Distributional consequences of conventional and unconventional monetary policy

Marcin Bielecki

Narodowy Bank Polski

Michał Brzoza-Brzezina Narodowy Bank Polski Marcin Kolasa


SGH Warsaw School of Economics

Narodowy Bank Polski

SNDE session at ASSA San Diego, 3-5 January 2020

2 Model

4 Results

Conclusions

2 Model

3 Calibration and fit

4 Results

5 Conclusions

Motivation

- Monetary policy has redistributive effects:
 - via <u>balance sheets</u> (direct effects): e.g. surprise inflation redistributes away from owners of nominal assets (Doepke & Schneider 2006)
 - via its <u>macroeconomic impact</u> (indirect effects):
 e.g. higher unemployment after monetary tightening hurts relatively poor HHs (Heathcote et al. 2010; Kaplan et al. 2018)
- But:
 - Unconventional monetary policy less explored (exception: Lenza & Slacalek 2018)
 - Life-cycle dimension of heterogeneity and housing underexploited (exception: Wong 2018)
 - Most studies focus on US

This paper

- Construct a quantitative life-cycle model of the euro area with a rich asset structure
- Study the distributional consequences of monetary policy
 - Conventional (surprise interest rate shock)
 - Unconventional (imperfectly communicated forward guidance)
- Why a life-cycle GE model?
 - Captures an important (and well documented) dimension of HH heterogeneity
 - Allows to consider both direct and indirect effects
 - Allows to document the crucial difference between <u>initial balance sheet</u> effects and remaining lifetime welfare

Preview of results

- Monetary policy redstributes welfare between age-cohorts
 - Monetary expansion benefits young households and hurts old ones
 - Ø Both direct and indirect effects matter
 - Sominal asset positions are most important
- Onventional policy and forward guidance differ
 - Not dramatically
 - Opending on ELB
- Welfare redistribution differs a lot from initial balance-sheet effects

2 Model

3 Calibration and fit

4 Results

5 Conclusions

Model structure: overview

- New Keynesian model with life-cycle features:
 - 80 cohorts of overlapping generations of households (age 20-99)
 - Age-dependent mortality risk
 - Age-specific productivity and labor disutility
 - Age-specific asset structure
- Rigidities: sticky prices, sticky wages, habits, investment adjustment costs
- Monetary policy:
 - Taylor-like rule with unexpected (conventional policy) and expected (forward guidance) deviations
 - Forward guidance imperfectly communicated (Campbell et al. 2019)
 - With or without ELB

Mode

Households

• Maximize expected lifetime utility

$$U_{j,t} = \mathbb{E}_t \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i}}{N_j} \left(\log(c_{j+s,t+s} - \varrho \bar{c}_{j+s,t+s-1}) + \psi_{j+s} \log \chi_{j+s+1,t+s+1} - \phi_{j+s} \frac{h_{j+s,t+s}(\iota)^{1+\varphi}}{1+\varphi} \right)$$

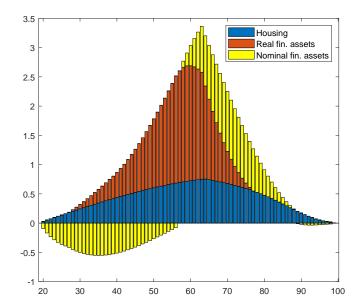
subject to

$$c_{j,t} + p_{\chi,t}[\chi_{j+1,t+1} - (1 - \delta_{\chi})\chi_{j,t}] + a_{j+1,t+1} = w_t(\iota)z_jh_{j,t} + \frac{R_{j,t}^a}{\pi_t}a_{j,t} + tr_t$$

- Retired households do not work ($z_j = 0$ for $j \ge 45$)
- Financial assets managed by investment funds offering age-specific financial products
- Calvo-type wage stickiness

Investment funds

- Manage nominal and real financial assets owned by households
- Maximize expected return on total portfolio
- Distribute ex-post returns to HHs according to age-specific and exogenous portfolio composition


$$R_{j,t}^{a} = s_{j,t}R_{t-1} + (1 - s_{j,t})R_{t}^{a}$$

HH balance sheet (incl. assets in investment funds)

Assets	Liabilities
Housing stock	Net worth
Real financial assets	Nominal financial liabilities
Nominal financial assets	

Model

Asset distribution

12/29

Producers

• Final goods aggregated from differentiated intermediate products

$$c_t + i_t + \delta_{\chi} p_{\chi,t} \chi = \left[\frac{1}{N_t} \int_0^{N_t} y_t(i)^{\frac{1}{\mu}} \mathrm{d}i \right]^{\mu}$$

Intermediate goods firms produce differentiated products

$$y_t(i) = k_t(i)^{\alpha} h_t(i)^{1-\alpha} - \Phi$$

- Zero profits in the steady state, Calvo-type price stickiness
- Capital producers are subject to investment adjustment cost

$$k_{t+1} = (1-\delta)k_t + \left[1 - S\left(\frac{i_t}{i_{t-1}}\right)\right]i_t$$

Monetary policy

• Taylor rule with ZLB

$$R_t = \begin{cases} R_t^{cb} & \text{if } R_t^{cb} > 1\\ 1 & \text{if } R_t^{cb} \le 1 \end{cases}$$
$$\frac{R_t^{cb}}{R} = \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left[\left(\frac{\pi_t}{\pi}\right)^{\gamma_\pi} \left(\frac{y_t}{y_{t-1}}\right)^{\gamma_y} \right]^{1-\gamma_R} \exp(\varepsilon_t^R)$$

• Deviations ε_t^R can be unexpected or (imperfectly) communicated

Imperfect communication

Noisy signal s_t about future policy deviations

$$s_t = \varepsilon_t^R + v_t$$

where
$$\boldsymbol{\varepsilon_t^R} = [\varepsilon_t^R...\varepsilon_{t+H}^R]'$$

• Kalman updating

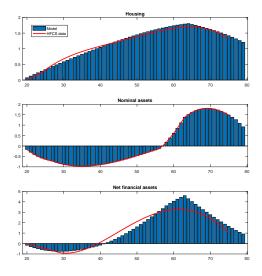
$$E_t \varepsilon_t^{R} = E_{t-1} \varepsilon_t^{R} + \kappa \left(s_t - E_{t-1} \varepsilon_t^{R} \right)$$

 Calibration of the Kalman gain matrix based on Campbell et al. (2019)

$$m{\kappa} = \left[egin{array}{cccc} 0.2 & 0 & 0 \ 0 & 0.6 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

2 Model

Calibration and fit


4 Results

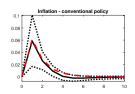
5 Conclusions

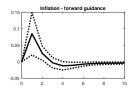
Calibration

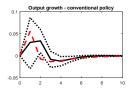
- Standard structural parameters: taken from literature or to match means (including aggregate asset composition)
- Taylor rule parameters: estimated
- Life-cycle features:
 - Demographic data: Eurostat and EUROPOP, period average: 1999-2018
 - Age-specific productivity, hours and asset structure: HFCS (2014)

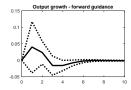
Asset structure

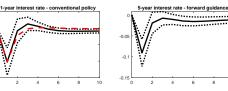
0.05


-0.05


-0.1 -0.15


0 2


VAR evidence

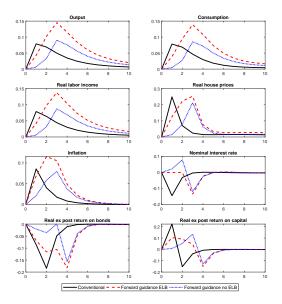

- Monetary shocks from high-frequency identification
- Source: Altavilla et al. (2019)
- Impulse responses: VAR for EA estimated over 2002-2018

8

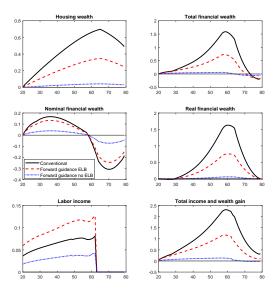
2 Model

5 Conclusions

Overview of simulations


- Monetary shocks:
 - Conventional: unexpected deviation from policy rule (-25 bp)
 - Unconventional (with or without ELB): signal about -25 bp deviation from policy rule, issued 2 years ahead, repeated 1 year ahead, and implemented as announced

$$\mathbf{s_1} = \begin{bmatrix} 0\\0\\-0.0025 \end{bmatrix} \quad \mathbf{s_2} = \begin{bmatrix} 0\\-0.0025\\0 \end{bmatrix} \quad \mathbf{s_3} = \begin{bmatrix} -0.0025\\0\\0 \end{bmatrix}$$


• Effects of conventional and unconventional monetary policy:

- Aggregate effects
- Balance sheet effects by cohort
- Impact on remaining lifetime wealth by cohort
- Impact on welfare by cohort

Aggregate effects of monetary policy easing

Balance-sheet and income effects on impact

Balance sheet vs remaining life-time effects

- What matters for redistribution are price changes of <u>maturing</u> assets (Auclert 2017)
- Asset holdings are mainly driven by life-cycle aspects, less so by price changes
 - Example: even if housing becomes expensive, young households continue accumulating it
- Higher asset prices may not necessarily benefit those who hold them
 - Example: higher house prices are bad for a 40-year old HH despite positive balance sheet effects, because it is in the process of accumulating housing

Definitions of remaining life-time effects

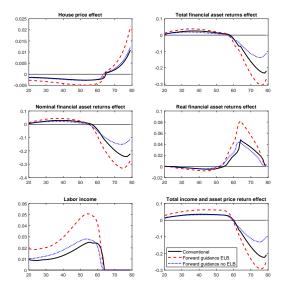
• House price effect

$$\Gamma_{j,t}^{\chi} = \mathbb{E}_t \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i}}{N_j} \left(\boldsymbol{p}_{\chi,t+i} - \boldsymbol{p}_{\chi} \right) \left[(1 - \delta_{\chi}) \chi_{j+i} - \chi_{j+i+1} \right]$$

• Financial returns effect

$$\Gamma_{j,t}^{a} = \mathbb{E}_{t} \sum_{i=0}^{J-j} \beta^{i} \frac{N_{j+i}}{N_{j}} \left(\frac{R_{j+i,t+i}^{a}}{\pi_{t+i}} - \frac{R_{j+i}^{a}}{\pi} \right) \mathbf{a}_{j+i}$$

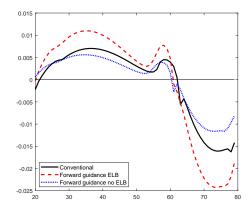
Labor income effect


$$\Gamma_{j,t}^{\mathsf{w}} = \mathbb{E}_t \sum_{i=0}^{JR-1-j} \beta^i \frac{N_{j+i}}{N_j} \left(w_{t+i} z_{j+i} h_{j+i,t+i} - w z_{j+i} h_{j+i} \right)$$

• Consumption streams (for normalization)

$$\Gamma_j^c = \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i}}{N_j} c_{j+i}$$

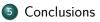
25/29


Redistributive effects

Results

Welfare effects

- Most comprehensive measure
- Captures i.a. negative effect of higher labor supply on utility



2 Model

3 Calibration and fit

4 Results

Conclusions

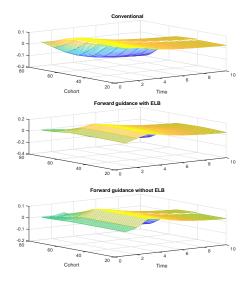
- Monetary policy redstributes welfare between age-cohorts: Monetary expansion benefits young HHs (at the expense of old HHs)
- Welfare redistribution differs crucially from initial balance-sheet effects
- Sonventional policy and forward guidance differ, but not dramatically
- Forward guidance at ELB can have larger redistributive effects than conventional policy

2 Model

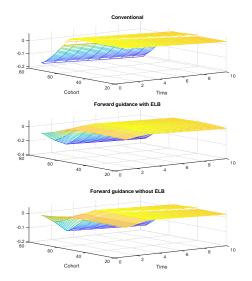
3 Calibration and fit

4 Results

5 Conclusions


Calibration

Parameter	Value	Description
β	0.988	Discount factor
φ^{-1}	0.5	Frisch elasticity of labor supply
ρ	0.8	Habit persistence
δ_{χ}	0.015	Housing depreciation rate
δ	0.12	Capital depreciation rate
α	0.3	Capital share in output
S_1	4	Investment adjustment cost curvature
μ	1.2	Product markup
θ	0.2	Calvo probability (prices)
μ_w	1.2	Wage markup
θ_w	0.32	Calvo probability (wages)
π	1.02	Inflation target
γ_R	0.41	Interest rate smoothing
γ_{π}	1.97	Reaction to inflation
γ_y	0.42	Reaction to GDP growth


Asset structure

- Aggregate data from financial and non-financial balance sheets (Eurostat, % of GDP w/o government expenditures):
 - Housing stock (170% GDP)
 - Nonresidential fixed assets (230% GDP)
 - HH loans / deposits (84% GDP)
- Age profiles from HFCS:
 - Housing = HH main residence + other non-business real estate property
 - Fixed assets = HH business wealth + non self-employment private business + shares + bonds + mutual funds
 - Nominal assets = deposits mortgage loans non-mortgage loans. Positive part adjusted proportionally so that net supply is zero

Impact on allocations: consumption

Impact on allocations: housing

