# Life Cycle Cash Flows of Ventures 

Ravi Jagannathan (Kellogg, Northwestern)<br>Shumiao Ouyang (Princeton) Jiaheng Yu (Sloan, MIT)

January 5, 2020

## Summary: A New Measure

Normalized NPV, aka. the net present value of aggregate life cycle cash flows per dollar invested in the first funding round

- Discounted at zero discount rate: 2.15
- Discounted using Kaplan and Schoar PME: 0.88
- Discounted using Nagel and Korteweg GPME: 0.95


## Summary: A Policy Change

National Securities Markets Improvement Act (NSMIA) of 1996

- Increases supply of capital to ventures (Ewens and Farre-Mensa, 2019)
- We expect a structural break soon after 1996
- NPV of ventures should come down (to all investors)
- Ownership given up by entrepreneurs should come down
- We find empirical support


## Summary: Time-Varying Break-Even Time

Time to break-even for a value-weighted portfolio of all ventures started the first round in a given quarter
(a) Discouting: GPME


Figure: Break-even Time by the First-Round Time

## Summary: The Structural Break

Normalized NPV, before and after a structural break in Q2 of 1999

|  | Pre-Break | Post-Break |
| :--- | ---: | ---: |
| Zero Discount Rate | 5.29 | 1.02 |
| PME | 2.51 | 0.30 |
| GPME | 2.27 | 0.48 |

## Summary: Effect of the Increasing Capital Supply

Participation by more experienced VCs predicts successful exit.

Before the structural break, but not after.

## Summary: Effect of the Increasing Capital Supply

Participation by more experienced VCs predicts \# of patents filed.

Both before and after the structural break.

## Data Limitations: Missing Valuation Data


__ Fraction of Rounds with Nonmissing Amount Raised (Left)
__ Fraction of Rounds with Nonmissing Valuation (Left)
--- Number of Rounds (Right)

Figure: Fraction of Rounds with Nonmissing Data in Each Year

## Data Limitations: Solution

How we handle data limitations

- Examine first round to exit return to a hypothetical investor participating in all funding rounds
- Statistical model for missing values
- Assume that ventures existing for 12 or more years from the first funding round without exiting are dead


## An Illustration of the Methodology

| Year | 0 | 1 | 2 | 3 | 4 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Stage | Round 1 | Round 2 | Round 3 | Round 4 | Bankrupt |
| Amount Raised | 2 | 5 | 8 | 20 | n.a. |
| Post-Money Valuation | 10 | 20 | 40 | 80 | 8 |
| Market Return | $10 \%$ | $10 \%$ | $10 \%$ | $10 \%$ | $10 \%$ |
| Pre-Money Valuation | 8 | 15 | 32 | 60 | n.a. |
| Ownership Given Up | $20 \%$ | $25 \%$ | $20 \%$ | $25 \%$ | n.a. |
| Round-to-Round Return | $50 \%$ | $60 \%$ | $50 \%$ | $-90 \%$ | n.a. |
| Round-to-Exit Return | $-64 \%$ | $-76 \%$ | $-85 \%$ | $-90 \%$ | n.a. |
| Normalizd NPV (PME) | -3.07 |  |  |  |  |

- Normalizd NPV captures the net return to all equity holders

$$
-3.07=\frac{1}{10} *\left(-10-\frac{5}{1.1}-\frac{8}{1.1^{2}}-\frac{20}{1.1^{3}}+\frac{8}{1.1^{4}}\right)
$$

- We use the first-round pre-money valuation as a proxy for the amount of money invested by the entrepreneurs


## An Illustration of the Methodology

| Year | 0 | 1 | 2 | 3 | 4 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Stage | Round 1 | Round 2 | Round 3 | Round 4 | Bankrupt |
| Amount Raised | 2 | 5 | 8 | 20 | n.a. |
| Post-Money Valuation | 10 | 20 | . | 80 | 8 |
| Market Return | $10 \%$ | $10 \%$ | $10 \%$ | $10 \%$ | $10 \%$ |
| Pre-Money Valuation | 8 | 15 | . | 60 | n.a. |
| Ownership Given Up | $20 \%$ | $25 \%$ | . | $25 \%$ | n.a. |
| Round-to-Round Return | $50 \%$ | . | . | $-90 \%$ | n.a. |
| Round-to-Exit Return | . | . | . | $-90 \%$ | n.a. |
| Normalizd NPV (PME) | -3.07 |  |  |  |  |

- Normalizd NPV captures the net return to all equity holders

$$
-3.07=\frac{1}{10} *\left(-10-\frac{5}{1.1}-\frac{8}{1.1^{2}}-\frac{20}{1.1^{3}}+\frac{8}{1.1^{4}}\right)
$$

- We use the first-round pre-money valuation as a proxy for the amount of money invested by the entrepreneurs


## Risk Adjustment of Cash Flows

Generalized Public Market Equivalent (GPME)

- Korteweg and Nagel (2016) Stochastic Discount Factor

$$
\begin{equation*}
M_{t+1}=\exp \left(a-b r_{m, t+1}\right) \tag{1}
\end{equation*}
$$

where $r_{m, t+1}$ is the log cumulative return on the market portfolio since the first round

- PME (Kaplan and Schoar (2005)) is a special case

We use three specifications for discounting:

- "NoDisc": $a=0$ and $b=0$
- "PME" : $a=0$ and $b=1$
- "GPME" : $a=0.033$ and $b=1.444$


## The Rest of the Presentation

- Related Literature
- Data
- Facts about Venture Fundings over Time
- Aggregate Discounted Life-Cycle Cash Flows
- The Structural Break in 1999
- VC Experience and Performance


## Related Literature

See paper for full list of references.

- How to measure risk-adjusted returns to investing in ventures
- Kaplan and Schoar (2005), Korteweg and Nagel (2016), Cochrane (2005), Korteweg and Sorensen (2010)
- Whether VC investments outperform the market
- Harris, Jenkinson, and Kaplan (2014a), Harris, Jenkinson, and Kaplan (2015), Nanda and Rhodes-Kropf (2013)
- Whether experience of VCs matter
- Sorensen (2007), Du and Hellmann (2019), Bottazzi, Da Rin, and Hellmann (2008), Ewens and Farre-Mensa (2019), Harris, Jenkinson, Kaplan, and Stucke (2014b)


## Data

- Financing round data: VentureXpert
- Exit information
- SDC Merger and Acquisition, SDC Global New Issues
- Sample selection
- 16,396 US-based ventures
- 57,884 funding rounds from 1980 to 2018
- First round no later than 2006
- Cross-check ventures with missing exit events or exit values
- PitchBook, Bloomberg, NASDAQ, Crunchbase, Internet


## Data: Cross-Check

| SDC \Other Data | Alive | BR | IPO | MA | Total | Source |
| :---: | ---: | ---: | ---: | ---: | ---: | :--- |
|  | 48 | 440 | 8 | 389 | 885 | PitchBook |
|  | 202 | 97 | 0 | 37 | 336 | Bloomberg |
| Alive | 0 | 0 | 4 | 0 | 4 | Nasdaq |
|  | 30 | 16 | 1 | 6 | 53 | Crunchbase |
|  | 673 | 51 | 1 | 23 | 748 | Others |
| Total | 953 | 604 | 14 | 455 | 2026 |  |

## Data: Why First Round in 2006 or Earlier

| Outcome of Venture | Frequency | Fraction |
| :--- | ---: | ---: |
| Exit (IPO/MA/BR) in 12 Years | 8,050 | $49.1 \%$ |
| Exit (IPO/MA/BR) after 12 Years | 934 | $5.7 \%$ |
| Active with All Rounds in 12 Years | 7,194 | $43.9 \%$ |
| Active with Rounds after 12 Years | 218 | $1.3 \%$ |

## Actual Data vs. Data Filled with Imputation Models

| Amount Raised |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Group | Actual or Filled | \# Rounds | \% Rounds | Total Raised (\$ B) | \% Raised |
| A | Actual | 14,029 | $98.1 \%$ | 142.2 | $99.4 \%$ |
|  | Filled | 275 | $1.9 \%$ | 0.9 | $0.6 \%$ |
|  | Actual | 42,372 | $97.2 \%$ | 300.9 | $98.8 \%$ |
|  | Filled | 1,208 | $2.8 \%$ | 3.8 | $1.2 \%$ |
| First-Round Ownership Given Up |  |  |  |  |  |
| Group | Actual or Filled | \# Ventures | \% Ventures | Avg. 1st-Round OGU |  |
| A | Actual | 3,871 | $99.6 \%$ |  | $37.1 \%$ |
|  | Filled | 14 | $0.4 \%$ | $30.2 \%$ |  |
| B | Actual | Filled | 112 | $0.9 \%$ | $37.4 \%$ |
|  |  | 12,399 | $99.1 \%$ | $32.3 \%$ |  |

We separate all the ventures to two groups.

- Group A : with first-round post-money valuation data
- Group B: without first-round post-money valuation data


## Actual Data vs. Data Filled with Imputation Models

| M\&A Value |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Group | Actual or Filled | \# Ventures | \% Ventures | Total Value(\$ B) | \% Value |
| A | Actual | 909 | $52.4 \%$ | 142.8 | $77.9 \%$ |
|  | Filled | 826 | $47.6 \%$ | 40.5 | $22.1 \%$ |
| B | Actual | 2,244 | $50.2 \%$ | 369.2 | $78.0 \%$ |
|  | Filled | 2,224 | $49.8 \%$ | 104.4 | $22.0 \%$ |

We use OLS models to impute missing values of key variables.

## Trend: Increasing First-Round Amount Raised


——— Average 1st-Round Amount Raised (\$ M)

-     -         - 5th Percentile of 1st-Round Amount Raised (\$ M)
---25 th Percentile of 1st-Round Amount Raised (\$ M)
---75 th Percentile of 1st-Round Amount Raised (\$ M)
-     -         - 95th Percentile of 1st-Round Amount Raised (\$ M)

Figure: First-round Amount Raised by the Year of the Rounds

## Trend: Changing Venture Outcome Distribution



Figure: Fraction of Venture Outcomes by Year of the First Round

## Aggregate Discounted Cash Flows over Life Cycle

(a) GPME, Group AB

------ Zero Cash Flow Line

-     -         - Cumul. Inflow Amount (\$ B)
-     -         - Cumul. Outflow Amount (\$ B)
- Cumul. Net Inflow Amount (\$ B)

Figure: Cumulative Cash Flows by Quarters from the First Round

## NPV Normalized by First-round Cash Flow

(a) GPME, Group $A B$

_ NPV Normalized by First Outflow

-     -         -             - PV of Outflows, \$ B
-     -         - PV of Inflows, \$ B

Figure: Normalized Inflow, Normalized Outflow, and Normalized NPV

## Structural Break Test: Constant and $\operatorname{AR}(1)$ Models

| Normalized NPV | (1) | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Constant | $2.029^{* * *}$ | $1.864^{* * *}$ | $1.875^{* * *}$ | $0.901^{* *}$ | $0.897^{* * *}$ | $1.483^{* * *}$ |
|  | $(0.295)$ | $(0.276)$ | $(0.228)$ | $(0.346)$ | $(0.330)$ | $(0.261)$ |
| Normalized NPV ${ }_{t-1}$ |  |  |  | $0.533^{* * *}$ | $0.499^{* * *}$ | 0.135 |
|  |  |  |  | $(0.113)$ | $(0.116)$ | $(0.102)$ |
|  |  |  |  |  |  |  |
| Observations | 60 | 60 | 60 | 59 | 59 | 59 |
| R-squared | 0.000 | 0.000 | 0.000 | 0.282 | 0.246 | 0.030 |
| Sample | GroupA | GroupA | GroupAB | GroupA | GroupA | GroupAB |
| Discounting | PME | GPME | GPME | PME | GPME | GPME |
| Break Date | 1999 Q2 | 1999 Q2 | $1999 Q 2$ | 1999 Q2 | $1999 Q 2$ | 1999 Q2 |
| Chi-squared | 35.04 | 22.08 | 15.49 | 13.21 | 9.12 | 15.53 |
| DF | 1 | 1 | 1 | 2 | 2 | 2 |
| P Value | 0.000 | 0.000 | 0.002 | 0.025 | 0.134 | 0.009 |
| ${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$ |  |  |  |  |  |  |

We apply a Supremum Wald test (Andrews (1993)) for a structural break in the parameters of the model, at an unknown break date.

## Regression Analysis

- Change in Normalized NPV after the break.

Normalized $\mathrm{NPV}_{i}=\alpha \lg \left(1\right.$-st Round Amount Raised $\left.{ }_{i}\right)$ $+\beta$ Post-1999 $_{i}+\gamma_{\text {industry }_{i}}+\epsilon_{i}$

- Change in first round ownership given up after the break.

$$
\left.\begin{array}{l}
{\text { Ownership Given } U_{i}}=\alpha \lg (1 \text {-st Round Amount Raised } \\
i
\end{array}\right)
$$

- Predictability of experienced VC participation on NPV

$$
\text { Normalized }^{N_{P V}}{ }_{i}=\alpha \lg \left(1 \text {-st Round Amount } \text { Raised }_{i}\right)+
$$

$$
\beta_{1} \text { Top } 30 \mathrm{VC}_{i}+\beta_{2} \text { Top } 30 \mathrm{VC}_{i} \times \text { Post- } 1999_{i}+\gamma X_{i}+\epsilon_{i}
$$

- Predictability of experienced VC participation on innovation

$$
\begin{aligned}
& \text { Innovation }_{i}=\alpha \lg \left(1 \text {-st Round Amount } \text { Raised }_{i}\right)+ \\
& \beta_{1} \text { Top } 30 \mathrm{VC}_{i}+\beta_{2} \text { Top }_{30 \mathrm{VC}_{i} \times \text { Post- } 1999_{i}+\gamma X_{i}+\epsilon_{i}}
\end{aligned}
$$

## Change in Normalized NPV and Ownership Given Up

|  | $(1)$ <br>  <br>  <br>  <br> NPV Normalized by First Outflow | $(3)$ <br> 1st-Round | $(4)$ <br>  <br> $\lg (1$ st-Round Amount Raised) | $-2.909^{*}$ |
| :--- | :---: | :---: | :---: | :---: |
|  | $(1.536)$ | -1.282 | $0.0557^{* * *}$ | $0.0572^{* * *}$ |
|  | $-5.847^{* * *}$ | $(0.812)$ | $(0.00467)$ | $(0.00280)$ |
|  | $(2.093)$ | $-3.655^{* * *}$ | $-0.0278^{* *}$ | -0.0115 |
| Post-1999 | 1018 | $(1.250)$ | $(0.0136)$ | $(0.00902)$ |
| $N$ | 0.074 | 2590 | 1018 | 2590 |
| $R^{2}$ | Group A | 0.035 | 0.147 | 0.155 |
| Sample | Group A | Group A | Group A |  |
| Discounting | Yes | GPME | - | - |
| Industry FE | Yes | Yes | Yes |  |
| Top 30 VC Participation | Yes | No | Yes | No |

Standard errors in parentheses
${ }^{*} p<0.1,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

- Top 30 VC Participation: we separately conduct the regression on subsamples with and without Top 30 VC participation, to control for venture quality.


## VC Experience and Realized Normalized NPV

| VARIABLES | NPV Normalized by First Outflow |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lg$ (1st-Round Amount Raised) | $\begin{aligned} & -1.684^{* * *} \\ & (0.461) \end{aligned}$ | $\begin{aligned} & -1.617^{* * *} \\ & (0.469) \end{aligned}$ | $\begin{aligned} & -1.779^{* * *} \\ & (0.488) \end{aligned}$ | $\begin{aligned} & -1.042^{* * *} \\ & (0.215) \end{aligned}$ | $\begin{aligned} & -1.029^{* * *} \\ & (0.214) \end{aligned}$ | $\begin{aligned} & -1.139^{* * *} \\ & (0.226) \end{aligned}$ |
| Top 30 VC | $\begin{aligned} & 3.455^{* * *} \\ & (0.993) \end{aligned}$ | $\begin{aligned} & 5.677^{* * *} \\ & (1.746) \end{aligned}$ | $\begin{aligned} & 4.497^{* * *} \\ & (1.569) \end{aligned}$ | $\begin{aligned} & 2.307^{* * *} \\ & (0.573) \end{aligned}$ | $\begin{aligned} & 3.672^{* * *} \\ & (1.179) \end{aligned}$ | $\begin{aligned} & 2.940^{* *} \\ & (1.148) \end{aligned}$ |
| Top $30 \mathrm{VC} \times$ Post-1999 |  | $\begin{aligned} & -3.943^{* *} \\ & (1.919) \end{aligned}$ | $\begin{aligned} & -4.174^{* *} \\ & (1.908) \end{aligned}$ |  | $\begin{aligned} & -2.100^{*} \\ & (1.254) \end{aligned}$ | $\begin{aligned} & -2.349^{*} \\ & (1.237) \end{aligned}$ |
| WAVG VC Ratio of Exit |  |  | $\begin{aligned} & 5.830^{* *} \\ & (2.381) \end{aligned}$ |  |  | $\begin{aligned} & 4.860^{* * *} \\ & (0.916) \end{aligned}$ |
| WAVG VC Ratio of Next Round |  |  | $\begin{aligned} & -0.838 \\ & (1.091) \end{aligned}$ |  |  | $\begin{aligned} & -0.426 \\ & (0.582) \end{aligned}$ |
| WAVG VC Ratio of Bankruptcy |  |  | $\begin{aligned} & -0.615 \\ & (4.247) \end{aligned}$ |  |  | $\begin{aligned} & 2.481 \\ & (2.588) \end{aligned}$ |
| $\lg$ (WAVG VC \# Rounds) |  |  | $\begin{aligned} & 0.688 \\ & (0.568) \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & 0.279 \\ & (0.296) \\ & \hline \end{aligned}$ |
| $N$ | 3608 | 3608 | 3608 | 11899 | 11899 | 11899 |
| $R^{2}$ | 0.080 | 0.083 | 0.087 | 0.034 | 0.035 | 0.038 |
| Sample | Group A | Group A | Group A | Group AB | Group AB | Group AB |
| Discounting | GPME | GPME | GPME | GPME | GPME | GPME |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year $\times$ Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |

[^0]
## VC Experience and Innovation

| VARIABLES | Has Patent |  | $\lg (1+$ \# Patents) |  | $\lg (1+$ \# Citations $)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lg$ (1st-Round Amount Raised) | $\begin{aligned} & 0.000178 \\ & (0.00878) \end{aligned}$ | $\begin{aligned} & -0.00484 \\ & (0.00610) \end{aligned}$ | $\begin{aligned} & 0.0723 \\ & (0.0456) \end{aligned}$ | $\begin{aligned} & 0.0974^{* * *} \\ & (0.0254) \end{aligned}$ | $\begin{aligned} & 0.105 \\ & (0.0854) \end{aligned}$ | $\begin{aligned} & 0.194^{* * *} \\ & (0.0465) \end{aligned}$ |
| Top 30 VC | $\begin{aligned} & 0.0902^{* * *} \\ & (0.0280) \end{aligned}$ | $\begin{aligned} & 0.0531^{* * *} \\ & (0.0175) \end{aligned}$ | $\begin{aligned} & 0.209^{*} \\ & (0.123) \end{aligned}$ | $\begin{aligned} & 0.196 * * \\ & (0.0945) \end{aligned}$ | $\begin{aligned} & 0.684^{* *} \\ & (0.284) \end{aligned}$ | $\begin{aligned} & 0.446^{* *} \\ & (0.196) \end{aligned}$ |
| Top 30 VC $\times$ Post-1999 | $\begin{aligned} & -0.0425 \\ & (0.0337) \end{aligned}$ | $\begin{aligned} & -0.00141 \\ & (0.0152) \end{aligned}$ | $\begin{aligned} & -0.0127 \\ & (0.148) \end{aligned}$ | $\begin{aligned} & 0.0406 \\ & (0.0878) \end{aligned}$ | $\begin{aligned} & -0.219 \\ & (0.320) \end{aligned}$ | $\begin{aligned} & -0.0122 \\ & (0.170) \end{aligned}$ |
| WAVG VC Ratio of Exit | $\begin{aligned} & 0.0869 \\ & (0.0688) \end{aligned}$ | $\begin{aligned} & 0.0335 \\ & (0.0358) \end{aligned}$ | $\begin{aligned} & 0.0294 \\ & (0.239) \end{aligned}$ | $\begin{aligned} & 0.210 \\ & (0.207) \end{aligned}$ | $\begin{aligned} & -0.654 \\ & (0.812) \end{aligned}$ | $\begin{aligned} & 0.139 \\ & (0.277) \end{aligned}$ |
| WAVG VC Ratio of Next Round | $\begin{aligned} & 0.0853^{* *} \\ & (0.0406) \end{aligned}$ | $\begin{aligned} & 0.00120 \\ & (0.0227) \end{aligned}$ | $\begin{aligned} & -0.241 \\ & (0.214) \end{aligned}$ | $\begin{aligned} & 0.0123 \\ & (0.135) \end{aligned}$ | $\begin{aligned} & -0.0733 \\ & (0.446) \end{aligned}$ | $\begin{aligned} & 0.173 \\ & (0.304) \end{aligned}$ |
| WAVG VC Ratio of Bankruptcy | $\begin{aligned} & 0.294 \\ & (0.220) \end{aligned}$ | $\begin{aligned} & -0.0446 \\ & (0.118) \end{aligned}$ | $\begin{aligned} & 0.204 \\ & (0.686) \end{aligned}$ | $\begin{aligned} & 0.167 \\ & (0.455) \end{aligned}$ | $\begin{aligned} & -2.028 \\ & (2.702) \end{aligned}$ | $\begin{aligned} & 0.384 \\ & (1.312) \end{aligned}$ |
| $\lg$ (WAVG VC \# Rounds) | $\begin{aligned} & 0.0325^{*} \\ & (0.0188) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0419^{* * *} \\ & (0.00996) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.183^{* * *} \\ & (0.0599) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0698^{* * *} \\ & (0.0246) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.261 \\ & (0.207) \end{aligned}$ | $\begin{aligned} & 0.131 \\ & (0.0819) \end{aligned}$ |
| $N$ | 3608 | 11899 | 2039 | 6450 | 2039 | 6450 |
| $R^{2}$ | 0.112 | 0.090 | 0.126 | 0.096 | 0.144 | 0.114 |
| Sample | Group A | Group AB | Group A | Group AB | Group A | Group AB |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year $\times$ Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |

${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$

## Conclusion

- Return to ventures in the aggregate
- Focus on the collective return to all equity holders
- GPME/PME for risk adjustment
- Break-even time for a portfolio of all ventures
- Across all periods: Around 5 years
- A structural break in the Q2 of 1999
- Profitability declines
- Ownership given up by entrepreneurs decreases
- Experienced VCs' participation in first round
- Higher NPV
- Higher probability of successful exit
- More patent grants
- After the break, relationship between VC's experience and investment performance becomes weaker

Thanks!


[^0]:    Standard errors in parentheses
    ${ }^{*} p<0.1,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

