An Investment-and-Marriage Model with Differential Fecundity

Hanzhe Zhang

Michigan State University

Tuesday, September 3, 2019
http://www.msu.edu/~hanzhe/

Three Sets of Stylized Facts

1. College and Earnings Gender Gaps

- Reversed college gender gap
- Persistent earnings gender gap

2. Average Midlife Income by Age at Marriage

- Hump-shaped relationship for men
- Positive relationship for women

3. Average Spousal Income by Age at Marriage for Women

- Hump-shaped relationship
- Changing relationship: early versus late brides

Previous Explanations

1. More women than men go to college and fewer women than men earn a high income.

- One gender difference in the model can generate these two opposite gender gaps; no paper has done that
- Some empirical studies: Iyigun and Walsh (2007); Chiappori et al. (2009); Ge (2011); Lafortune (2013); Bruze (2015); Greenwood et al. (2016); Chiappori et al. (2017)

2. Relationship between age at marriage and personal midlife income has been persistently hump-shaped for men and positive for women.

- Becker (1974); Keeley (1979): negative for men and negative for women due to marriage frictions;Bergstrom and Bagnoli (1993): positive for men and no relationship for women due to informational frictions

3. Relationship between age at marriage and spousal income for women has been persistently hump-shaped, with a changing marital outcome for early brides versus late brides.

- Low (2017): non-assortative matching

Model

Model Overview

- Infinite number of periods.
- A unit mass of men and a unit mass of women become adults each period.
- Individuals are born with heterogeneous abilities of succeeding from investments.
- Investments: they make investment and marriage decisions over three periods.
- Differential fecundity: women stay fertile for a shorter period of time than men.
- Marriage market: division of marriage surplus is determined by supply and demand.

Investments

Investments

$\theta \bullet$

Investments

$\theta \bullet$
ages 16-22

Investments

ages 16-22
ages 23-29
ages 30-39

Investments

Differential Fecundity

$$
\begin{gathered}
y+v-c \\
\text { income }+ \text { marital payoff (income, fertility) }- \text { investment costs }
\end{gathered}
$$

- Men who marry in any of the three periods have the same fertility level.
\rightarrow Women who marry in the third period may have a lower fertility level than those who marry in the first two periods.
- Husband's income and wife's income and fertility determine marriage surplus: $s\left(y_{m}, y_{w}, \phi_{w}\right) \equiv s\left(\tau_{m}, \tau_{w}\right)$.
- Surplus is increasing in each argument, supermodular in incomes, and supermodular in income and fertility.

Marriage Market

- Division of the marriage surplus is endogenously determined: $v_{m \tau_{m}}+v_{w \tau_{w}}=s\left(\tau_{m}, \tau_{w}\right)$ for any married couple τ_{m} and τ_{w}.
- Marriages are stable: $v_{m \tau_{m}}+v_{w \tau_{w}} \geq s\left(\tau_{m}, \tau_{w}\right)$ for any pair.

Equilibrium

Investment strategies $\left(\sigma_{m}^{*}, \sigma_{w}^{*}\right)$ and marriage payoffs $\left(v_{m}^{*}, v_{w}^{*}\right)$ form an equilibrium if

- $\sigma_{m}^{*}(\theta), \sigma_{w}^{*}(\theta)$ maximizes each ability- θ individual's expected payoff.
- $\left(v_{m}^{*}, v_{w}^{*}\right)$ are the stable marriage payoffs in the marriage market $\left(G_{m}^{*}, G_{w}^{*}\right)$ induced by $\left(\sigma_{m}^{*}, \sigma_{w}^{*}\right)$.

Equilibrium Existence and Uniqueness

Theorem

There exists an equilibrium. Equilibrium investment strategies $\left(\sigma_{m}^{*}, \sigma_{w}^{*}\right)$ are uniquely determined. Equilibrium marriage payoffs $\left(v_{m}^{*}, v_{w}^{*}\right)$ are uniquely determined up to a constant.

Proof Steps

0 . Marriage payoffs are determined by payoff difference $\pi_{m} \equiv v_{m H}-v_{m L}$. The mapping in consideration is $\pi_{m} \xrightarrow{f_{\sigma}} \sigma \xrightarrow{f_{G}} G \stackrel{f_{\pi}}{\rightrightarrows} \pi_{m}$.

1. Construct supply function $S\left(\pi_{m}\right)=f_{G}\left(f_{\sigma}\left(\pi_{m}\right)\right)$.
2. Construct demand correspondence $D\left(\pi_{m}\right)=\left\{G: \pi_{m} \in f_{\pi}(G)\right\}$.
3. Show that supply is increasing and demand is decreasing.

Explanations

Men's Midlife Income by Age at Marriage

$$
\theta_{m}=\frac{c_{m}}{\left(y_{m H}-y_{m L}\right)+\left(v_{m H}-v_{m L}\right)} \equiv \frac{c_{m}}{\Delta z_{m}+\pi_{m}}
$$

Women's Midlife Income by Age at Marriage

$$
\theta_{w 1}=\frac{c_{w}}{\Delta y_{w}+\pi_{w}}<\theta_{w 2}=\frac{c_{w}+v_{w L}-v_{w l}}{\Delta y_{w}+v_{w h}-v_{w l}}
$$

College and Earnings Gender Gaps

College and Earnings Gender Gaps

Suppose the setting is gender-symmetric except for fertility length. More women than men go to college in equilibrium.

College and Earnings Gender Gaps

Suppose the setting is gender-symmetric except for fertility length. More women than men go to college in equilibrium.

- All college-educated men make a career investment.

College and Earnings Gender Gaps

Suppose the setting is gender-symmetric except for fertility length. More women than men go to college in equilibrium.

- All college-educated men make a career investment.

College and Earnings Gender Gaps

Suppose the setting is gender-symmetric except for fertility length. More women than men go to college in equilibrium.

- All college-educated men make a career investment.

College and Earnings Gender Gaps

Suppose the setting is gender-symmetric except for fertility length. More women than men go to college in equilibrium.

- All college-educated men make a career investment.
- Only some college-educated women make a career investment.

College and Earnings Gender Gaps

Suppose the setting is gender-symmetric except for fertility length. More women than men go to college in equilibrium.

- All college-educated men make a career investment.
- Only some college-educated women make a career investment.
- Fewer women than men earn a high income.

College and Earnings Gender Gaps

Suppose the setting is gender-symmetric except for fertility length. More women than men go to college in equilibrium.

- All college-educated men make a career investment.
- Only some college-educated women make a career investment.
- Fewer women than men earn a high income.
- High-income women are more scarce than high-income men in MM.

College and Earnings Gender Gaps

Suppose the setting is gender-symmetric except for fertility length. More women than men go to college in equilibrium.

- All college-educated men make a career investment.
- Only some college-educated women make a career investment.
- Fewer women than men earn a high income.
- High-income women are more scarce than high-income men in MM.
- College generates higher MM returns for women than for men.

Women's Spousal Income by Age at Marriage

Fertility-Income Tradeoff

Early versus Late Brides

Mandates to Cover/Offer Infertility Treatments in Insurances

Between 1985 and 1995, thirteen states passed mandates to cover/offer infertility treatments in insurances

- Mandate to cover: Maryland (1985), Arkansas, Hawaii, and Massachusetts (1987), Rhode Island (1989), Illinois (1991), Montana (1987), New York (1990), Ohio (1991), West Virginia (1995)
- Mandate to offer: Texas (1987), California (1989), Connecticut (1989)

Women's Spousal Income by Age at Marriage

Spousal Total Income Percentile Rank

men	match	women
H	$H H$	H
	$H L$	$L \uparrow$
	$H h$	$\downarrow \downarrow$
	$L h$	
	$L l$	l

Fertility more important

men	match	women
H	$H H$	H
	$H h$	$h \uparrow$
	$H L$	$L \downarrow$
	$L L$	
	$L l$	l

Income more important

Supporting Evidence and Calibration

Evolution of the Marriage Premium

Age-Income Profiles for Men and Women

More Career Investments for Low Incomes

Relation between career investment and logincome, men

	(1)	(2)	(3)	(4)		
ols79	logit79	probit79	ols97	(5) $\operatorname{logit97}$	(6) probit97	
logincome	$-0.0969^{* * *}$	$-0.447^{* * *}$	$-0.261^{* * *}$	$-0.0947^{* * *}$	$-0.406^{* * *}$	$-0.250^{* * *}$
	(0.0142)	(0.0647)	(0.0370)	(0.0161)	(0.0723)	(0.0439)
age	-0.000539	0.00561	-0.000519	$-0.0244^{* * *}$	$-0.108^{* * *}$	$-0.0664^{* * *}$
	(0.00741)	(0.0308)	(0.0188)	(0.00719)	(0.0324)	(0.0199)
N	1659	1659	1659	1638	1638	1638

Marginal effects; Standard errors in parentheses
${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$

Calibration

- Ability distributions are $\operatorname{Beta}\left(\alpha_{m}, \beta_{m}\right)$ and $\operatorname{Beta}\left(\alpha_{w}, \beta_{w}\right)$.
- Low income is average income of the non-college-educated.
- High income is average income of the college-educated.
- Total investment cost is two years of low incomes; annual cost is total cost divided by 40 .
- Surplus in monetary terms is k times estimated surplus in utils.
- Add marriage frictions (possibility of not marrying upon entering MM).
- 19 targeted moments.
- Percentages of early, middle, late grooms/brides (6).
- Average personal income of early, middle, late grooms (3).
- Average personal income of early, middle, late brides (3).
- Average spousal income of early brides (3).
- College enrollment rates of men and women (2).

Fit of the Model

moments	30 s target	30 s model	difference	60 s target	60s model	difference
$G_{\mathrm{m} 1}$	0.48476	0.484451	-0.0637%	0.30756	0.307372	-0.0613%
$G_{\mathrm{m} 2}$	0.411344	0.412559	0.295%	0.451633	0.452309	0.15%
$G_{\mathrm{m} 3}$	0.103896	0.102989	-0.872%	0.240807	0.24032	-0.202%
$G_{\mathrm{w} 1}$	0.740591	0.740591	0.000051%	0.4494	0.449534	0.0299%
$G_{\mathrm{w} 2}$	0.206928	0.206847	-0.0393%	0.381204	0.380081	-0.295%
$G_{\mathrm{w} 3}$	0.0524809	0.0525618	0.154%	0.169396	0.170385	0.584%
$G_{m, \mathrm{col}}$	0.218733	0.220363	0.745%	0.379722	0.380819	0.289%
$G_{w, \mathrm{col}}$	0.119257	0.119255	-0.00131%	0.390058	0.389479	-0.148%
$y_{\mathrm{m} 1}$	40209.7	39603.7	-1.51%	44571.6	44730.5	0.357%
$y_{\mathrm{m} 2}$	43820.8	43915.8	0.217%	56434.2	56524.6	0.16%
$y_{\mathrm{m} 3}$	37442.	38350.9	2.43%	48376.5	48589.3	0.44%
$y_{\mathrm{w} 1}$	12049.	11696.3	-2.93%	20091.	20510.	2.09%
$y_{\mathrm{w} 2}$	12457.2	12739.2	2.26%	24627.8	25169.9	2.2%
$y_{\mathrm{w} 3}$	12886.1	12421.	-3.61%	26080.1	24207.1	-7.18%
$x_{\mathrm{w} 1}$	41269.2	41155.8	-0.275%	46138.3	47051.6	1.98%
$x_{\mathrm{w} 2}$	45269.5	42290.6	-6.58%	58701.2	55594.8	-5.29%
$x_{\mathrm{w} 3}$	35537.5	38066.9	7.12%	48666.8	50699.8	4.18%
average			1.71%			1.51%

Quantifying Labor-Market Shocks on Marriage Timing

- Estimated ability distributions (labor-market opportunities).

- Labor-market shocks (due to the possibility that one does not receive a high-income offer after college) contribute to 42.7% of college-educated men and 24% of college-educated women born in the 1960s delaying marriage (the rest are explained by marriage-market frictions).

Fit of the Model, Mandated States

moments	30s target	30s model	difference	60s target	60s model	difference
$G_{\mathrm{m} 1}$	0.451869	0.451556	-0.0693%	0.271852	0.271602	-0.092%
$G_{\mathrm{m} 2}$	0.430358	0.431748	0.323%	0.462758	0.463643	0.191%
$G_{\mathrm{m} 3}$	0.117773	0.116697	-0.914%	0.26539	0.264754	-0.239%
$G_{\mathrm{w} 1}$	0.712169	0.714571	0.337%	0.40867	0.415509	1.67%
$G_{\mathrm{w} 2}$	0.227668	0.221022	-2.92%	0.403811	0.390709	-3.24%
$G_{\mathrm{w} 3}$	0.0601629	0.0644064	7.05%	0.187518	0.193783	3.34%
$G_{m, \mathrm{col}}$	0.240621	0.242344	0.716%	0.392051	0.393502	0.37%
$G_{w, \text { col }}$	0.131002	0.12084	-7.76%	0.400299	0.370931	-7.34%
$y_{\mathrm{m} 1}$	42549.9	41471.4	-2.53%	45833.3	46347.3	1.12%
$y_{\mathrm{m} 2}$	46013.6	46116.	0.223%	59531.3	59658.5	0.214%
$y_{\mathrm{m} 3}$	38934.8	40058.4	2.89%	52070.5	52371.7	0.579%
$y_{\mathrm{w} 1}$	12664.9	12918.8	2.01%	20453.6	21866.4	6.91%
$y_{\mathrm{w} 2}$	13050.4	15802.5	21.1%	25514.7	28767.5	12.7%
$y_{\mathrm{w} 3}$	13429.7	12946.1	-3.6%	27373.5	25741.2	-5.96%
$x_{\mathrm{w} 1}$	43941.9	42819.1	-2.56%	48004.4	47777.3	-0.473%
$x_{\mathrm{w} 2}$	47304.5	45972.1	-2.82%	62317.6	60849.6	-2.36%
$x_{\mathrm{w} 3}$	37059.8	39648.9	6.99%	52485.	54120.2	3.12%
average	$->$	$->$	3.81%	$->$	$->$	2.94%

Fit of the Model, Nonmandated States

moments	30s target	30s model	difference	60 s target	60s model	difference
$G_{\mathrm{m} 1}$	0.50978	0.509501	-0.0549%	0.334886	0.334418	-0.14%
$G_{\mathrm{m} 2}$	0.39688	0.397736	0.216%	0.443119	0.444872	0.396%
$G_{\mathrm{m} 3}$	0.0933392	0.0927631	-0.617%	0.221995	0.220711	-0.578%
$G_{\mathrm{w} 1}$	0.762457	0.762457	0.000022%	0.480704	0.485707	1.04%
$G_{\mathrm{w} 2}$	0.190972	0.190905	-0.0353%	0.363829	0.354892	-2.46%
$G_{\mathrm{w} 3}$	0.0465706	0.0466378	0.144%	0.155467	0.159401	2.53%
$G_{m, \mathrm{col}}$	0.202083	0.203549	0.725%	0.370287	0.373063	0.75%
$G_{w, \text { col }}$	0.11022	0.110219	-0.000626%	0.382188	0.36033	-5.72%
$y_{\mathrm{m} 1}$	38631.7	38140.6	-1.27%	43787.7	43444.2	-0.785%
$y_{\mathrm{m} 2}$	42012.	42087.2	0.179%	53959.1	54176.3	0.402%
$y_{\mathrm{m} 3}$	36009.2	36372.9	1.01%	44997.	45506.	1.13%
$y_{\mathrm{w} 1}$	11606.5	11253.5	-3.04%	19854.	20950.	5.52%
$y_{\mathrm{w} 2}$	11913.	12196.3	2.38%	23871.3	26551.5	11.2%
$y_{\mathrm{w} 3}$	12345.8	11857.2	-3.96%	24881.1	22856.7	-8.14%
$x_{\mathrm{w} 1}$	39414.	39452.6	0.0979%	44926.9	43993.5	-2.08%
$x_{\mathrm{w} 2}$	43434.5	40533.2	-6.68%	55639.5	55561.4	-0.14%
$x_{\mathrm{w} 3}$	34045.4	36624.4	7.58%	45155.8	47599.5	5.41%
average	$->$	$->$	1.65%	$->$	$->$	2.85%

Mandate Counterfactual Analyses

Infertility Treatment Insurance Mandate

- If mandated states were not mandated:
- The fraction of late brides in the mandated states would decrease from 19.4 percent to 17.0 percent.
- The average spousal income of early brides would increase by 2.92 percent.
- The average spousal income of late brides would decrease by 0.12 percent.
- If nonmandated states were mandated:
- The fraction of late brides in the mandated states would increase from 15.9 percent to 18.2 percent.
- The average spousal income of early brides would decrease by 2.97 percent.
- The average spousal income of late brides would increase by 0.07 percent.

Gender Equality Counterfactual Analysis 1

Gender Equality in Fecundity

- 4.96 percent of women would delay their marriage age from between 23 and 29 to between 30 and 39
- Middle brides' average spousal income would increase by 5.43 percent
- Late brides' average spousal income would increase by 3.61 percent
- The average personal income of late brides would not increase, because intermediate-ability women delay marriages

Gender Equality Counterfactual Analysis 2

Gender Equality in the Labor Market

- Women's college enrollment rate would decrease from 38.9 percent to 38.3 percent
- Fraction of
- early brides (16-22): would increase by 0.35 percent
- middle brides (23-29): would decrease by 2.94 percent
- late brides (30-39): would increase by 5.64 percent
- Average spousal income of
- early brides would decrease by 0.43 percent
- middle brides would increase by 0.68 percent
- late brides would increase by 0.37 percent

Gender Equality Counterfactual Analysis 3

Gender Equality in Investment Opportunities

- Women's college enrollment rate would decrease from 38.9 percent to 38.5 percent
- Fraction of
- early brides (16-22): would increase by 0.23 percent
- middle brides (23-29): would increase by 1.73 percent
- late brides (30-39): would decrease by 4.46 percent
- Average spousal income of
- early brides would decrease by 0.43 percent
- middle brides would increase by 0.68 percent
- late brides would increase by 0.37 percent

Conclusion

- College and earnings gender gaps.
- Relationships between age at marriage and personal income for men and women.
- Relationship between age at marriage and spousal income for women.
- Differential fecundity, coupled with the equilibrium marriage market, leads to many observed economic and social gender differences.

THANK YOU!

References I

Becker, Gary S., "A Theory of Marriage: Part II," Journal of Political Economy, March-April 1974, 82 (2), S11-S26.
Bergstrom, Theodore C. and Mark Bagnoli, "Courtship as a Waiting Game," Journal of Political Economy, February 1993, 101 (1), 185-202.
Bruze, Gustaf, "Male and Female Marriage Returns to Schooling," International Economic Review, February 2015, 56 (1), 207-234.
Chiappori, Pierre-André, Bernard Salanié, and Yoram Weiss, "Partner Choice, Investment in Children, and the Marital College Premium," American Economic Review, August 2017, 107 (8), 2109-2167.
_ , Murat Iyigun, and Yoram Weiss, "Investment in Schooling and the Marriage Market," American Economic Review, 2009, 99 (5), 1689-1713.
Ge, Suqin, "Women's College Decisions: How Much Does Marriage Matter?," Journal of Labor Economics, October 2011, 29 (4), 773-818.

References II

Greenwood, Jeremy, Nezih Guner, Georgi Kocharkov, and Cezar Santos, "Technology and the Changing Family: A Unified Model of Marriage, Divorce, Educational Attainment, and Married Female Labor-Force Participation," American Economic Journal: Macroeconomics, 2016, 8 (1), 1-41.
Iyigun, Murat and Randall P. Walsh, "Building the Family Nest: Premarital Investments, Marriage Markets, and Spousal Allocations," Review of Economic Studies, 2007, 74, 507-535.
Keeley, Michael C., "An Analysis of the Age Pattern of First Marriage," International Economic Review, June 1979, 20 (2), 527-544.
Lafortune, Jeanne, "Making Yourself Attractive: Pre-Marital Investments and the Returns to Education in the Marriage Market," American Economic Journal: Applied Economics, April 2013, 5 (2), 151-178.

References III

Low, Corinne, "A 'Reproductive Capital' Model of Marriage Market Matching," December 2017. Working Paper, Business Economics and Public Policy Department, the Wharton School, University of Pennsylvania.

