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Introduction

Failing to account for dependence leads to invalid inference

e.g. linear model
yi = x ′iβ + εi

asymptotic variance of β̂ depends on 1
n

∑
i

∑
j E [xix

′
j εiεj ]

Group-based inference: Given clustering C = {Cg}Gg=1
Cluster Covariance Estimator (CCE)
Ibragimov and Mueller (2010, IM)
Canay, Romano, and Shaikh (2017, CRS)
. . .

Focus on a few large groups (small G )
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Practical Issues

Choice of clustering often ad-hoc
Two tuning parameters

Number of groups G

v.s.

G partitions

v.s.

Goal: data-driven methods to make these choices
Use Unsupervised Learning from ML to form partitions given G
Use simulation to choose G based on inferential properties
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This paper

Difficulty: Recovering the “true” clustering is hard

Idea: Find clusterings with good properties

Restrictions on Dependence & Locations

Clusterings with Good Properties

Valid Inference

ML algorithm
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Proposed Inferential Methods

Generate {C(G)}ḠG=2 by k-medoids

Fit a parametric covariance model to scores

Select C∗ by simulated size & power

Perform cluster-based inference using C∗

IV simulation on H0 : β1 = 0

Method Median MAD Size Power
White 0.006 0.21 0.31 0.90
S-HAC 0.006 0.21 0.15 0.89

Our method 0.014 0.74 0.06 0.81
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Setup
Data:

{{Zi,n}ni=1, (Xn, dn)}n≥1

or

Restrictions on Dependence & Locations

Clusterings with Good Properties

Valid Inference

ML algorithm

Condition 1 (Mixing)
Dependence between Zi,n and Zj,n decays sufficiently fast for large dn(i , j) and Zi,n have sufficient finite
moments
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Restrictions on Locations

Condition 2
(Ahlfors Regularity) ∃C , δ, s.t. ∀n ≥ 1, x ∈ Xn, r > 0

|BXn,r (x)| ≈ Crδ

(Approximate Convexity) ∀x , y ∈ Xn and λ ∈ [0, 1], ∃z ∈ Xn s.t.

z ≈ λx + (1− λ)y

Ahlfors Regularity:

|BXn,r (x)| ≈ πr 2/h2

⇓
δ = 2, C ∝ 1/h2

Approximate Convexity:

yx

z

λd(x, y) (1 − λ)d(x, y)

d(x, z) d(y, z)
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Conditions on {Cn}n≥1 with G groups

Group Balance:

lim inf
n→∞

min
C∈Cn

|C|
n
> 0

Small Boundaries: ∃rn →∞ s.t.

max
C∈Cn
|{x ∈ C : d(x ,X\C) ≤ rn}| = o(n)

Restrictions on Dependence & Locations

Clusterings with Good Properties

Valid Inference

ML algorithm
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Results on Clustering Algorithm

k-medoids: iterate

1 Given k centers, assign each point to the
closest center

2 Given k clusters, find the center that
minimizes sum of distances by swapping

Restrictions on Dependence & Locations

Clusterings with Good Properties

Valid Inference

ML algorithm

Proposition 1
Under Ahlfors Regularity & Approximate Convexity (Condition 2), k-medoids implies Group
Balance & Small Boundaries
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Main Results

Key (sufficient) requirements for IM & CRS:

Proposition 2
Under Mixing, Group Balance, and Small Boundaries,σ

−1
n,C1

∑
i∈C1

Zi,n

...
σ−1
n,CG

∑
i∈CG

Zi,n

→d N(0, IG ), with σ2
n,C = Var

[∑
i∈C

Zi,n

]
.

Theorem
Under Condition 1 and 2 (and regularity conditions), IM or CRS with a selected clustering has
asymptotically correct size:

sup
C∈{C(G)}ḠG=2

|EPn [φ(C)]− α| → 0
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|EPn [φ(C)]− α| → 0

10 / 11



Conclusion

This paper:
Conditions for well-behaved clustering algorithm
Formal conditions of valid inference with learned clustering
Choice of G and partition based on (heuristic) size-power tradeoff

A harder question:
So far d is assumed to be known
Would be interesting to know how d can be learned

Thanks!
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