Inference for Dependent Data with Cluster Learning

Jianfei Cao, Chicago Booth

joint with

Christian Hansen, Chicago Booth Damian Kozbur, UZH Lucciano Villacorta, Bank of Chile

December 31, 2019

Introduction

- Failing to account for dependence leads to invalid inference
- e.g. linear model

$$y_i = x_i'\beta + \varepsilon_i$$

asymptotic variance of $\hat{\beta}$ depends on $\frac{1}{n} \sum_{i} \sum_{j} E[x_i x'_j \varepsilon_i \varepsilon_j]$

Introduction

- Failing to account for dependence leads to invalid inference
- e.g. linear model

$$y_i = x_i'\beta + \varepsilon_i$$

asymptotic variance of $\hat{\beta}$ depends on $\frac{1}{n} \sum_{i} \sum_{j} E[x_i x'_j \varepsilon_i \varepsilon_j]$

- Group-based inference: Given clustering $\mathcal{C} = \{\mathsf{C}_g\}_{g=1}^{\mathcal{G}}$
 - Cluster Covariance Estimator (CCE)
 - Ibragimov and Mueller (2010, IM)
 - Canay, Romano, and Shaikh (2017, CRS)

• . . .

• Focus on a few large groups (small G)

Practical Issues

• Choice of clustering often ad-hoc

Two tuning parameters

Number of groups G

Practical Issues

• Choice of clustering often ad-hoc

Two tuning parameters

Number of groups G

- Goal: data-driven methods to make these choices
 - Use Unsupervised Learning from ML to form partitions given G
 - Use simulation to choose G based on inferential properties

This paper

• Difficulty: Recovering the "true" clustering is hard

This paper

- Difficulty: Recovering the "true" clustering is hard
- Idea: Find clusterings with good properties

Generate $\{\mathcal{C}^{(G)}\}_{G=2}^{\bar{G}}$ by *k*-medoids

Generate $\{\mathcal{C}^{(G)}\}_{G=2}^{\bar{G}}$ by *k*-medoids

Fit a parametric covariance model to scores

Select \mathcal{C}^* by simulated size & power

Perform cluster-based inference using \mathcal{C}^\ast

IV simulation on H_0 : $\beta_1 = 0$

Method	Median	MAD	Size	Power
White	0.006	0.21	0.31	0.90
S-HAC	0.006	0.21	0.15	0.89
Our method	0.014	0.74	0.06	0.81

Setup

Data:

Setup

Restrictions on Locations

Condition 2

• (Ahlfors Regularity) $\exists C, \delta, s.t. \forall n \ge 1, x \in X_n, r > 0$

$$|B_{\mathsf{X}_n,r}(x)| \approx Cr^{\delta}$$

• (Approximate Convexity) $\forall x, y \in X_n$ and $\lambda \in [0, 1]$, $\exists z \in X_n$ s.t.

 $zpprox\lambda x+(1-\lambda)y$

Ahlfors Regularity:

$$|B_{X_n,r}(x)| \approx \pi r^2/h^2$$

$$\downarrow$$

$$\delta = 2, \ C \propto 1/h^2$$

Restrictions on Locations

Condition 2

• (Ahlfors Regularity) $\exists C, \delta, s.t. \ \forall n \ge 1, x \in X_n, r > 0$

$$|B_{\mathsf{X}_n,r}(x)| \approx Cr^{\delta}$$

• (Approximate Convexity) $\forall x, y \in X_n$ and $\lambda \in [0, 1]$, $\exists z \in X_n$ s.t.

 $zpprox\lambda x+(1-\lambda)y$

Ahlfors Regularity:

$$|B_{X_n,r}(x)| \approx \pi r^2/h^2$$

$$\downarrow$$

$$\delta = 2, \ C \propto 1/h^2$$

Approximate Convexity:

• Group Balance:

 $\liminf_{n\to\infty}\min_{\mathsf{C}\in\mathcal{C}_n}\frac{|\mathsf{C}|}{n}>0$

• Small Boundaries: $\exists r_n \rightarrow \infty \text{ s.t.}$

 $\max_{\mathsf{C}\in\mathcal{C}_n}|\{x\in\mathsf{C}:d(x,\mathsf{X}\backslash\mathsf{C})\leq r_n\}|=o(n)$

k-medoids: iterate

- Given k centers, assign each point to the closest center
- Given k clusters, find the center that minimizes sum of distances by swapping

k-medoids: iterate

- Given k centers, assign each point to the closest center
- Given k clusters, find the center that minimizes sum of distances by swapping

Proposition 1

Under Ahlfors Regularity & Approximate Convexity (Condition 2), k-medoids implies Group Balance & Small Boundaries

Main Results

Key (sufficient) requirements for IM & CRS:

Proposition 2

Under Mixing, Group Balance, and Small Boundaries,

$$\begin{bmatrix} \sigma_{n,C_1}^{-1} \sum_{i \in C_1} Z_{i,n} \\ \vdots \\ \sigma_{n,C_G}^{-1} \sum_{i \in C_G} Z_{i,n} \end{bmatrix} \rightarrow_d N(0,I_G), \quad \text{with} \quad \sigma_{n,C}^2 = Var\left[\sum_{i \in C} Z_{i,n}\right].$$

Main Results

Key (sufficient) requirements for IM & CRS:

Proposition 2

Under Mixing, Group Balance, and Small Boundaries,

$$\begin{bmatrix} \sigma_{n,C_1}^{-1} \sum_{i \in C_1} Z_{i,n} \\ \vdots \\ \sigma_{n,C_G}^{-1} \sum_{i \in C_G} Z_{i,n} \end{bmatrix} \rightarrow_d N(0, I_G), \quad \text{with} \quad \sigma_{n,C}^2 = Var\left[\sum_{i \in C} Z_{i,n}\right].$$

Theorem

Under Condition 1 and 2 (and regularity conditions), IM or CRS with a selected clustering has asymptotically correct size:

C

$$\sup_{\in \{\mathcal{C}^{(G)}\}_{G=2}^{\bar{G}}} |\mathcal{E}_{P_n}[\phi(\mathcal{C})] - \alpha| \to 0$$

This paper:

- Conditions for well-behaved clustering algorithm
- Formal conditions of valid inference with learned clustering
- Choice of G and partition based on (heuristic) size-power tradeoff

This paper:

- Conditions for well-behaved clustering algorithm
- Formal conditions of valid inference with learned clustering
- Choice of G and partition based on (heuristic) size-power tradeoff

A harder question:

- So far *d* is assumed to be known
- Would be interesting to know how d can be learned