_i}{\partial S_i^2} \underbrace{\left((\Delta S_{i,t})^2 - E_t^{\mathbb{Q}} \left[(\Delta S_{i,t})^2 \right] \right)}_{\text{jump risk premium}}$$

We construct delta-gamma-neutral (VOL) and delta-vega-neutral (JUMP) option portfolios for the index and all constituents (Cremers et al., 2015)

$$dVOL_{I,t} - r_{f,t}VOL_{I,t}dt \approx \frac{\partial VOL_{I}}{\partial V_{I}} \left(dV_{I,t} - E_{t}^{\mathbb{Q}} \left[dV_{I,t} \right] \right)$$
where $dV_{I,t} = \sum_{\substack{i=1\\\text{individual volatilities}}}^{N} \frac{\partial V_{I}}{\partial V_{i}} dV_{i,t} + \underbrace{\frac{\partial V_{I}}{\partial \rho} d\rho_{t}}_{\text{continuous correlation}}$

$$JUMP_{I,t} - r_{f,t}JUMP_{I,t}dt \approx \frac{1}{2} \frac{\partial^{2}JUMP_{I}}{\partial S_{I}^{2}} \left((\Delta S_{I,t})^{2} - E_{t}^{\mathbb{Q}} \left[(\Delta S_{I,t})^{2} \right] \right)$$
where $(\Delta S_{I,t})^{2} = \sum_{\substack{i=1\\\text{individual jumps}}}^{N} \omega_{i,t}^{2} (\Delta S_{i,t})^{2} + \sum_{\substack{i=1\\j\neq i}}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \omega_{i,t}\omega_{j,t}\Delta S_{i,t}\Delta S_{j,t}$

The portfolios are only exposed to volatility or jump risks

• VOL_I returns depend on individual volatility and continuous correlation risk premiums • $JUMP_I$ returns depend on individual jump and co-jump risk premiums

To isolate the correlation risk premiums, we implement **dispersion trades**: we go long the index option portfolio and short the basket of option portfolios on the constituents (Driessen et al., 2009)

$$\begin{aligned} &\mathcal{H}_{VOL,t} - r_{f,t}CRP_{VOL,t}dt \approx \frac{\partial VOL_I}{\partial V_I} \frac{\partial V_I}{\partial \rho} \left(d\rho_t - E_t^{\mathbb{Q}} \left[d\rho_t \right] \right) \\ &\mathcal{H}_{P,t} - r_{f,t}CRP_{JUMP,t}dt \approx \frac{1}{2} \frac{\partial^2 JUMP_I}{\partial S_I^2} \sum_{i=1}^N \sum_{\substack{j=1\\j \neq i}}^N \omega_{i,t} \omega_{j,t} \left(\Delta S_{i,t} \Delta S_{j,t} - E_t^{\mathbb{Q}} \left[\Delta S_{i,t} \Delta S_{j,t} \right] \right) \end{aligned}$$

- sample: S&P 100 index + constituents, 01/1996 12/2017, daily frequency • data sources: OptionMetrics, CRSP, Compustat
- filters: similar to Goyal and Saretto (2009)
- additional complication: American-style options
 - \rightarrow strip off early exercise feature in CRR-trees
 - \rightarrow compute European option prices and Black-Scholes greeks
- take positions in these 4 options while
 - \rightarrow restricting delta, vega & gamma
 - \rightarrow aiming for balanced allocation of wealth across options

$$\min_{\boldsymbol{\omega}} \left\| \frac{\boldsymbol{\omega} \circ \mathbf{O}}{abs(\boldsymbol{\omega}^{\top})\mathbf{O}} \right\|_{2}^{2}$$

JUMP portfolio s.t.

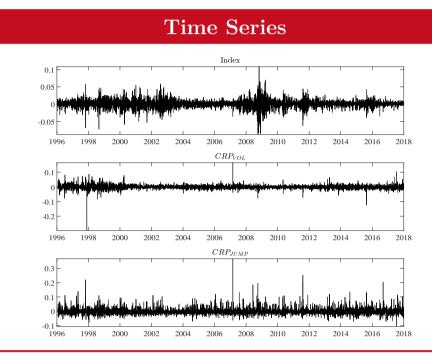
VOL portfolio s.t.

$$\boldsymbol{\omega}^{\top} [\boldsymbol{\Delta}, \boldsymbol{\mathcal{V}}, \boldsymbol{\Gamma}] = [0, 200, 0] \qquad \qquad \boldsymbol{\omega}^{\top} [\boldsymbol{\Delta}, \boldsymbol{\mathcal{V}}, \boldsymbol{\Gamma}] = [0, 0, 0.01] \\ \boldsymbol{\omega} \circ [-1, -1, 1, 1]^{\top} \ge \boldsymbol{0} \qquad \qquad \boldsymbol{\omega} \circ [1, 1, -1, -1]^{\top} \ge \boldsymbol{0}$$

where $\boldsymbol{\omega} = [\omega_{call,T_1}, \omega_{put,T_1}, \omega_{call,T_2}, \omega_{put,T_2}]^{\top}$

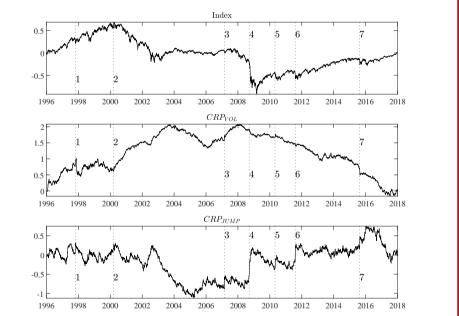
Correlation Risk Premium

S	ummary Sta
Mean	-0.132
Standard Deviat	ion 0.21
Sharpe Ratio	-0.60
Median	-0.00
Skewness	-1.352
Kurtosis	50.78



- CRP_{VOL} : negative on 53% of days; no sudden changes during crash periods
- CRP_{JUMP} : negative on 61% of days; occasional extreme positive returns coincide with extreme index returns
- \rightarrow co-jumps materialize in crash periods

Detrended Cumulative Excess Returns



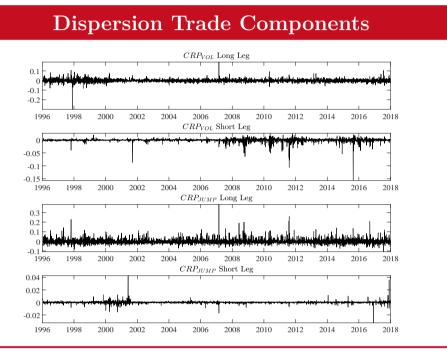
Predictive Power

	1 month	3 months	6 months	12 months	24 months
Intercept	$\begin{array}{c} 0.0055 \\ (0.0065) \\ [0.0065] \end{array}$	0.0276^{**} (0.0123) [0.0156]	0.0524^{***} (0.0207) [0.0336]	$0.0588^{*} \\ \scriptstyle (0.0332) \\ \scriptstyle [0.0770]$	$\begin{array}{c} 0.0131 \\ (0.0620) \\ [0.1835] \end{array}$
CRP_{VOL}	$\begin{array}{c} 0.0037 \\ (0.0423) \\ [0.0427] \end{array}$	$\begin{array}{c} -0.0392 \\ \scriptstyle (0.0437) \\ \scriptstyle [0.0453] \end{array}$	$\begin{array}{c} -0.0183 \\ \scriptstyle (0.0465) \\ \scriptstyle [0.0821] \end{array}$	$-\underbrace{0.2282^{***}}_{(0.0433)}$	-0.2124^{***} (0.0482) [0.1119]
CRP_{JUMP}	-0.0910^{***} (0.0305) [0.0306]	$\substack{-0.0215 \\ (0.0300) \\ [0.0524]}$	$\begin{array}{c} 0.0423 \\ (0.0324) \\ [0.0355] \end{array}$	$\begin{array}{c} 0.0205 \\ (0.0387) \\ [0.0593] \end{array}$	$-0.0405 \ (0.0461) \ [0.0981]$
VRP	$\begin{array}{c} -0.0004^{***} \\ (0.0001) \\ [0.0001] \end{array}$	$\begin{array}{c} -0.0012^{***} \\ \scriptstyle (0.0002) \\ \scriptstyle [0.0003] \end{array}$	$\begin{array}{c} -0.0016^{***} \\ \scriptstyle (0.0004) \\ \scriptstyle [0.0004] \end{array}$	-0.0020^{***} (0.0005) [0.0008]	-0.0023^{***} (0.0007) [0.0013]
P/D	-0.0002^{**} (0.0001) [0.0001]	$\begin{array}{c} -0.0007^{***} \\ \scriptstyle (0.0002) \\ \scriptstyle [0.0002] \end{array}$	$\begin{array}{c} -0.0009^{***} \\ (0.0002) \\ [0.0003] \end{array}$	-0.0015^{***} (0.0003) [0.0006]	$\begin{array}{c} -0.0020^{***} \\ \scriptstyle (0.0005) \\ \scriptstyle [0.0012] \end{array}$
adj \mathbb{R}^2	7.7512	16.7932	12.3407	26.7099	21.2814

Results

atistics	
521	-0.3067
85	0.3617
46	-0.8480
09	-0.0042
25	2.7530
880	27.5230

- investors pay premium of 13.21% p.a. to hedge against high continuous correlation
- investors pay large premium of 30.67% p.a. to hedge against co-jumps
- \rightarrow returns are scaled by greek \rightarrow Sharpe ratios are more informative (0.85 vs. 0.60)
- \rightarrow risk premium for co-jumps is larger than for continuous correlation



- CRP_{VOL} : both legs are of same magnitude; short leg is less volatile
- CRP_{JUMP} : short leg is much smaller and exhibits fewer spikes
- \rightarrow index jumps almost exclusively come from co-jumps
- CRP_{VOL} : slow-moving; prolonged gradual increase after burst of dot-com bubble
- \rightarrow insures against the long-term risk of worsening investment opportunities
- CRP_{JUMP} : prompt reactions to major events; large positive payoff around default of Lehman Brothers
- \rightarrow insures against the short-term risk of simultaneous crashes

Predictive	Regressions

