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Motivation

There is a broad literature in educational economics concerning col-
lege major choices.

There’s also a lot of interest in determining till what extent teach-
ers influence students in different dimensions.

Notwithstanding, research focusing on the causal effects of teachers
on college major choices is scarce.

Main challenge: teachers are usually endogenously chosen by stu-
dents.
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The Questions

Can some instructors have a causal impact on major choices?
(Or are majors mostly predetermined by students preferences?)

If so, how/why?

FORTHCOMING: Can instructors affect early labor market outcomes?
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Previous Papers

• Bettinger and Long (2005) identify the effect of having a
gender-matching instructor on the probability of majoring in
that instructor’s field.

They overcome the selection issue by
instrumenting the gender of the instructor with the fraction of
female instructors teaching that corresponding semester.

• Price (2010) repeats an analogous exercise, but also considers
race-matching.

• Repeating this estimation strategy, Bettinger and Long (2010)
study how adjunct instructors impact the probability of
majoring in that particular instructor’s field.
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This Paper...

• Exploits a quasi-experimental setting in freshmen course
assignment in a large Chilean university.

• Makes use of 10 years of cross-section and detailed microdata
on students and teachers. This combines administrative
records of the university and the Chilean Ministry of
Education.

• Identifies the causal effect that teachers may have on
students’ major choice.

• Identifies the characteristics of these teachers that make
students more prone to majoring in Economics.
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Context

• Using a centralized platform, students apply to different
program × institution combinations, and are assigned to a
program according to their test scores.

• A program is not a major.
• Students have a common core year, in which they are

randomly assigned to their classes.
• By the end of their second year, they have to choose their

major.
• Then, they have 3 more years of coursework in their major to

fulfill the requirements for their degree (total program
duration of 5 years).
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The Model
Consider that student i may choose between majoring in Business
or in Economics. Denote the observed outcome Yi as 1 if she chooses
Economics and 0 if not.

Suppose that there is a tacit net utility of choosing Economics over
Business for student i and denote it as Ui. Thus, we have that

Yi =
{1 Ui > 0

0 Ui ≤ 0 . (1)

Now we impose some structure on Ui, letting it be

Ui =β0 +
∑
j∈J

βjTij +XB+εi, (2)

where Tij is 1 if student i was assigned to teacher j in set J and 0
if not, X is a set of observed characteristics and εi is an unobserved
error component.
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The Model (contd’)
Suppose now that εi ∼N(0,σ2

t ), where t indexes years/cohorts.

Then, substituting (2) in (1) we get

Yi =
{1 β0 +

∑
j∈JβjTij +XB+εi > 0

0 β0 +
∑

j∈JβjTij +XB+εi ≤ 0 .

But β0 +
∑

j∈JβjTij +XB+ εi > 0 ⇐⇒ εi > −(
β0 +

∑
j∈JβjTij +XB

)
and

the odds of this event are equal to

P
(
Yi = 1|{Tij

}
j∈J ,X

)
=Φ


β0 +

∑
j∈J

βjTij +XB

σt

 ,

where Φ is a cumulative standardized Gaussian distribution.

Therefore, we finally obtain a reduced-form probit model described
by

Yi =β0 +
∑
j∈J

βjTij +XB+εi. (3)
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Identification Strategy

Teacher assignment is random, conditional on program. As our
sample consists uniquely of students of the Commercial Engineer-
ing career, assignment is completely random among them, i.e.

P(Ti,j = 1|i ∈Career) =P(Ti′,j = 1|i′ ∈Career) ∀j ∈J.

Therefore, as E(Tijεi) = 0 ∀j ∈ J, the set of estimated parameters{
β̂j

}
j∈J is completely unbiased and we may obtain a causal effect

of each teacher on the chances of choosing Economics as a major.

Estimation of the parameters in equation (3) by MLE.

Note: t subscripts are omitted as they are images of i (and no dy-
namics are considered).
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The Data
• Administrative data from a large Chilean university’s School

of Economics and Business and Ministry of Education’s
DEMRE (Department of Measurement and Registry).

• Ten cohorts: 2005 to 2014 (whole available database).
• Only freshmen on their first semester whose teachers were

randomly assigned.
• Only consider teachers that have taught the class at least

twice. This ensures a minimum amount of student
observations per teacher and eliminates potential noise
generated by “first-and-last-time” teachers (no experience,
course not of their preference, visitors, etc.)

Table 1: Summary Statistics

Obs. Mean Std. Dev. Min. Max.
Econ. Major 1561 .4144779 (.4927895) 0 1
ECON101 Grade 1829 4.793166 (.9228158) 1.2 7
Entrance Score 1827 723.9126 (23.40134) 679.1 830.2
Female 1829 .3870968 (.4872193) 0 1
School GPA 1827 6.414926 (.2583345) 5.1 7
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The Data...
Observations Mean Standard Deviation Min. Max.

Prof. 2 1829 .0437397 (.2045714) 0 1
Prof. 3 1829 .0732641 (.2606407) 0 1
Prof. 4 1829 .1388737 (.3459093) 0 1
Prof. 5 1829 .1098961 (.3128458) 0 1
Prof. 6 1829 .0464735 (.2105658) 0 1
Prof. 7 1829 .1394204 (.3464795) 0 1
Prof. 8 1829 .0656096 (.2476662) 0 1
Prof. 9 1829 .0415528 (.1996194) 0 1
Prof. 10 1829 .1306725 (.337134) 0 1
Prof. 11 1829 .1170038 (.3215128) 0 1
Prof. 12 1829 .0322581 (.176733) 0 1
Prof. 13 1829 .0311646 (.1738098) 0 1
Block. 2 1829 .2121378 (.4089337) 0 1
Block. 3 1829 .1618371 (.368402) 0 1
Block. 4 1829 .0896665 (.2857815) 0 1
Block. 5 1829 .0426463 (.2021135) 0 1
Block. 6 1829 .049754 (.2174957) 0 1
Week Days 1829 1.300164 (.4584545) 1 2
Year 2006 1829 .0978677 (.2972169) 0 1
Year 2007 1829 .0967742 (.2957309) 0 1
Year 2008 1829 .1109896 (.3142052) 0 1
Year 2009 1829 .0995079 (.2994246) 0 1
Year 2010 1829 .1328595 (.3395156) 0 1
Year 2011 1829 .0978677 (.2972169) 0 1
Year 2012 1829 .0448332 (.2069943) 0 1
Year 2013 1829 .1109896 (.3142052) 0 1
Year 2014 1829 .1388737 (.3459093) 0 1
Failed ECON101 1829 .1246583 (.3304214) 0 1
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The Data: Graphs

Figure 3: Entrance Score by Major
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The Data: Graphs

Figure 4: ECON101 Grade by Major
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The Data: Graphs

Figure 5: Econ. Major by Professor
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The Data: Graphs

Figure 6: Econ. Major by ECON101 Outcome
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The Data: Graphs

Figure 7: Econ. Major by Gender
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Results
The results of the estimated model are presented in Table 2.

Table 2: Probit Estimates (Marginal Effects)

(1) (2) (3) (4)
Econ. Major Econ. Major Econ. Major Econ. Major

Prof. 2 (d) 0.0912 (0.0897) 0.0252 (0.0815) 0.0188 (0.0751) 0.0191 (0.0749)
Prof. 3 (d) 0.0742 (0.120) 0.0634 (0.154) 0.0581 (0.149) 0.0583 (0.148)
Prof. 4 (d) 0.0328 (0.0860) 0.0565 (0.105) 0.0836 (0.0999) 0.0841 (0.1000)
Prof. 5 (d) 0.0186 (0.0813) 0.0351 (0.101) 0.0619 (0.0959) 0.0623 (0.0955)
Prof. 6 (d) 0.152 (0.136) 0.129 (0.148) 0.132 (0.140) 0.132 (0.140)
Prof. 7 (d) 0.0629 (0.0925) 0.0519 (0.101) 0.0853 (0.0931) 0.0856 (0.0926)
Prof. 8 (d) 0.136 (0.0874) 0.123 (0.112) 0.124 (0.107) 0.123 (0.105)
Prof. 9 (d) 0.220∗∗ (0.0994) 0.214∗∗ (0.107) 0.214∗∗ (0.101) 0.215∗∗ (0.101)
Prof. 10 (d) 0.160∗ (0.0887) 0.153∗ (0.0931) 0.154∗ (0.0879) 0.154∗ (0.0884)
Prof. 11 (d) 0.142∗∗ (0.0716) 0.161∗ (0.0875) 0.168∗∗ (0.0819) 0.168∗∗ (0.0824)
Prof. 12 (d) 0.105 (0.0863) 0.132 (0.113) 0.120 (0.109) 0.120 (0.108)
Prof. 13 (d) 0.223∗ (0.123) 0.228∗ (0.126) 0.215 (0.131) 0.215 (0.131)
Failed (d) -0.236∗∗∗ (0.0433) -0.236∗∗∗ (0.0439)
School GPA 0.00258 (0.0374)
Blocks NO YES YES YES
Obs. 1561 1561 1561 1559
Marginal effects; Standard errors in parentheses
(d) for discrete change of dummy variable from 0 to 1∗ p< 0.10, ∗∗ p< 0.05, ∗∗∗ p< 0.01
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Characteristics and Major Choice
Students evaluate their teachers every semester in twelve areas (see
Table 6) with a discrete score that spans from 1 to 7.

Table 5: Teacher Evaluation Survey

Q Characteristic (in Spanish)
01. Demuestra seguridad y dominio sobre las materias
02. Prepara las clases
03. Es claro para exponer las materias
04. Resuelve dudas y problemas de los alumnos
05. Incentiva la discusión y participación
06. Permite hacer preguntas y expresar ideas
07. Estimula el interés por las materias
08. Hace evaluaciones justas y razonables
09. Asiste puntualmente a clases
10. Cumple plazos y normas establecidas
11. Trata a sus alumnos con respeto
12. Está disponible para sus alumnos
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Characteristics and Major Choice
Students evaluate their teachers every semester in twelve areas (see
Table 6) with a discrete score that spans from 1 to 7.

Table 6: (Translated) Teacher Evaluation Survey

Q Characteristic
01. Shows confidence regarding the subject
02. Prepares classes
03. Exposes the subject clearly
04. Solves doubts and problems for students
05. Promotes discussion and participation
06. Allows asking questions and sharing ideas
07. Stimulates interest for the subject
08. Evaluates justly and fairly
09. Shows up punctually to class
10. Meets deadlines and established norms
11. Treats students respectfully
12. Is available for students
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Characteristics and Major Choice

In this way, I can estimate the effect of each of these characteristics
with the reduced-form probit model described by

Yi =β0 +
∑
j∈J

Tij ·
( ∑

k∈K
βkQijk

)
+XB+εi, (4)

where Qijk denotes the score for teacher j in characteristic k ∈K.

But Qijk is endogenous!

Indeed, so we replace it by Qtjk, i.e. the average score of character-
istic k for professor j in cohort t (excluding student i).
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Results

Table 7: Effect of Teacher Characteristics on Major

(1) (2) (3) (4)
Econ. Major Econ. Major Econ. Major Econ. Major

Q1 0.0437 (0.104) 0.00895 (0.114) 0.000703 (0.113) 0.00102 (0.114)
Q2 0.0168 (0.0469) -0.00517 (0.0530) 0.0124 (0.0568) 0.00607 (0.0585)
Q3 -0.0523 (0.0870) 0.0175 (0.0989) 0.0335 (0.105) 0.0324 (0.105)
Q4 -0.0998 (0.157) -0.101 (0.187) -0.103 (0.188) -0.107 (0.187)
Q5 -0.0495 (0.0649) -0.0452 (0.0620) -0.0387 (0.0620) -0.0403 (0.0619)
Q6 0.163∗ (0.0930) 0.153 (0.0981) 0.178∗∗ (0.0898) 0.182∗∗ (0.0920)
Q7 0.0982 (0.0766) 0.0736 (0.0868) 0.0456 (0.0907) 0.0447 (0.0908)
Q8 0.143∗∗∗ (0.0377) 0.126∗∗∗ (0.0441) 0.0985∗∗ (0.0415) 0.102∗∗ (0.0408)
Q9 -0.0716 (0.0535) -0.0725 (0.0477) -0.0707 (0.0477) -0.0690 (0.0465)
Q10 0.0349 (0.0404) 0.0527 (0.0380) 0.0634∗ (0.0383) 0.0641∗ (0.0386)
Q11 -0.178∗∗∗ (0.0459) -0.170∗∗∗ (0.0578) -0.172∗∗∗ (0.0559) -0.170∗∗∗ (0.0548)
Q12 -0.00606 (0.0678) -0.00322 (0.0764) -0.0176 (0.0770) -0.0151 (0.0782)
Failed (d) -0.238∗∗∗ (0.0380) -0.236∗∗∗ (0.0385)
School GPA 0.00828 (0.0358)
Blocks NO YES YES YES
Obs. 1540 1540 1540 1539
Marginal effects; Standard errors in parentheses
(d) for discrete change of dummy variable from 0 to 1∗ p< 0.10, ∗∗ p< 0.05, ∗∗∗ p< 0.01
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Negative Sorting?
Some may be worried about the implications of these exogenous
shocks: “perhaps some students that should not major in economics
are motivated to do so, and therefore under-perform”.

Nope:

Figure 8: Under-Median but Motivated vs. Over-Median Econ. Major GPA
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Conclusion

• There is an important effect of freshmen teachers over college
major choice and it is robust to different specifications.

• Certain particular characteristics make students more prone
to choosing on major over another.

• High internal validity.
• Lack of external validity.
• Future agenda: i) relative, not absolute measures of teachers

and ii) effects on labor maker outcomes.
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