Bail-ins and Bailouts: Incentives, Connectivity, and Systemic Stability

Benjamin Bernard, Agostino Capponi, Joe Stiglitz

NTU, Columbia, Columbia

American Finance Association 2020 Annual Meeting San Diego

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility

Motivation

- In an interconnected system, shocks to one unit of system may (are likely to) have effects on others
 - But in some cases, impacts can be spread throughout the system
 - Net effect is limited (approaches zero with sufficient diversification)
- Advocates of global financial integration talk about the advantages of risk sharing
- But in the context of crises, they worried about contagion, the spread of "disease" from one entity to another

AIG Insurance was bailed out for \$85 billion one day after Lehman Brothers defaults (\$182 billion total). Troubled Asset Relief Program purchased assets in the size of \$426 billion.

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility	Conclusion
ls integrat	ion alw	ays desirable?			

- The intuition behind why integration is desirable was based on "convexity"
 - With convex technologies and concave utility functions, risk sharing is always beneficial
 - If technologies are not convex, then risk sharing can lower expected utility
 - Plenty of non-convexities in the real world
 - Bankruptcy costs (this paper)
 Filing of Lehman Brothers wiped out \$46 billion of its market value
 - Information (Radner-Stiglitz, Arnott-Stiglitz)
- Quarantines contain the spread of contagious diseases

- Even without *direct* financial market interlinkages, there can be extensive interdependencies through which a shock in one part of the system can be transmitted to others.
 - Liquidity crises are associated with forced sales of assets, leading to price declines

Bernanke estimated that Bear Stearns' rescue prevented a potential fire sale of nearly \$210 billion of Bear Stearns' assets

• Financial linkages, while they may enhance risk sharing, may increase these adverse effects.

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility	Conclusion
Main focus					

- This paper focuses on the implications of interconnectedness on private and public intervention policies
- Without bail-outs
 - Structure and amount of linkages affect systemic risk (Allen and Gale, 2001, Greenwald and Stiglitz, 2003, Acemoglu, Ozdaglar, and Tahbaz Salehi, 2011)
- But there had long been a view that it would be better to have bail-ins
 - Few successes (LTCM)
 - Key question: how to induce banks to participate
 - Banks will be hurt if there is not a bail-out after failures of counterparties
 - But is the threat of government not to bail out credible?
 - Each bank has incentive to free ride on the bail-ins of other banks

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility	Conclusion
Key results					

- Show that there may exist an optimal bail-in strategy, which takes into account costs of government funds and losses of banks
- When such a bail-in strategy exists, it is preferable to a bail-out
- Dense networks with intermediate size shocks make the bail-in strategy less credible because systemic risk is increased
 - Reverse the desirability of dense vs. sparse networks for intermediate size shocks
 - Calibration to data from 2018 EBA stress test shows that welfare losses in the sparsest network are lower than in the most dense network by more than 13.96% in the presence of intervention
 - Emphasize key role of government policy as well as the nature of the shocks in assessing desirability of alternative network structures

Figure: Welfare losses in a diversified (blue) and a concentrated network (red) in the presence (solid lines) and absence (dashed lines) of intervention.

- When no-intervention losses exceed costs of a public bailout (black dashed line), the government's threat to not intervene is not credible
- If the threat is credible, contributions are larger in the sparse network because free-riding incentives are weaker
- Without intervention or in a model with bailouts only, the diversified network is preferable unless the shock is too large

Bailout: Government provides liquidity through taxpayer money.

Example: Citigroup, AIG Insurance, and UBS, among others.

Bail-in: Creditors voluntarily forgive part of the debt in exchange for equity in the reorganized company.

Example: Long Term Capital Management was bailed-in in 1998. Under the supervision of the Federal Reserve Bank of New York, a total of 14 banks agreed to participate in a recapitalization plan.

Assisted/subsidized bail-in: Contributions from regulator and banks.

Example: Bear Stearns was sold to JP Morgan Chase for \$1.2 billion with a government protection of \$30 billion.

- N / A			

Model

Model of the Financial Network

Model Primitives and Asset Liquidation

Model

Balance sheet of bank i = 1, ..., n is described by:

- Bilateral exposures L^{ji} , denoting *i*'s liability to *j*.
- Financial commitments wⁱ by bank i with higher seniority than interbank liabilities (depositors' claims, wages, operating expenses).
- Bank *i*'s cash holdings *cⁱ*.
- Bank *i*'s investments of size *eⁱ* in projects/assets.

Each bank *i* can liquidate $\ell^i \in [0, e^i]$ to recover $\alpha \ell^i$ in cash, where

$$\alpha = d^{-1}(\ell) = \exp\left(-\gamma \sum_{i=1}^{n} \ell^{i}\right)$$

Network topology captured by relative liability matrix

$$\pi^{ji} = \frac{L^{ji}}{L^i},$$

where $L^i = \sum_j L^{ji}$ are bank *i*'s total liabilities.

A clearing payment vector $p = (p^1, \ldots, p^n)$ is a solution to

$$p^{i} = \begin{cases} L^{i} & \text{if } c^{i} + \alpha_{p}\ell_{p}^{i} + \sum_{j} \pi^{ij}p^{j} \ge L^{i} + w^{i}, \\ \left(\beta(c^{i} + \alpha_{p}\ell_{p}^{i} + \sum_{j} \pi^{ij}p^{j}) - w^{i}\right)^{+} & \text{otherwise.} \end{cases}$$
(1)

For clearing payment vector p, we call (p, ℓ_p, α_p) a *clearing equilibrium*.

Given (p, α) , welfare losses are equal to

$$W(\boldsymbol{p}, \alpha) = (1 - \alpha) \sum_{i=1}^{n} e^{i} + (1 - \beta) \sum_{i \in \mathcal{D}(\boldsymbol{p})} \left(c^{i} + \alpha e^{i} + \sum_{j=1}^{n} \pi^{ij} \boldsymbol{p}^{j} \right),$$

where
$$\mathcal{D}(p) := \left\{ i \mid p^i < L^i \right\}$$

Lemma

For any financial system $(L, \pi, e, c, w, \gamma, \beta)$, there exists a clearing equilibrium $(\bar{p}, \bar{\alpha}, \bar{\ell})$ that Pareto-dominates all other clearing equilibria.

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility	Conclusion

Endogenous Intervention

An assisted bail-in (b, s) consists of:

- Contribution $b^i \ge 0$ by every bank *i*,
- Subsidy $s^i \ge 0$ to bank *i*,
- Government's contribution is $\sum_i (s^i b^i) \ge 0$.

Note: Includes bailouts and privately backed bail-ins as special cases.

After transfers:

- Liabilities are cleared with clearing equilibrium (p
 (b, s),
 (b, s),
 (b, s))
 of the financial system (L, π, e, c + s, w + b, γ, β).
- Welfare losses are equal to

$$W_\lambda(b,s) := Wig(ar p(b,s),ar lpha(b,s)ig) + \lambda \sum_{i=1}^n (s^i-b^i).$$

Negotiation as a 3-stage process:

- 1. Regulator proposes an assisted bail-in (b, s).
- 2. Each bank *i* with $b^i > 0$ chooses $a^i \in \{0, 1\}$, indicating whether or not it agrees to participate.
- 3. Regulator chooses $r \in \{\text{bail-in, bailout, no intervention}\}$.

Goal: Characterize subgame Pareto efficient equilibia.

- Regulator moves last: lack of commitment power.
- For talk: restrict attention to complete rescues.

Given proposal (b, s) and response *a*, regulator chooses between:

- "bail-in": welfare losses $W_{\lambda}(ab, s)$.
- "bailout": welfare losses W_P in an optimal bailout.
- "no intervention": welfare losses $W_N = W_\lambda(0,0)$.

Lack of commitment power:

- No-intervention threat is credible if and only if $W_N \leq W_P$.
- Banks are willing to participate only if the threat is credible.

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility	Conclu

Incentives & Equilibrium Bail-In

Lemma

Let (b, s) be a bail-in proposal. In an equilibrium a, bank i with $b^i > 0$ accepts if and only if:

1. The no-intervention threat is credible,

2.
$$b^i - s^i \leq \sum_j \pi^{ij} (L^j - p_N^j) + (\bar{\alpha}(b, s, a) - \alpha_N) e^i$$
,

3.
$$W_{\lambda}(b,s,(0,a^{-i})) \geq W_N$$
.

Bank *i* is willing to contribute only if

- Its net contribution is smaller that its exposure to default cascade
- There is no bail-in coordinated without bank *i* (no free-riding)

Conclusion

Equilibrium Intervention

Let $\eta(\alpha(\ell), \ell)$ be the vector of largest incentive-compatible contributions for a given liquidation decision ℓ .

Theorem

For any ℓ , let $i_1(\ell), i_2(\ell), \ldots$ be a decreasing order of banks according to $\eta^i(\alpha(\ell), \ell)$. Let $C(\ell) = \{i_1(\ell), \ldots, i_{m(\ell)}(\ell)\}$, where $m(\ell)$ is smallest k with

$$W_P - g(lpha_P) + g(lpha(\ell)) - \lambda \sum_{j=1}^k \eta^{i_j(\ell)}(lpha(\ell), 0) < W_N.$$

- 1. If $W_P < W_N$, the unique SPE equilibrium is a public bailout.
- 2. If $W_N \leq W_P$, there exists a set of liquidation decisions \mathcal{L}_* such that in any SPE equilibrium, an assisted bail-in with $b^i = \eta^i(\alpha(\ell), \ell)$ for $i \in \mathcal{C}(\ell)$ and some $\ell \in \mathcal{L}_*$ is proposed and accepted by all banks.
 - Clearing equilibrium (payments and liquidation value) and welfare losses are unique.

Welfare losses of optimal bail-in are of the form

$$W_E^* \approx W_P - \sum_{i \in \mathcal{C}} \eta^i(\alpha_*, 0).$$

- Contributions are larger in sparser networks.
- Fewer banks can be included in bail-in due to free-riding condition.

Model

Credibility of the Regulator's Threat

Amplification of the Shock

Lemma

Let $S_0 = \sum s_0^i$ be the aggregate shortfall of banks after the shock, and S_N the aggregate losses to all creditors after liabilities are cleared. The threat is credible if and only if

$$S_N - S_0 \leq \lambda S_0 + \sum_{i=1}^n (e^i - s_0^i) + g(\alpha_P),$$

where g is convex and trades-off taxpayer contributions with liquidation losses

- Larger weight λ to tax-dollars improves credibility of threat
- Enough illiquid assets to absorb the shock S_0 improves credibility
- Large shocks and dense interconnections reduce credibility

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility	Conclusion
Throughpu	ıt				

- Total throughput of a bank *i* measures exposure of solvent junior creditors and senior creditors to a shock hitting *i*.
- Let C_N ⊆ D_N denote the set of defaulting banks which repay their senior creditors in full. The *throughput* of a bank i ∈ C_N to a set of banks S is

$$\begin{aligned} \theta_{\mathcal{S}}^{i}(\beta,\pi) &:= \sum_{j \in \mathcal{S} \setminus \mathcal{D}_{N}} \pi^{\{j\}\mathcal{C}_{N}} \big(I - \beta \pi^{\mathcal{C}_{N},\mathcal{C}_{N}}\big)^{-1} \rho_{i}^{\mathcal{C}_{N}} + \\ & \beta \sum_{j \in \mathcal{S} \cap \mathcal{D}_{N} \setminus \mathcal{C}_{N}} \pi^{\{j\}\mathcal{C}_{N}} \big(I - \beta \pi^{\mathcal{C}_{N},\mathcal{C}_{N}}\big)^{-1} \rho_{i}^{\mathcal{C}_{N}} \end{aligned}$$

where $\rho_i^{\mathcal{C}_N}$ is a vector with entry 1 for bank *i* and 0 otherwise

• The total throughput of bank $i \in C_N$ is then defined as $\theta^i(\beta, \pi) := \theta^i_{\{1,...,N\}}(\beta, \pi).$

ł

Figure: Let π_c and π_r denote the the complete and ring interbank networks, respectively. Let $\pi_{\mu} := \mu \pi_c + (1 - \mu) \pi_r$. Left chart: total throughput $\theta^1(\beta, \pi_{\mu})$ when $C_N = D_N = \{1, 2\}$. Right panel: total throughput $\theta^1(\beta, \pi_{\mu})$ when $C_N = D_N = \{1, 2, 3, 4, 5\}$.

• We identify the *total throughput* as a sufficient statistic for the credibility $W_P - W_N$ of no-intervention threat

Lemma

Conditional on

- (i) The banks' levels of solvency under no-intervention (the sets D_N, C_N, and *I*_N, where *I*_N is the set of illiquid but solvent banks),
- (ii) The total value of banks' claims on solvent banks,

 $W_P - W_N$ depends on π only through $\sum_{i \in C_N} \theta^i_{\mathcal{I}_N}(\beta, \pi)$ and $\sum_{i \in C_N} \theta^i(\beta, \pi)$. Moreover, the total throughput of any bank is non-decreasing in β and takes values in [0, 1].

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility	Conclusion
Compariso	n Retv	ween Networks			

I.

	π_2 not credible	π_2 credible
π_1 not credible	equal	lower in π_2
π_1 credible	lower in π_1	

Lemma

Consider two financial networks (L, π_1, e, c, w) and (L, π_2, e, c, w) . If the threat is credible in π_1 but not in π_2 , then equilibrium welfare losses are lower in π_1 than in π_2 .

 Motivation
 Model
 Endogenous Intervention
 Incentives & Equilibrium Bail-In
 Credibility
 Conclusion

 Network
 Calibration and Welfare
 Comparison
 Com

- Analytical comparison not possible if threat is credible in both networks
- Analyze dependence of equilibrium welfare losses on network structure using data from 2018 EBA stress test
- Fit a sparse and a dense network π_s and π_d , respectively, to data
- Analyze welfare losses as a function of $\pi_{\mu} := \mu \pi_s + (1-\mu)\pi_d$ for $\mu \in [0,1]$
- Shock to assets of HSBC, Barclays, and Deutsche Bank by an amount equal to their cash holdings
- No contagious defaults in the most dense network

Figure: Welfare losses and welfare impacts of banks' contributions are shown relative to the welfare losses W_P in the complete bailout. Contributions of banks are shown cumulatively so that the contributed amount of a single bank corresponds to the distance between two consecutive lines.

- Equilibrium welfare losses in the sparsest network are 5.2% lower than in the most dense networks
- Without intervention, they would be 31.2% larger.

Sparse connections may reduce equilibrium welfare losses:

- The threat is credible for a larger range of shock sizes.
- Bail-in contributions by banks are larger.

Policy implications:

- Sparsely connected networks may be socially preferable
 - Limiting exposures towards individual counterparties may lead to networks which are too diversified.
- Tax on interconnectedness to prevent banks from diversifying their exposures beyond a certain limit.

- N /			

Model

Conclusion

Motivation	Model	Endogenous Intervention	Incentives & Equilibrium Bail-In	Credibility	Conclusion
Conclusion					

Network model for financial intervention, where:

- There are two channels of contagion: counterparty and price-mediated contagion.
- The structure of intervention plan arises endogeneously as the result of strategic interactions between regulator and banks

Equilibrium intervention plan:

- Depends fundamentally on credibility of regulator's threat.
- Credibility depends on network structure only through total through put of defaulting banks
- Sparse connections are conducive to a bail-in:
 - Reduced incentives for free-riding lead to larger contributions by banks.
 - For low recovery rates or large shocks: credibility is enhanced.

Conclusion

Thank you!

Price-Mediated Contagion

Given (p, α) , bank *i* liquidates

$$\ell^{i}(\boldsymbol{p},\alpha) = \min\left(\frac{1}{\alpha}\left(\boldsymbol{L}^{i} + \boldsymbol{w}^{i} - \boldsymbol{c}^{i} - \sum_{j} \pi^{ij} \boldsymbol{p}^{j}\right)^{+}, \ \boldsymbol{e}^{i}\right).$$
(2)

Lemma

For any interbank repayments p, there exists (α_p, ℓ_p) satisfying (1) and $\alpha = d^{-1}(\ell)$ simultaneously such that $\alpha \leq \alpha_p$ for any other solution (α, ℓ) .

In a complete bailout:

Minimal/maximal subsidies are

$$s_L = (L + w - c - \alpha_L \ell_L - \pi L)^+, \qquad s_0 = (L + w - c - \pi L)^+.$$

- s_L and s_0 support clearing equilibria (L, ℓ_L, α_L) and (L, 0, 1), resp.
- In a bailout with subsidies $s_L \leq s \leq s_0$, welfare losses are equal to

$$W_{\lambda}(s) = \sum_{i=1}^{n} (e^i + \lambda s_0^i) + g(\bar{\alpha}(s)),$$

where $g(\alpha) = \alpha \left(\frac{\lambda}{\gamma} \ln(\alpha) - \sum_{i=1}^{n} e^{i}\right)$.

- Regulator is indifferent between bailing and not bailing out the banks at the critical value $\alpha_{ind} = \exp\left(\frac{\gamma}{\lambda}\sum_{i=1}^{n}e^{i}-1\right)$.
- When α is very small, social losses from fire sales are very large, and a bailout is desirable.

Lemma

The liquidation value in an optimal bailout is $\alpha_P := \max(\min(\alpha_{ind}, 1), \alpha_L)$. Subsidies *s* are such that $s_L^i \leq s^i \leq s_0^i$ and

$$\sum_{i=1}^{n} s^{i} = \sum_{i=1}^{n} s_{0}^{i} + \frac{\alpha_{P} \ln(\alpha_{P})}{\gamma}.$$

Let W_P denote the resulting welfare losses.

- Regulator wants to minimize free-riding incentives. Hence, he includes banks that are most exposed to contagion (for which η is largest).
- However, $\eta(\alpha, \ell)$ depends on which set C of banks that he includes.
- In equilibrium, contributing banks C^* are the most-exposed banks for liquidation value α^* and liquidation decision ℓ , such that contributions by banks in C^* induces liquidation value $\alpha *$ and vector of liquidation ℓ .
- C^* and α^* are generically unique, but ℓ is not (α^* only determines total liquidation, but not distribution of liquidation across banks).

- There is a threshold η(α, 0), up to which contributions are incentive-compatible and do not require asset liquidation.
- Up to η(α, 0) each dollar contributed by banks reduced required taxpayer contributions by 1\$
- Above η(α, 0) additional contributions require liquidation and those impact welfare through the trade-off g(α)
- Whether liquidation of assets is welfare enhancing depends on liquidity of asset
- Finally, even if liquidation may first-order decrease welfare, it may lead to an overall increase in welfare if it reduces free-riding incentives.

- Throughput increases as the connectivity of defaulting banks increases.
- In sparsely connected networks, the regulator's threat may not be credible for small shocks, but the credibility improves as the shock grows larger.
- Because the total throughput is small, the systemic threat does not increase much with the size of the shock.
- By contrast, in more diversified network structures, small losses can be well absorbed and the threat not to intervene is credible.
- However, because the total throughput is large, the threat becomes less credible as the shock size increases.

- For a bank $i \in C_N$, the amplification of losses due to negative feedback loops between defaulting banks is captured through the Leontief matrix $(I \beta \pi^{C_N, C_N})^{-1} = \sum_{k=0}^{\infty} (\beta \pi^{C_N, C_N})^k$
- Term k in the sum corresponds to the propagation of losses through liability chains in C_N of length k
- After accounting for feedback effects and bankruptcy losses, the exposure of a solvent creditor to a shock on bank *i*'s assets is π^{ji} for a solvent bank *j* and $\beta \pi^{ji}$ for the senior creditors of a bank $j \in \mathcal{D}_N \setminus \mathcal{C}_N$.

Subgame Pareto Efficient Equilibria (SPEE)

Definition

A strategy profile (b, s, a, r) is subgame Pareto efficient if it is subgame perfect and after any proposal (b, s), there is no other continuation equilibrium (\tilde{a}, \tilde{r}) of the accepting/rejecting subgame that Pareto dominates (a, r) for the contributing (non-fundamentally defaulting) banks and the regulator

- Capture the interactions between the regulator and the contributing banks, aiming at finding a suitable resolution outcome.
- Bail-in of LTCM: Peter Fisher of the FRBNY sat down with representatives of LTCM's creditors to find an appropriate solution

Lemma

For any (b, s), the accepting/rejecting subgame has an equilibrium.

For a given proposal (b, s), a continuation equilibrium a is called

- an accepting equilibrium if r(b, s, a) = "bail-in",
- a *rejecting equilibrium* otherwise.

Lemma

All accepting equilibria are subgame Pareto efficient (SPE). Rejecting equilibria are SPE if and only if there exists no accepting equilibrium.