

Optimal Contracts with Randomly Arriving Tasks

Daniel Bird and Alexander Frug

Econometric Society Winter Meeting, 2020

Introduction •	Model 00	Main Result 000000	Companion Paper

- Long-term principal-agent relationship where the environment changes over time (random opportunities, demand shocks,...)
- Study the effect of fluctuations in the environment
- This paper: A stylized contacting problem:
 - Unique optimal contract:
 - Promotion based dynamics: Wage increases over time while effort decreases over time

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Introduction •	Model 00	Main Result 000000	Companion Paper

- Long-term principal-agent relationship where the environment changes over time (random opportunities, demand shocks,...)
- Study the effect of fluctuations in the environment
- This paper: A stylized contacting problem:
 - Unique optimal contract:
 - Promotion based dynamics: Wage increases over time while effort decreases over time

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Introduction •	Model 00	Main Result 000000	Companion Paper

- Long-term principal-agent relationship where the environment changes over time (random opportunities, demand shocks,...)
- Study the effect of fluctuations in the environment
- ► This paper: A stylized contacting problem:
 - Unique optimal contract:
 - Promotion based dynamics: Wage increases over time while effort decreases over time

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Introduction •	Model 00	Main Result 000000	Companion Paper

- Long-term principal-agent relationship where the environment changes over time (random opportunities, demand shocks,...)
- Study the effect of fluctuations in the environment
- ► This paper: A stylized contacting problem:
 - Unique optimal contract:
 - Promotion based dynamics: Wage increases over time while effort decreases over time

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Introduction 0	Model ●○	Main Result 000000	Companion Paper

Model

- \blacktriangleright Principal-agent with infinite horizon; discount factor δ
- Every period:
 - Nature draws available task $i \in \mathcal{I} = \{1, \dots, I\}$ with prob q_i
 - Agent observes i and exerts effort $e \in [0,\infty)$ on task
 - Principal observes i, e and pays wage $w \in [0, \infty)$
- ▶ Payoffs for (*i*, *e*, *w*):
 - Principal: $\pi_i(e) w$
 - Agent: g(w) e
 - $\pi'_i(\cdot), g'(\cdot) > 0 > \pi''_i(\cdot), g''(\cdot)$ and satisfy $\pi_i(0) = g(0) = 0$

Additional assumptions:

• Tasks are ordered: $\pi'_{i+1}(e) > \pi'_i(e)$ for all e

► Interior solutions: $\pi'_{I}(0) > \frac{1}{g'(0)}$, $\lim_{w \to \infty} \frac{1}{g'(w)} > \lim_{e \to \infty} \pi'_{1}(e)$

Introduction	Model	Main Result	Companion Paper
O	●○	000000	

Model

- \blacktriangleright Principal-agent with infinite horizon; discount factor δ
- Every period:
 - Nature draws available task $i \in \mathcal{I} = \{1, \dots, I\}$ with prob q_i
 - Agent observes i and exerts effort $e \in [0,\infty)$ on task
 - Principal observes i, e and pays wage $w \in [0, \infty)$
- ▶ Payoffs for (*i*, *e*, *w*):
 - Principal: $\pi_i(e) w$
 - Agent: g(w) e
 - $\pi'_i(\cdot), g'(\cdot) > 0 > \pi''_i(\cdot), g''(\cdot)$ and satisfy $\pi_i(0) = g(0) = 0$

Additional assumptions:

► Tasks are ordered: $\pi'_{i+1}(e) > \pi'_i(e)$ for all e► Interior solutions: $\pi'_i(0) > \frac{1}{g'(0)}$, $\lim_{w \to \infty} \frac{1}{g'(w)} > \lim_{e \to \infty} \pi'_1(e)$

Introduction	Model	Main Result	Companion Paper
O	●○	000000	

Model

- \blacktriangleright Principal-agent with infinite horizon; discount factor δ
- Every period:
 - Nature draws available task $i \in \mathcal{I} = \{1, \dots, I\}$ with prob q_i
 - ▶ Agent observes *i* and exerts effort $e \in [0, \infty)$ on task
 - Principal observes i, e and pays wage $w \in [0, \infty)$
- ► Payoffs for (*i*, *e*, *w*):
 - Principal: $\pi_i(e) w$
 - ► Agent: g(w) e
 - $\pi'_i(\cdot), g'(\cdot) > 0 > \pi''_i(\cdot), g''(\cdot)$ and satisfy $\pi_i(0) = g(0) = 0$
- Additional assumptions:
 - ► Tasks are ordered: $\pi'_{i+1}(e) > \pi'_i(e)$ for all e► Interior solutions: $\pi'_i(0) > \frac{1}{g'(0)}$, $\lim_{w \to \infty} \frac{1}{g'(w)} > \lim_{e \to \infty} \pi'_1(e)$

Introduction	Model	Main Result	Companion Paper
0	⊙●	000000	

Contracts

- History at beginning of period t: $h_t = \{i_s, e_s, w_s\}_{s < t}$
- ► A contract specifies:
 - 1. $work(h_t, i_t) \rightarrow [0, \infty)$ (Job description)
 - 2. $pay(h_t, i_t, e_t) \rightarrow [0, \infty)$ (Compensation plan)

Principal's problem:

Choose a contract to maximize expected discounted value at time zero subject to agent's (dynamic) incentive constraints

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Introduction	Model	Main Result	Companion Paper
0	⊙●	000000	

Contracts

- History at beginning of period t: $h_t = \{i_s, e_s, w_s\}_{s < t}$
- A contract specifies:
 - 1. $work(h_t, i_t) \rightarrow [0, \infty)$ (Job description)
 - 2. $pay(h_t, i_t, e_t) \rightarrow [0, \infty)$ (Compensation plan)
- Principal's problem:

Choose a contract to maximize expected discounted value at time zero subject to agent's (dynamic) incentive constraints

Introduction	Model	Main Result	Companion Paper
0	00	•00000	000
Auxiliary Problems			

• Auxiliary problem $P^{(I)}$

- 1. First period: task *l* is available
- 2. Future: Tasks arrive as in the original problem
- 3. Principal is restricted to contracts of the form
 - Vector of required efforts $(e_1^{(l)}, ..., e_l^{(l)})$
 - Fixed periodic compensation w⁽
- Auxiliary problem $P^{(l-1)}$
 - 1. First period: task I 1 is available
 - 2. Future:
 - Tasks arrive as in the original problem
 - Interaction ends upon the first arrival of task I

イロト 不得 トイヨト イヨト ヨヨ ろくろ

3. Principal is restricted to contracts of the form

• $(e_1^{(l-1)}, ..., e_{l-1}^{(l-1)}), w^{(l-1)}$

Introduction	Model	Main Result	Companion Paper
O	00	●00000	000
Auxiliary Problems			

- Auxiliary problem $P^{(I)}$
 - 1. First period: task *I* is available
 - 2. Future: Tasks arrive as in the original problem
 - 3. Principal is restricted to contracts of the form
 - Vector of required efforts $(e_1^{(l)}, ..., e_l^{(l)})$
 - Fixed periodic compensation $w^{(l)}$
- Auxiliary problem $P^{(I-1)}$
 - 1. First period: task I 1 is available
 - 2. Future:
 - Tasks arrive as in the original problem
 - Interaction ends upon the first arrival of task I

イロト 不得 トイヨト イヨト ヨヨ ろくろ

3. Principal is restricted to contracts of the form

• $(e_1^{(l-1)}, ..., e_{l-1}^{(l-1)}), w^{(l-1)}$

Introduction	Model	Main Result	Companion Paper
O	00	●00000	000
Auxiliary Problems			

- Auxiliary problem $P^{(I)}$
 - 1. First period: task *I* is available
 - 2. Future: Tasks arrive as in the original problem
 - 3. Principal is restricted to contracts of the form
 - Vector of required efforts $(e_1^{(l)}, ..., e_l^{(l)})$
 - Fixed periodic compensation $w^{(l)}$
- Auxiliary problem $P^{(I-1)}$
 - 1. First period: task I 1 is available
 - 2. Future:
 - Tasks arrive as in the original problem
 - Interaction ends upon the first arrival of task I

イロト 不得 トイヨト イヨト ヨヨ ろくろ

3. Principal is restricted to contracts of the form

•
$$(e_1^{(l-1)}, ..., e_{l-1}^{(l-1)}), w^{(l-1)}$$

Introduction	Model	Main Result	Companion Paper
0	00	○●00000	000
Auxiliary Problems			

- Auxiliary problem $P^{(I)}$
 - 1. First period: task I is available
 - 2. Future: Tasks arrive as in the original problem
 - 3. Principal is restricted to contracts of the form
 - Vector of required efforts $(e_1^{(l)}, ..., e_l^{(l)})$
 - ► Fixed periodic compensation w⁽¹⁾
- Auxiliary problem P⁽ⁱ⁾
 - 1. First period: task *i* is available
 - 2. Future:
 - Tasks arrive as in the original problem
 - Interaction ends upon the first arrival of task j > i

3. Principal is restricted to contracts of the form

• $(e_1^{(i)}, ..., e_i^{(i)}), w^{(i)}$

Introduction O	Model 00	Main Result	Companion Paper
Auxiliary Problems			

Incentive Compatibility Constraints and Solution

• Let
$$\lambda_i = 1 - \sum_{j>i} q_j$$

• The IC constraint when task j is available in $P^{(i)}$ is

$$e_j \leq g(w) + \sum_{s=1}^{\infty} (\lambda_i \delta)^s \Big(g(w) - rac{1}{\lambda_i} \sum_{k \leq i} q_k e_k \Big),$$

Each auxiliary problem is a convex optimization problem and so it has a unique solution

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Introduction O	Model 00	Main Result	Companion Paper
Auxiliary Problems			

Incentive Compatibility Constraints and Solution

• Let
$$\lambda_i = 1 - \sum_{j>i} q_j$$

• The IC constraint when task j is available in $P^{(i)}$ is

$$e_j \leq g(w) + \sum_{s=1}^{\infty} (\lambda_i \delta)^s \Big(g(w) - \frac{1}{\lambda_i} \sum_{k \leq i} q_k e_k \Big),$$

 Each auxiliary problem is a convex optimization problem and so it has a unique solution

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Introduction 0	Model 00	Main Result 000●00	Companion Paper
Auxiliary Problems			

Lemma

The only binding constraint in the solution to $P^{(i)}$ is $IC_i^{(i)}$.

Lemma

In the solution to $P^{(i)} \pi'_j(e^{(i)}_j) \leq \frac{1}{e'(w^{(i)})}$ with equality if $e^{(i)}_j > 0$.

Lemma

The sequence $(w^{(1)}, w^{(2)}, \dots, w^{(l)})$ is strictly increasing. (proof)

Corollary

Let $j \leq i$. 1. For j > 1, $e_j^{(i)} \geq e_{j-1}^{(i)}$, with a strict inequality if $e_j^{(i)} > 0$, and 2. For i < l, $e_j^{(i)} \geq e_j^{(i+1)}$, with a strict inequality if $e_j^{(i)} > 0$.

Introduction 0	Model 00	Main Result 000●00	Companion Paper
Auxiliary Problems			

Lemma

The only binding constraint in the solution to $P^{(i)}$ is $IC_i^{(i)}$.

Lemma

In the solution to $P^{(i)} \pi'_j(e^{(i)}_j) \leq \frac{1}{g'(w^{(i)})}$ with equality if $e^{(i)}_j > 0$.

Lemma

The sequence $(w^{(1)}, w^{(2)}, \dots, w^{(l)})$ is strictly increasing. (proof)

Corollary

Let $j \leq i$. 1. For j > 1, $e_j^{(i)} \geq e_{j-1}^{(i)}$, with a strict inequality if $e_j^{(i)} > 0$, and 2. For i < l, $e_j^{(i)} \geq e_j^{(i+1)}$, with a strict inequality if $e_j^{(i)} > 0$.

Introduction	Model	Main Result	Companion Paper
O	00	000●00	
Auxiliary Problems			

Lemma

The only binding constraint in the solution to $P^{(i)}$ is $IC_i^{(i)}$.

Lemma

In the solution to $P^{(i)} \pi'_j(e^{(i)}_j) \leq \frac{1}{g'(w^{(i)})}$ with equality if $e^{(i)}_j > 0$.

Lemma

The sequence $(w^{(1)}, w^{(2)}, \dots, w^{(l)})$ is strictly increasing. (proof)

Corollary

Let $j \leq i$. 1. For j > 1, $e_j^{(i)} \geq e_{j-1}^{(i)}$, with a strict inequality if $e_j^{(i)} > 0$, and 2. For i < l, $e_j^{(i)} \geq e_j^{(i+1)}$, with a strict inequality if $e_j^{(i)} > 0$.

Introduction	Model	Main Result	Companion Paper
O	00	000●00	
Auxiliary Problems			

Lemma

The only binding constraint in the solution to $P^{(i)}$ is $IC_i^{(i)}$.

Lemma

In the solution to
$$P^{(i)} \pi'_j(e^{(i)}_j) \leq \frac{1}{g'(w^{(i)})}$$
 with equality if $e^{(i)}_j > 0$.

Lemma

The sequence $(w^{(1)}, w^{(2)}, \dots, w^{(l)})$ is strictly increasing. (proof)

Corollary

Let $j \leq i$. 1. For j > 1, $e_j^{(i)} \geq e_{j-1}^{(i)}$, with a strict inequality if $e_j^{(i)} > 0$, and 2. For i < I, $e_j^{(i)} \geq e_j^{(i+1)}$, with a strict inequality if $e_j^{(i)} > 0$.

Introduction	Model	Main Result	Companion Paper
0	00	○○○○●○	
The Optimal Contract			

Phase mechanism

• Define
$$\mathscr{I}(h_t; i_t) = max\{i_s : s \leq t\}$$

The Phase Mechanism is defined by:

$$work(h_t, i_t) = e_i^{(\mathscr{I}(h_t; i_t))}$$

$$pay(h_t, i_t, e_t) = \begin{cases} w^{(\mathscr{I}(h_t; i_t))} & \text{if } e_s = work(h_s, i_s) \text{ for all } s \le t \\ 0 & \text{otherwise.} \end{cases}$$

イロト 不得 トイヨト イヨト ヨヨ ろくろ

- ▶ In each period, contract is given by solution to $P^{(\mathscr{I}(h_t;i_t))}$
- Contract exhibits downward wage rigidity and upward effort rigidity

Introduction 0	Model oo	Main Result ○○○○●	Companion Paper 000
The Optimal Contract			

Main Result

Proposition

Phase Mechanism is the (essentially) unique optimal contract.

Comments:

- Concavity is what connects between periods
- Can be supported as a SGPE for some parameters

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Robustness: companion paper

Introduction 0	Model oo	Main Result ○○○○○●	Companion Paper 000
The Optimal Contract			

Main Result

Proposition

Phase Mechanism is the (essentially) unique optimal contract.

Comments:

- Concavity is what connects between periods
- Can be supported as a SGPE for some parameters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの

Robustness: companion paper

Introduction O	Model 00	Main Result 000000	Companion Paper •00

- Dynamic contracting environment:
 - Principal and agent interact over time
 - Time is discrete, common discount factor
 - Periodic game in t is drawn from $f(h_t)$
 - *h_t* specifies past periodic games and actions
 - Principal can commit to a long term strategy, agent cannot
 - The environment accommodates
 - "Incentivizing Randomly Arriving Tasks"
 - Labor Contracts (Harris and Holmstrom 1982, Holmstrom 1983, Postal-Vinay and Robin 2002); Dynamic Risk Sharing (Marcet and Marimon 1992, Kruger and Uhlig 2006); Foreign Investment and Entrepreneur Financing (Thomas and Worrall 1994, Albuquerque and Hopenhayn 2004); Dynamic Project Selection (Forand and Zapal 2018)

Introduction O	Model 00	Main Result 000000	Companion Paper •00

- Dynamic contracting environment:
 - Principal and agent interact over time
 - Time is discrete, common discount factor
 - Periodic game in t is drawn from $f(h_t)$
 - *h_t* specifies past periodic games and actions
 - Principal can commit to a long term strategy, agent cannot
- The environment accommodates
 - "Incentivizing Randomly Arriving Tasks"
 - Labor Contracts (Harris and Holmstrom 1982, Holmstrom 1983, Postal-Vinay and Robin 2002); Dynamic Risk Sharing (Marcet and Marimon 1992, Kruger and Uhlig 2006); Foreign Investment and Entrepreneur Financing (Thomas and Worrall 1994, Albuquerque and Hopenhayn 2004); Dynamic Project Selection (Forand and Zapal 2018)
 - Other potential models with seasonal demand, R&D investments, long term projects etc.

- Principal and agent interact over time
- Time is discrete, common discount factor
- Periodic game in t is drawn from $f(h_t)$
- *h_t* specifies past periodic games and actions
- Principal can commit to a long term strategy, agent cannot

Results:

- Define a class of components "convex separable activities"
- Tight condition guaranteeing that, as time goes by, these components change only in the direction that favors the agent

Introduction	Model	Main Result	Companion Paper
O	00	000000	○○●

- Principal and agent interact over time
- ▶ Time is discrete, common discount factor
- Periodic game in t is drawn from $f(h_t)$
- *h_t* specifies past periodic games and actions
- Principal can commit to a long term strategy, agent cannot

Implications:

- Generalize and unify downward wage rigidity results
- Establish a general upward effort rigidity result
 - Monotonicity results in previous model are "detail free"
- New insights on foreign investment/entrepreneur financing

Proofs

▶ If
$$w^{(i+1)} \le w^{(i)}$$
 then $e_j^{(i)} \le e_j^{(i+1)}$

- Consider the continuation of P⁽ⁱ⁺¹⁾ when task i is available. Until the arrival of a task I > i:
 - The worker exerts weakly more effort than under the solution of P⁽ⁱ⁾
 - None of the IC constraints are binding
- Compensation of strictly less than w⁽ⁱ⁾ can incentivize weakly more effort than {e_j⁽ⁱ⁾} in auxiliary problem i. (return)