
Structural Estimation of Dynamic Equilibrium Models with Unstructured Data

Sara Casella¹ Jesús Fernández-Villaverde¹ Stephen Hansen ² January 2, 2020

¹University of Pennsylvania ²Imperial College Business School

New data

• Unstructured data: Newspaper articles, business reports, congressional speeches, FOMC meetings transcripts, satellite data, ...

Motivation

- Unstructured data carries information on:
 - 1. Current state of the economy (Thorsrud, 2017, Bybee et al., 2019).
 - 2. Beliefs about current and future states of the economy.
- An example:

From the minutes of the FOMC meeting of September 17-18, 2019

Participants agreed that consumer spending was increasing at a strong pace. They also expected that, in the period ahead, household spending would likely remain on a firm footing, supported by strong labor market conditions, rising incomes, and accommodative financial conditions. [...]

Participants judged that trade uncertainty and global developments would continue to affect firms' investment spending, and that this uncertainty was discouraging them from investing in their businesses. [...]

Our goal

- Since:
 - 1. This information might go over and above observable macro series (e.g., agents' expectations and sentiment).
 - 2. And it might go further back in history, is available for developing countries, or in real time.
- How do we incorporate unstructured data in the estimation of structural models?
- Potential rewards:
 - 1. Determine more accurately the latent structural states.
 - 2. Reconcile agents' behavior and macro time series.
 - 3. Could change parameters values (medium-scale DSGE models typically poorly identified).

This paper

• Our application:

Text Data: Federal Open Market Committee (FOMC) meeting transcripts.

Model: New Keynesian dynamic stochastic general equilibrium (NK-DSGE) model.

- Our strategy:
 - **Right Now:** 1. Latent Dirichlet Allocation (LDA) for dimensionality reduction ⇒ from words to topic shares.
 - 2. Cast the linearized DSGE solution in a state-space form.
 - 3. Use LDA output as additional observables in the measurement equation.
 - 4. Estimation with Bayesian techniques.

Going Forward: Model the data generating process for text and macroeconomic data jointly.

- 1. Using FOMC data for estimation sharpens the likelihood.
- 2. Posterior distributions more concentrated.
- 3. Especially true for parameters related to the hidden states of the economy and to fiscal policy.
- 4. FOMC data carries extra information about fiscal policy and government intentions

- How does it work?
 - LDA is a Bayesian statistical model.
 - Idea: (i) each document is described by a distribution of *K* (latent) topics and (ii) each topic is described by a distribution of words.
 - Use word co-occurrence patterns + priors to assign probabilities.
 - Key of LDA dimensionality reduction topic shares φ_t ⇒ amount of time document spends talking about each topic k.
- Why do we like it?
 - Tracks well attention people devote to different topics.
 - Automated and easily scalable.
 - Bayesian model natural to combine with structural models.

DSGE state space representation

Log-linearized DSGE model solution has the form of a generic state-space model:

• Transition equation:

$$\underbrace{s_{t+1}}_{\text{Structural States}} = \Phi_1(\theta) s_t + \Phi_\epsilon(\theta) \epsilon_t, \quad \epsilon_t \sim N(0, I)$$

• Measurement equation:

• θ vector that stacks all the structural parameters.

• Allow the topic time series φ_t to depend on the model states:

- Interpretable as a **dynamic factor model** in which the structure of the DSGE model is imposed on the latent factors.
- Akin to Boivin and Giannoni (2006) and Kryshko (2011).

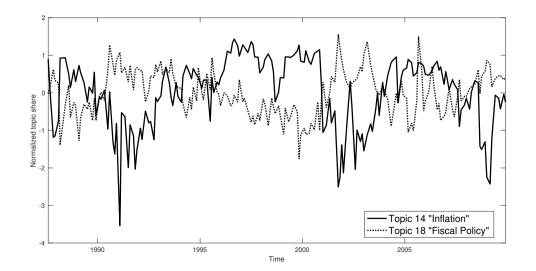
• Augmented measurement equation

$$\underbrace{\begin{pmatrix} Y_t \\ \varphi_t \end{pmatrix}}_{\text{New vector of observables}} = \begin{pmatrix} \Psi_0(\theta) \\ T_0 \end{pmatrix} + \begin{pmatrix} \Psi_1(\theta) \\ T_1 \end{pmatrix} s_t + \begin{pmatrix} 0_{4 \times 4} & 0_{4 \times k} \\ 0_{k \times 4} & \Sigma \end{pmatrix} u_t, \quad u_t \sim N(0, I)$$

- If text data carries relevant information, should make the estimation more efficient.
- General approach: any numerical machine learning output and structural model (DSGE, IO, labor...) will work.

- Available for download from the Federal Reserve website.
- Provide a nearly complete account of every FOMC meeting from the mid-1970s onward.
- Transcripts are divided into two parts:
 - FOMC1: members talk about their reading of the current economic situation.
 - FOMC2: talk about monetary policy strategy.
- We are interested in the information on the current state of the economy and the beliefs that policymakers have on it ⇒ focus on FOMC1 section from 1987 to 2009.
- Total of 180 meetings.

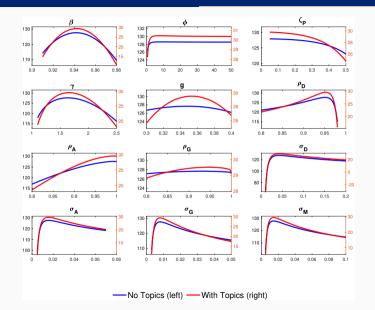
Topic composition


• Example of two topics with K = 20.

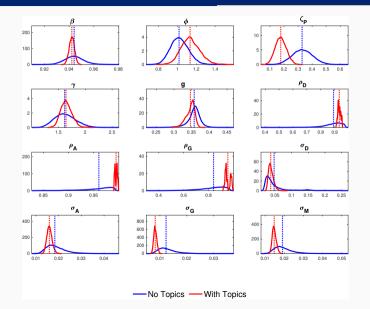
(a) Topic 8

Topic shares

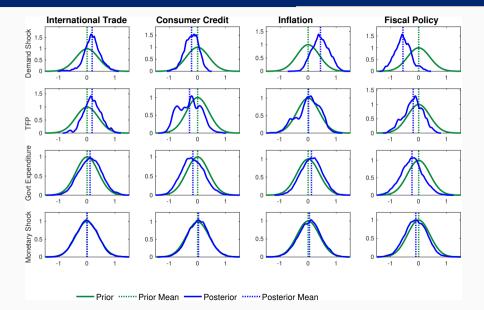
Conventional New Keynesian DSGE model with price rigidities:


- Agents: Representative household.
 - Perfectly competitive final good producer.
 - Continuum of intermediate good producers with market power.
 - Fiscal authority that taxes and spends.
 - Monetary authority that sets the nominal interest rate.
 - States: 4 Exogenous states.
 - Demand, productivity, government expenditure, monetary policy.
 - Modelled as AR(1)s
- Parameters: 12 Structural parameters to estimate.

Equilibrium Equations Exogenous Processes Structural Parameters Recap


Bayesian estimation

- We estimate two models for comparison:
 - New Keynesian DSGE model alone (standard).
 - New Keynesian DSGE Model + measurement equation with topic shares (new).
- Total parameters to estimate: 12 structural parameters (θ) + 120 topic dynamic factor model parameters (T_0 , T_1 , Σ assuming covariances are 0).
- Pick standard priors on structural parameters.
- Priors on topic related parameters?
 - Use MLE to get an idea of where they are.
 - Use conservative approach: center all parameters quite tightly around 0.
- Random-walk Metropolis Hastings to obtain draws from the posterior.


Likelihood comparison

Posterior distributions for structural parameters

Posterior distributions for selected topic parameters

- Extend the model in two ways:
 - 1. Model the dependence of latent topics on the hidden structural states directly.
 - 2. Allow for autocorrelation among topic shares.
- Instead of first creating φ_t and then using it for estimation, want to model the generating process of both text and macroeconomic observables together.
- Why a joint model?
 - Conjecture the topic composition and topic share will be more precise and more interpretable as a result.
 - Properly take into account the uncertainty around the topic shares.

• New vector of augmented states:

$$\widetilde{s}_t = \left(egin{array}{c} s_t \ arphi_{t-1} \end{array}
ight)$$

• New vector of observables:

$$\widetilde{Y}_t = \left(\begin{array}{c} Y_t \\ \mathbf{w}_t \end{array}\right)$$

• Stacks both the "traditional" observables Y_t and the text w_t .

• Transition equation (linear):

$$egin{aligned} \mathbf{s}_{t+1} &= \Phi(heta)\mathbf{s}_t + \Phi_\epsilon(heta)\epsilon & \leftarrow ext{ same as before} \\ arphi_t &= \mathcal{T}_s\mathbf{s}_t + \mathcal{T}_arphi arphi_{t-1} + \Sigma_e e_t & \leftarrow ext{ new} \end{aligned}$$

• Measurement equation (non-linear):

$$\widetilde{Y}_t \sim p\left(\widetilde{Y}_t|\widetilde{s}_t
ight) = egin{pmatrix} \Psi_1(heta)s_t\ p(\mathbf{w}_t|\widetilde{s}_t) \end{pmatrix}$$

• Challenges: algorithm for estimation, impact of choice of priors.

LDA details Back

LDA assumes the following generative process for each document W of length N:

- 1. Choose topic proportions $\varphi \sim \text{Dir}(\vartheta)$. Dimensionality K of the Dirichlet distribution. Thus, dimensionality of the topic variable is assumed to be known and fixed.
- 2. For each word n = 1, ..., N:
 - 2.1 Choose one of K topics $z_n \sim$ Multinomial (φ).
 - 2.2 Choose a term w_n from $p(w_n|z_n,\beta)$, a multinomial probability conditioned on the topic z_n . β is a $K \times V$ matrix where $\beta_{i,j} = p(w^j = 1|z^i = 1)$. We assign a symmetric Dirichlet prior with V dimensions and hyperparameter η to each β_k .

Posterior:

$$p(arphi, z, eta | W, artheta, \eta) = rac{p(arphi, z, W, eta | artheta, \eta)}{p(W | artheta, \eta)}$$

$$\begin{aligned} \widehat{c}_t - \widehat{d}_t &= \mathbb{E}_t \{ \widehat{c}_{t+1} - \widehat{d}_{t+1} - \widehat{R}_t + \widehat{\Pi}_{t+1} \} \\ \widehat{\Pi}_t &= \kappa \left((1 + \phi c) \, \widehat{c}_t + \phi g \widehat{g}_t - (1 + \phi) \, \widehat{A}_t \right) + \beta \mathbb{E}_t \widehat{\Pi}_{t+1} \\ \widehat{R}_t &= \gamma \widehat{\Pi}_t + m_t \\ \widehat{l}_t &= \widehat{y}_t - \widehat{A}_t = c \, \widehat{c}_t + g \, \widehat{g}_t - \widehat{A}_t \end{aligned}$$

 $\log d_t = \rho_d \log d_{t-1} + \sigma_d \varepsilon_{d,t}$ $\log A_t = \rho_A \log A_{t-1} + \sigma_A \varepsilon_{A,t}$ $\log g_t = \rho_g \log g_{t-1} + \sigma_g \varepsilon_{g,t}$ $m_t = \sigma_m \varepsilon_{mt}$

Param Description							
Steady-state-related parameters							
Discount factor		$ ho_D$					
SS govt expenditure/GDP		$ ho_{\mathcal{A}}$					
nous propagation parameters		$ ho_{G}$					
		σ_D					
Inverse Frisch elasticity		σ_{A}					
Fraction of fixed prices		σ_{G}					
Taylor rule elasticity		σ_{G}					
	state-related parameters Discount factor SS govt expenditure/GDP nous propagation parameters Inverse Frisch elasticity Fraction of fixed prices	state-related parameters Discount factor SS govt expenditure/GDP nous propagation parameters Inverse Frisch elasticity Fraction of fixed prices					

Param	Description								
Exogenous shocks parameters									
$ ho_D$	Persistence demand shock								
$ ho_{\mathcal{A}}$	Persistence TFP								
$ ho_{G}$	Persistence govt expenditure								
σ_D	s.d. demand shock innovation								
$\sigma_{\mathcal{A}}$	s.d. TFP shock								
σ_{G}	s.d. govt expenditure shock								
σ_{G}	s.d. monetary shock								

State space matrices

Law of motion for the states of the economy is:

$$\underbrace{\begin{pmatrix} \hat{d}_{t+1} \\ \hat{A}_{t+1} \\ \hat{g}_{t+1} \\ m_{t+1} \end{pmatrix}}_{s_{t+1}} = \underbrace{\begin{pmatrix} \rho_d & 0 & 0 & 0 \\ 0 & \rho_A & 0 & 0 \\ 0 & 0 & \rho_g & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{\Phi_1(\theta)} \underbrace{\begin{pmatrix} \hat{d}_t \\ \hat{A}_t \\ \hat{g}_t \\ m_t \end{pmatrix}}_{s_t} + \underbrace{\begin{pmatrix} \sigma_d & 0 & 0 & 0 \\ 0 & \sigma_A & 0 & 0 \\ 0 & 0 & \sigma_g & 0 \\ 0 & 0 & 0 & \sigma_m \end{pmatrix}}_{\Phi_{\epsilon}(\theta)} \underbrace{\begin{pmatrix} \varepsilon_{d,t+1} \\ \varepsilon_{d,t+1} \\ \varepsilon_{g,t+1} \\ \varepsilon_{m,t+1} \end{pmatrix}}_{\epsilon_t}$$

and for observables:

$$\underbrace{\begin{pmatrix} \log c_t \\ \log \Pi_t \\ \log R_t \\ \log l_t \end{pmatrix}}_{Y_t} = \underbrace{\begin{pmatrix} \log (1-g) \\ 0 \\ -\log \beta \\ 0 \end{pmatrix}}_{\Psi_0(\theta)} + \underbrace{\begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ \gamma b_1 & \gamma b_2 & \gamma b_3 & 1+b_4 \\ ca_1 & ca_2-1 & 1+ca_3 & ca_4 \end{pmatrix}}_{\Psi_1(\theta)} \underbrace{\begin{pmatrix} \widehat{d}_t \\ \widehat{A}_t \\ \widehat{g}_t \\ m_t \end{pmatrix}}_{s_t}$$

Param	Description	Domain	Density	Param 1	Param 2					
Steady-state-related parameters										
β	Discount factor	(0,1)	Beta	0.95	0.05					
g	SS govt expenditure/GDP	(0,1)	Beta	0.35	0.05					
Endogenous propagation parameters										
ϕ	Inverse Frisch elasticity	\mathbb{R}_+	Gamma	1	0.1					
ζ_P	Fraction of fixed prices	(0, 1)	Beta	0.4	0.1					
γ	Taylor rule elasticity	\mathbb{R}_+	Gamma	1.5	0.25					

Exogenous shocks parameters

$ ho_D$	Persistence demand shock	(0,1)	Uniform	0	1
$ ho_{A}$	Persistence TFP	(0, 1)	Uniform	0	1
$ ho_{G}$	Persistence govt expenditure	(0, 1)	Uniform	0	1
σ_D	s.d. demand shock innovation	\mathbb{R}_+	InvGamma	0.05	0.2
$\sigma_{\mathcal{A}}$	s.d. TFP shock	\mathbb{R}_+	InvGamma	0.05	0.2
σ_{G}	s.d. govt expenditure shock	\mathbb{R}_+	InvGamma	0.05	0.2
σ_{G}	s.d. monetary shock	\mathbb{R}_+	InvGamma	0.05	0.2

Topic parameters

$T_{0,k}$	Topic baseline	\mathbb{R}	Normal	0	0.1
$T_{1,k,s}$	Topic elasticity to states	\mathbb{R}	Normal	0	0.4
σ_k	s.d. measurement error	\mathbb{R}_+	InvGamma	0.2	0.1

Topics ranked by pro-cyclicality

												Pr	o-cyclicality	- 0.150
Topic0	inflat	price	increas	product	wage	cost	rise	growth	trend	labor	core	pressur	0.053	0.100
Topic1	percent	year	quarter	rate	growth	forecast	last	month	greenbook	inflat	project	expect	0.014	
Topic2	statement	meet	chang	will	risk	word	discuss	polici	market	issu	view	languag	0.011	
Topic3	forecast	model	inflat	rate	greenbook	term	differ	chang	use	assumpt	shock	question	0.01	- 0.125
Topic4	district	nation	continu	area	region	remain	employ	manufactur	economi	report	activ	sector	0.007	
Topic5	move	data	can	look	number	will	evid	signific	may	quit	economi	point	0.007	
Topic6	move	chairman	mr	support	direct	point	recommend	agre	asymmetr	prefer	tighten	eas	0.004	
Topic7	question	know	want	someth	thing	look	realli	peopl	tri	number	talk	ask	0.002	- 0.100
Topic8	dollar	unitedstates	import	export	countri	foreign	price	growth	forecast	oil	effect	japan	0.002	
Topic9	forecast	quarter	project	data	spend	inventori	will	revis	recent	expect	anticip	month	0.002	
Topic10	presid	ye	governor	parri	okay	thank	break	stern	vice	hoenig	minehan	laughter	0.001	- 0.075
Topic11	year	line	right	panel	shown	chart	expect	percent	project	next	middl	left	0.0	
Topic12	period	committe	run	consist	monetari	rate	might	aggreg	target	rang	econom	borrow	0.0	
Topic13	polici	rate	inflat	might	market	economi	expect	tighten	may	term	committe	eas	-0.001	
Topic14	year	report	busi	sale	product	increas	price	industri	compani	contact	continu	firm	-0.007	- 0.050
Topic15	bank	market	credit	rate	incom	debt	financi	loan	consum	fund	interest	household	-0.015	
Topic16	economi	will	can	seem	time	problem	believ	know	rather	much	world	may	-0.015	
Topic17	side	littl	look	seem	much	realli	term	lot	pretti	quit	certainli	concern	-0.017	- 0.025
Topic18	risk	economi	continu	growth	seem	may	recoveri	will	busi	confid	remain	outlook	-0.02	5.020
Topic19	will	effect	fiscal	ta	cut	term	budget	time	uncertainti	probabl	state	spend	-0.04	

Details on $p(\mathbf{w}_t | \tilde{\mathbf{s}}_t)$ Back

We assume the following generative process for a document:

- 1. Draw $\varphi_t | \varphi_{t-1}, s_t, T_{\varphi}, T_s, \Sigma^e \sim N(\varphi_0 + T_{\varphi} \varphi_{t-1} + T_s s_t, \Sigma^e).$
- 2. To map this representation of topic shares into the simplex, use the softmax function:

 $f(\varphi_t) = \exp \varphi_{t,i} / \sum_j \exp \varphi_{t,j}.$

- 3. For each word n = 1, ..., N:
 - 3.1 Draw topic $z_{n,t} \sim \text{Mult}(f(\varphi_t))$.
 - 3.2 Draw term $w_{n,t} \sim \text{Mult}(\beta_{t,z})$.

Then, the distribution of text conditional on the states, $p(\mathbf{w}_t | \tilde{s}_t)$, is given by:

$$p(\mathbf{w}_t|\widetilde{s}_t) = \int p(\varphi_t|\widetilde{s}_t) \left(\prod_{n=1}^N \sum_{z_{n,t}} p(z_{n,t}|\varphi_t) p(w_{n,t}|z_{n,t},\beta_t)\right) d\varphi_t$$