Do Wages Fall When Women Enter an Occupation?

Jorgen Harris

12/26/2019

Motivation

Occupation and industry account for 51% of gender wage gap (Blau & Kahn 2017)

- Hypothesis 1: Women choose less demanding occupations (Becker 1985)
 - career interruptions (Görlich & De Grip 2007), flexible hours (Goldin 2014), less competitive (Niederle & Vesterlund 2007)
- Hypothesis 2: Women discriminated against in high-paying occupations, crowding female occupations (Bergmann 1974)
 - promotion (Maume 1999), mentorship (Chen et. al 2015), sexual harassment (Parker 2018)
- Hypothesis 3: The presence of women in an occupation lowers wages
 - Levanon, England and Allison (2009), Goldin and Katz (2011)

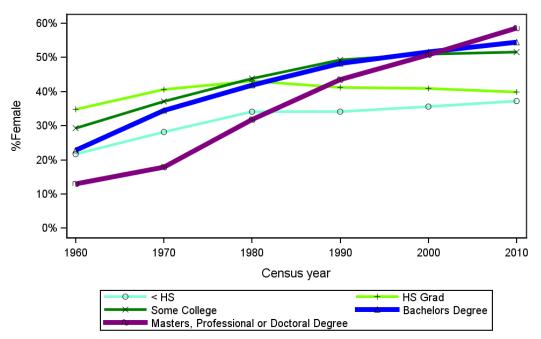
I ask:

What is the effect of an increased fraction female in an occupation on wages?

Ideal Experiment

- Divide occupations into treatment and control
- Retire random subset of male workers, clone random subset of female workers to replace males
- Allow workers to enter or exit occupations
- Measure wages for men and women
 - Effect on average wage of occupation, not on wage of individual workers.
 - Effect of gender + different average characteristics

Causal Mechanisms

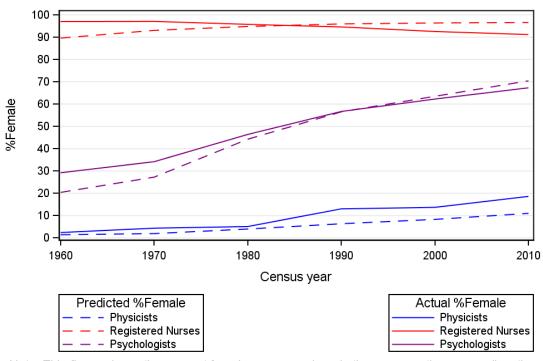

- Declining prestige/Discrimination against "Women's Work"
 - Rise in % female may signal decline in difficulty of occupation (Goldin 2014).
 - Lowers average wage by:
 - Lower demand for occupation (devaluation)
 - Disamenity for high-skilled workers → change in workforce composition
- Changing amenity value of the occupation
 - Women value some workplace amenities more than men (Pallais 2017)
 - Provision of amenities responsive to worker demand (Goldin and Katz 2011)
 - More women → higher amenity provision, lower wage (Lee and Thompson 2018)
- Suggestive evidence for both mechanisms

Empirical Strategy

Empirical Strategy

- Panel regression of fraction female on log mean wage
 - Positive Bias: Increased education & workforce engagement
 - Negative Bias: Occupations become less demanding
- Shift-share instrument: increased women's work and education, 1960-2010
- Estimates % female if occupation choices stayed the same, education and labor force decisions changed.
 - Instrument defined from work and education of young workers (22-35)
 - Measure wages of older workers (45-65)
- Data Source: Decennial Census and 2010 American Community Survey

% Female of Young Workers by Education

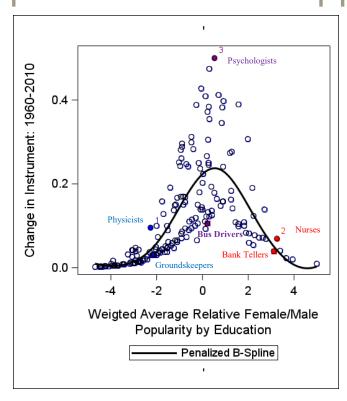

Note: This figure shows the percent of US workers of each education type aged 22-35 who are female in each census year from 1960-2010. Definitions of Education Type are available in the data appendix.

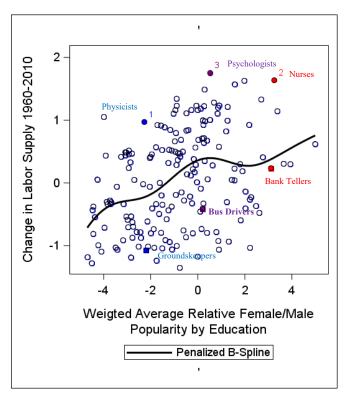
Physicists, Psychologists and Nurses in 1980

	%of Workers With Ed	Workers /10,000 Females	Workers /10,000 Males	Female /Male Ratio
Physicists and astronomers				
2: Associates Degree	0	0	2	0.2
3: Associates Degree	8	1	2 5	
4: College Degree	18			0.1
5: Advanced Degree	71	3	37	0.1
Psychologists				
3: Associates Degree	5	3	2	1.1
4: College Degree	15	15	9	1.7
5: Advanced Degree	76	178	105	1.7
Registered nurses				
3: Associates Degree	55	740	24	30.4
4: College Degree	30	568	27	21.3
5: Advanced Degree	6	345	24	14.2

^{*}Notes: $\gamma_{a,1980}$ j gives the percent of workers in occupation j with degree a in 1980, $\omega_{a,1980}$ gives the number/10,000 of women with degree a working in occupation j, and $\omega_{a,1980}$ gives the /10,000 of men with degree a working in occupation j. $\Omega_{a,1980}$ gives the ratio ($\omega_{a,1980}$)/M)/($\omega_{a,1980}$).

Physicists, Psychologists and Nurses


Note: This figure shows the percent female among workers in three occupations, as well as the instrumented percent female for young workers in those occupations



Labor Supply

- Increased women's work and education creates labor supply shock in female-dominated occupations.
- Control: share of labor force in occupation if:
 - fraction working in occupation, given education and gender fixed
 - fraction of workforce with education and gender vary
- Labor Supply grows in occupations that hire educated female workers
- Illustrate by showing log average gender ratio of each education group.

Gender ratio on change in predicted fraction female, predicted labor supply

Estimation Equations

$$f_{j,t} = \alpha + \beta_{1k}\widetilde{f_{j,t}} + \beta_{2fk}W_{f,j,t} + \beta_{2mk}W_{m,j,t} + \beta_{3k}\widetilde{l_{j,t}} + \delta_{fk}X_{f,j,t} + \delta_{mk}X_{m,j,t} + \gamma_{jk} + \sigma_{tk} + \varepsilon_{j,t}$$

$$W_{g,j,t+k} = \alpha + \vartheta_{1k}\widehat{f_{j,t}} + \vartheta_{2fk}W_{g,j,t} + \vartheta_{2mk}W_{m,j,t} + \vartheta_{3k}\widetilde{l_{j,t}} + \delta_{fk}X_{f,j,t} + \delta_{mk}X_{m,j,t} + \gamma_{jk} + \sigma_{tk} + \mu_{g,j,t}$$

- Where:
- For $k=\{0,10,20\}$, $g=\{m,f\}$:
- $\widetilde{f_{i,t}}$ =Instrument
- $\widetilde{l_{i,t}}$ =Labor supply index
- $X_{i,t}$ =Time-varying controls, plus time-varying effect of base-year education level
- γ_{ik} , σ_{tk} = occupation, year FE

Results

Main Contemporaneous Results

	Log Female Wage (t)		Log Male Wage		
2SLS:	(1)	(2)	(3)	(4)	
Fraction	-0.86*	-0.72**	-0.92***	-0.82***	
Female	(0.59)	(0.39)	(0.34)	(0.28)	
Labor		-0.04		-0.03	
Supply		(0.10)		(0.05)	
First-Stage:					
Fraction	0.51 ***	0.72***	0.51 ***	0.72***	
Female	(0.11)	(0.12)	(0.11)	(0.12)	
Sample Size	1816	1816	1816	1816	

^{*}Note: Standard errors are in parenthesis and are clustered at the occupation level. *** p<0.01, ** p<0.05, * p<0.10

Main Results: 10-Year Lag

	Log Female Wage (t+10)			Log Male Wage (t+10)		
2SLS:	(1)	(2)	(3)	(4)	(5)	(6)
Fraction	-2.09***	-1.47***	-1.30***	-1.12 ***	-1.01***	-0.87***
Female	(0.71)	(0.42)	(0.42)	(0.40)	(0.30)	(0.27)
Labor		-0.23**	-0.22 **		-0.04	-0.03
Supply		(0.11)	(0.11)		(0.08)	(80.0)
Male			0.23 **			0.13**
Wage			(0.1)			(80.0)
Female			-0.01			0.06**
Wage			(0.08)			(0.04)
Sample						
Size	1456	1456	1456	1466	1466	1466

^{*}Note: Standard errors are in parenthesis and are clustered at the occupation level.

^{***} p<0.01, ** p<0.05, * p<0.10

Main Results: 20-year Lag

	Female Wage (t+20)			Male Wage (t+20)		
2SLS:	(1)	(2)	(3)	(4)	(5)	(6)
Fraction	-1.16 **	-0.78 **	-0.86 ***	-0.43	-0.46*	-0.45*
Female	(0.52)	(0.33)	(0.34)	(0.35)	(0.31)	(0.31)
		-0.16**	-0.16**		0.01	0.02
Labor Supply		(0.09)	(0.09)		(0.09)	(0.08)
			0.02			-0.09
Male Wage			(0.08)			(0.09)
			0.02			-0.09
Female Wage			(80.0)			(0.09)
Sample Size	1097	1097	1097	1116	1116	1116

^{*}Note: Standard errors are in parenthesis and are clustered at the occupation level. p<0.01, ** p<0.05, * p<0.10

16

Main Tests of Validity

- Major Concern: Base-year gender shares related to changes in returns to skills, demand, etc.
- Control for Skill Requirements: Control for time-varying effects of Math/Analyitical Skill, Social Skill, Routine skills and service requirements of each occupation (Autor, Levy and Murnane, 2017)
- Control for Time Lags: Magnitude of effects unchanged by adding 10 and 20 year leads of instrument, but large standard errors.

Conclusion

Conclusions

Effect of increased % female on wage is large and robust

- Not fully accounted for by labor supply
- Effects large relative to cross-sectional relationship

Broader implications:

- Lower return to preferences/skills associated with female occupations
- Harder to close wage gap by changing women's occupation choice
- Occupations change in response to worker characteristics

Thank you!!

- Jorgen Harris
- jmh544@cornell.edu
- Jorgenharris.com