

Welfare Analysis under Probabilistic Choices in a Rational Expectations Equilibrium Model

Xue-Zhong (Tony) He, PhD¹; Lei Shi, PhD²; Marco Tolotti, PhD³ ¹University of Technology Sydney, ²Macquarie University, ³Ca'Foscari University of Venice

S S S S S

Università Ca'Foscari Venezia

The paper in a nutshell

- More **informed trading** makes price more informative. \bullet
- When costly **information acquisition is certain**, this distorts risk-sharing, **reduces** risk and return trade-off and hence **social welfare**.
- However, when information acquisition is uncertain and traders make strategic choices about the probability of observing costly information, more informed trading generates a **positive asymmetric-information-effect** on the benefit of informed comparing to uninformed.

Information acquisition uncertainty provides traders an opportunity to improve their ex-ante welfare in more efficient markets.

Welfare Analysis

Proposition. In equilibrium, the welfare is increasing, $W'(\lambda) \ge 0$, if and only if

 $\frac{V_U'(\lambda)}{V_U(\lambda)} = \frac{-\xi_U'(\lambda)}{1+\xi_U(\lambda)} \le \frac{1}{2} \frac{[1-2\lambda\gamma(\lambda)][\gamma(\lambda)+\lambda\gamma'(\lambda)]}{[1-\lambda\gamma(\lambda)]^2};$

In particular, $W'(0) \ge 0$, if and only if

 $\frac{V_U'(0)}{V_U(0)} = \frac{n\xi_0}{1+\xi_0} \le \frac{1}{2}\gamma(0) = \frac{1}{2}\left(1 - \frac{1}{\sqrt{1+n}}\right).$

> The expected utility and Sharpe ratio decrease faster when the initial Sharpe ratio ξ_0 in the no-informed-trading equilibrium is relatively high. \succ The risk-return effect must be weak (when n and ξ_0 are small).

Introduction

Information acquisition is certain:

- In Grossman and Stiglitz (1980), informed trading reduces welfare for two reasons: *Hirshleifer effect* and *risk-return effect*.
- "The common theme of both channels is that disclosure harms investors through destroying trading opportunities" (Goldstein & Yang, 2017).
- The only Pareto-efficient equilibrium is the *no-informed-trading equilibrium*.

Information acquisition uncertainty:

- A trader may decide to purchase an analyst report, hoping to obtain some valuable information about the fundamental value of the firm.
- *Ex-post,* the report could turn out to be either informative or completely useless.
- However, *ex-ante*, the trader expects a higher probability of becoming informed by paying more for a more valuable report.
- Therefore information acquisition is uncertain and traders make a decision to increase the probability of observing the information.

Asymmetric-information-effect:

- *information acquisition uncertainty* and *probabilistic choices* (Mattsson & Weibull, 2002) in the standard REE model leads to a positive *asymmetric information effect* on welfare.
- It can overcome the negative risk-return and Hirshleifer effects and improve

 \succ Lower ξ_0 and less precise signal n weaken the risk-return effect, improving welfare.

Corollary. In equilibrium, (i) if $\xi_0 < \frac{2}{13}$, then W'(0) > 0; (ii) if $\xi_0 > \frac{1}{3}$, then W'(0) < 0.

- \succ The trading opportunities can be measured by the Sharpe ratio ξ_0 .
- Informed trading improves the welfare for low ξ_0 , but worsens it for high ξ_0
- The positive asymmetric-information-effect is more likely to dominate the riskreturn effect at low level of informed trading, thus improving welfare.
- \succ The relationship between welfare and λ is hump-shaped, leading to a unique Pareto-optimal state, $\lambda \in (0, 1)$, where traders' welfare is maximized.
- When the noise demand is endogenized by introducing trader-specific endowment shocks, there can be multiple Pareto-optimal equilibria
 - information acquisition is welfare-reducing for traders with large endowment shocks, i.e., hedger, because the Hirshleifer effect dominates.
 - information acquisition can be welfare improving for speculators with small endowment shocks, if asymmetric-information effect dominates.

Model and Equilibrium

- > A continuum of homogenous traders investing in a risk free asset and a risky asset with payoff $\tilde{D} = d + \tilde{\theta} + \tilde{\epsilon}, \tilde{\theta} \in N(0, v_{\theta}), \tilde{\epsilon} \in N(0, v_{\epsilon})$.
- > Two stages of the model:
 - \succ Each trader chooses strategically a probability p_i^* to become informed. As a result, a certain (random) fraction λ of traders becomes informed.
 - \succ Each trader forms an optimal portfolio conditional on his information. $\max_{p_i} U(p_i; \lambda) = [p_i V_I(\lambda) + (1 - p_i) V_U(\lambda)] e^{\alpha \mu c(p_i)};$ $V_i(\lambda) = \max_{x_i} E(E(-e^{-\alpha x_i^*(\theta, P)(D - P)} | \theta, P)) = -\frac{1}{\sqrt{1 + \xi_i(\lambda)}}; \qquad i = I, U.$
- \succ The *equilibrium fraction of informed traders* λ is determined by a Nash equilibrium and the *equilibrium price* is determined by market clearing:

$$\begin{split} \lambda &= g^{-1} \left(\frac{1}{\alpha \mu} \frac{\gamma(\lambda)}{1 - \gamma(\lambda)} \right); \qquad \tilde{P} = d + b_{\theta} \tilde{\theta} - b_{z} \tilde{z}; \qquad \gamma(\lambda) = 1 - \frac{V_{I}(\lambda)}{V_{U}(\lambda)}; \\ b_{\theta} &= \frac{\lambda \bar{v}}{v_{\epsilon}}; b_{z} = \alpha \bar{v}; \quad \frac{1}{\bar{v}} = \frac{\lambda}{v_{\epsilon}} + \frac{1 - \lambda}{v_{U}}; v_{U} = v_{D} \left(1 + \frac{n\lambda}{\xi_{0}} \right); n = \frac{v_{\theta}}{v_{\epsilon}}; \xi_{0} = \alpha^{2} v_{z} v_{D}. \end{split}$$

Welfare Analysis

 $W(\lambda) = U(\lambda, \lambda) = \overline{V}(\lambda)e^{\Phi(\lambda)},$

$$\Phi(\lambda) = \frac{c(\lambda)}{\gamma(\lambda)} \frac{\gamma(\lambda)}{\gamma(\lambda)}$$

Policy Implications

- Sylevelling the playing field, i.e., reducing information asymmetry by making information acquisition more costly, is not always Pareto-optimal, especially for speculators who provide liquidity.
- No-informed-trading equilibrium is more likely to be Pareto-optimal in markets with relatively high Sharpe ratios (e.g., developing and emerging markets).
- Informed-trading equilibrium is more likely to be Pareto-optimal in markets with relatively low Sharpe ratios (e.g., developed markets).
- Information acquisition as a probabilistic choice can have a positive social value.

Conclusions

Investors facing information acquisition uncertainty make strategic probabilistic

$\overline{V}(\lambda) = \lambda V_I(\lambda) + (1 - \lambda) V_U(\lambda);$ $c'(\lambda) 1 - \lambda \gamma(\lambda)$

Welfare improvement decomposition:

risk-return effect + asymmetric-information effect+ marginal cost: $\frac{W'(\lambda)}{-W'(\lambda)} = \frac{\lambda V_I'(\lambda) + (1-\lambda)V_U'(\lambda)}{\bar{V}(\lambda)} + \frac{V_I(\lambda) - V_U(\lambda)}{\bar{V}(\lambda)} + \left[-\Phi'(\lambda)\right]$

In Nash equilibrium, when the asymmetric-information-effect dominates the Hirshleifer and risk-return effects, the ex-ante welfare can potentially be improved from the no-informed-trading equilibrium.

- choices about observing a costly private signal about the risky asset.
- ✓ More informed trading, by resolving payoff uncertainty, makes price more informative but reduces the Sharpe ratio and distorts risk-sharing.
- ✓ However, due to information acquisition uncertainty, traders who become informed receive a net benefit, which can dominate the aforementioned negative effects.
- ✓ Therefore, with information acquisition uncertainty, more informed trading can lead to an overall welfare improvement in the economy.

Contact

Tony He University of Technology Sydney Email: tony.he1@uts.edu.au Website: https://www.uts.edu.au/staff/tony.he1 Phone: (61 2) 9514 7726

References

- Goldstein & Yang (2015), Information disclosure in financial markets, Annual Review of Financial Economics, 9, 101-125.
- Grossman & Stiglitz (1980), On the impossibility of information efficiency markets, American Economic Review 70(3), 393-408
- Hirshleifer (1971), The private and social value of information and the reward to inventive activity, American Economic Review 61(4), 561-574.
- Mattsson & Weibull (2002), Probabilistic choice and procedurally bounded rationality, Games and Economic Behavior, 41, 61-78.