Does Insurance for Treatment Crowd Out Prevention? Evidence from Diabetics' Insulin Usage

Daniel Kaliski¹

¹Birkbeck, University of London

Allied Social Science Association Meetings, 4th Jan. 2020

- ► Ex ante moral hazard: decrease efforts to avoid bad state if insured
- Question: how much does investment in health decrease if only treatment is covered?
- This paper: Evidence that insurance for treatment alone has large negative effects on prevention

Motivation: Setting

- ▶ Pre-2006:
 - ► U. S. over-65s covered for physicians and hospitals, but not medications
- ▶ Post-2006:
 - ► Medications covered for over-65s ("Medicare Part D")
- Diabetics: 12-15% of the U.S. population & fastest growing chronic illness globally
- ► High costs of care \$850 billion, ~1% of global GDP (Bommer et al., 2017, Lancet)

This Paper

- 1. Regression discontinuity design: insurance for treatment alone
- 2. Difference-in-discontinuities design: allow effect to differ post-2006 coverage for prevention added
- 3. Use life-cycle model to

Reconcile results with literature and

Derive results' relationship to compensated elasticity

Key simplification: no cumulative effects of human capital investment

- 1. Pre-2006: Insulin usage falls by -8 pp from 26% to 18% at age 65
- Post-2006: subsidies for insulin offset this more than one-for-one
 Post-2006 effect is a net increase of +7 pp
- 3. Model shows that compensated elasticity \geq measured elasticity

Contribution

- 1. First evidence of large moral hazard effects in health behaviors due to provision of health insurance (cf. Card et al. 2008, AER; Finkelstein et al., 2012, QJE)
 - Consonant with literature on provision of treatment for AIDS & opioid overdoses (Goldman, Lakdawalla & Sood, 2006, QJE; Doleac & Mukherjee, 2019)

Policy implication: underestimating extent of measures necessary to encourage prevention

2. First use of different life-cycle elasticities to analyse differences across studies of prevention (cf. Keane 2010, JEL, Ried 1998 JHE)

Structure of this Talk

- ► Background & Data
- Empirical Strategy
- Results
- Theoretical Framework
- Conclusion

► 10% of diabetics are Type I - will not survive long without insulin

- ► 10% of diabetics are Type I will not survive long without insulin
- ► Majority are Type II developed in older adulthood

- ▶ 10% of diabetics are Type I will not survive long without insulin
- ► Majority are Type II developed in older adulthood
- ► Early on, can use diet and oral medication (Metformin)

- ► 10% of diabetics are Type I will not survive long without insulin
- Majority are Type II developed in older adulthood
- ► Early on, can use diet and oral medication (Metformin)
- Insulin is typically used once disease worsens

- ► 10% of diabetics are Type I will not survive long without insulin
- Majority are Type II developed in older adulthood
- ► Early on, can use diet and oral medication (Metformin)
- Insulin is typically used once disease worsens
 - Usage can decline by 20% over a two-year period from initiation (Brown et al., 1999)

▶ Non-monetary: Insulin complicated to use

- ▶ Non-monetary: Insulin complicated to use
- ► Expensive:

- ▶ Non-monetary: Insulin complicated to use
- ► Expensive:
 - No generic version

- ► Non-monetary: Insulin complicated to use
- ► Expensive:
 - No generic version
 - Coinsurance rates high (\sim 50%)

- ▶ Non-monetary: Insulin complicated to use
- Expensive:
 - No generic version
 - ► Coinsurance rates high (~50%)
 - ▶ \$60 per vial in 2018 dollars in 1998 \times 54 vials p.a. = \$3 240 p. a.

- ▶ Non-monetary: Insulin complicated to use
- Expensive:
 - No generic version
 - ► Coinsurance rates high (~50%)
 - ▶ \$60 per vial in 2018 dollars in 1998 \times 54 vials p.a. = \$3 240 p. a.
- ► 200% of the federal poverty line in 1998 in 2018 dollars is \$33 500:

- ► Non-monetary: Insulin complicated to use
- Expensive:
 - No generic version
 - ► Coinsurance rates high (~50%)
 - ▶ \$60 per vial in 2018 dollars in 1998 \times 54 vials p.a. = \$3 240 p. a.
- ► 200% of the federal poverty line in 1998 in 2018 dollars is \$33 500:
 - ▶ Nearly 10% of household income without insurance

Regression Discontinuity Design

▶ RDD, if individual *i*'s age in months R_{it} exceeds eligibility threshold \bar{R} , $D_{it} = 1$ if person *i* is covered in period *t*, instrument for D_{it} with eligibility rule $1[R_{it} \ge \bar{R}]$,

$$Y_{it} = \beta_0 + \beta_1 D_{it} + \gamma_0 R_{it} + \gamma_1 \mathbb{1}[R_{it} \ge \bar{R}] \times R_{it} + \delta X_{it} + \zeta t + \eta_i + v_{it} \text{ for } |R_{it} - \bar{R}| < h;$$

Identifying assumption: no other discontinuities at cutoff

"Crowding Out" Pre-2006 & "Crowding In" Post-2006

► Intuition: behavior at the cutoff in 2006 different ⇒ policy changes net effect on behavior

$$Y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 \mathbf{1}[t \ge 2006] + \beta_3 D_{it} \times \mathbf{1}[t \ge 2006] + \gamma_0 R_{it} + \gamma_1 \mathbf{1}[R_{it} \ge \bar{R}] \times R_{it} + \delta X_{it} + \zeta t + \eta_i + v_{it}$$

 Assumption to id β₃: no other important differences at 65 between 2006 and previous years (i.e. cohort effects, simultaneous policy changes):

Retirement, Diabetic Women, 1998-2004

(1)	(2)	(3)	(4)	(5)	(6)
Employed	Retired	Partly Retired	Hours	Earnings	Social Security
0.03	-0.03	0.09	-0.31	731.71	-0.00
(0.76)	(-0.72)	(1.01)	(-0.13)	(0.87)	(-0.11)

t statistics in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Other Health Outcomes, Diabetic Women, 1998-2004

(1)	(2)	(3)	(4)
Any Hospital Stay	Nights in Hospital	Any Doctor Visit	No. Doctor Visits
-0.04 (-0.21)	3.09 (0.66)	0.14* (2.43)	2.34 (0.29)
Kidney Problems	Poor Health	Diabetes Diagnosis	BMI
0.25 (1.89)	-0.09 (-0.46)	-0.02 (-0.37)	3.80 (1.67)

t statistics in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

	(1)	(2)	(3)	(4)
	Med. Adv.	Employed	Retired	Partly Ret.
Women				
	0.08	-0.03	-0.00	-0.04
	(1.37)	(-1.27)	(-0.00)	(-1.16)
Men	()	()	()	()
	0.10	-0.03	0.06*	-0.06
	(1.56)	(-1.12)	(2.24)	(-1.79)
	Hours	Earnings	Soc. Sec.	Diagnosis
Women	0 1 1	E74 01	0.05***	0.05**
	-0.11	-574.21	0.05	0.05
	(-0.11)	(-0.63)	(4.54)	(2.69)
Men				
	-0.31	-2252.86	0.05***	0.05**
	(-0.27)	(-1.24)	(4.60)	(2.69)

Difference-in-Discontinuities 1998-2008: Other Outcomes

Difference-in-Discontinuities: Insulin Usage, 1998-2008

 Absence of Credit Constraints 					
	(1)	(2)	(3)		
Insulin					
$\widehat{D_{it}}$	-0.08*	-0.08**	-0.08**		
	(-2.50)	(-2.62)	(-2.62)		
$1[t \ge 2006]$	-0.14*	-0.14*	-0.12*		
	(-2.53)	(-2.53)	(-2.38)		
$\widehat{D_{it} imes 1[t \ge 2006]}$	0.15*	0.15*	0.13*		
	(2.41)	(2.42)	(2.28)		

► By contrast, no effects on: oral medication use, exercise, or diet

Which Elasticity is Being Measured?

I estimate the intertemporal substitution (Frisch) effect of a lower price for treatment, since the price change is anticipated:

$$\begin{split} \boldsymbol{\varepsilon}_{\phi_2,P^M}^{\mathsf{F}} &\equiv \left(\frac{P^M}{\phi_2}\right) \left(\frac{\partial \phi_2}{\partial P^M}\right) \bigg|_{\frac{\partial \mu}{\partial P^M} = 0} \\ &= -\left(\frac{P^M}{\phi_2}\right) \left(\frac{V_{\phi M}\left(\frac{\partial M_2}{\partial P^M}\right)}{V_{\phi \phi}}\right) > 0, \end{split}$$

- Compensated elasticity at least as large
- Motivation: disparity between literatures on (i) specific interventions and (ii) health insurance expansions
 - ► Latter often include income effects that can offset *ex ante* moral hazard
- ► Abstracts from cumulative effects & dynamic effects of lifespan extension

Conclusion

- In 1998-2004, Medicare coverage decreased the proportion of female diabetics who use insulin by 8 pp
- ▶ Post-2006, this is cancelled out by coverage for insulin
 - Aggregate result: 4.6 p.p. in forgone heart disease among women & \$487 million p.a.
- ► Theoretical model reconciles with the literature:
 - Income effects likely larger than believed
 - Estimates here are lower bounds for the compensated effects