Motivation	Data	Empirics	Summary

Analyzing the Risk of Transporting Crude Oil by Rail

Charles F. Mason

H.A. True Chair in Petroleum and Natural Gas Economics Department of Economics University of Wyoming Laramie, Wyoming

3 January, 2020

Motivation	Data	Empirics	Summary
•0000			

Tight oil production boom: time frame

- fracking boom really shows up in 2010
- pipeline transport didn't change much, rail picked up slack

Motivation

Data 00000 Empirics

Summary

Delivery issues: pipelines

A building burns after it was set alight by protesters, North Dakota, U.S., February 22, 2017. © Terray Sylvester / Reuters

Motivation

Data

Empirics 000000000 Summary 00

July 6, 2013: Lac-Mégantic, Quebec

Motivation	
00000	

Data

Empirics 000000000 Summary 00

More incidents

L: Mount Carbon, WV (2/16/15)

R: Lynchburg, VA (4/30/14)

R: Galena, IL (3/5/15)

ASSA-TPUG 2020 (C. Mason)

Motivation	
00000	

Data

Empirics 000000000 Summary 00

Pushback

- leads to new set of rail regulations
 - strengthening of rail cars
- Question: does increased rail traffic carrying crude raise chance of serious incident?
 - ▷ if so, how: more draws with fixed pr of trouble? increased pr?
 - wear and tear on tracks?
 - if so, from crude? from all shipments?

Motivation		Data ●0000	Empirics 00000000	Summary 00
	Sources			

- Incidents
 - PHMSA reports
 - any (self-reported) "incident" (restrict to crude oil)
 - can be minor (common) or serious (infrequent)
 - observations collected for 1 Jan 2009 31 Dec 2014
 - info: amt. oil released, total econ. damages, origin state, destination state
- Rail Traffic
 - DOT waybill sample
 - most large carrier shipments
 - detailed information on rail shipments, 2009 2014
 - retained all shipments carrying oil, originating in US
- merged these sets
 - aggregated to monthly observations
 - "obs'n": number of oil cars shipped in month *t* from location *j* to location *k*
 - number of incidents (0 8)
 - number of serious incidents (0/1)
 - amount of oil spilled; total costs

00000			00
Motivation	Data ⊙●⊙⊙⊙	Empirics	Summary 00

Considerations

- oil-by-rail traffic grows steadily during sample period
 - ▷ in several states at different paces, at different times
- heterogeneity in time and amt. of expansion, shipping destination
 - 1) focus on origin-destination state pairs
 - 2) focus on routes (origin-destination FIPS pairs)
- potential for effects to differ in relation to time of year
 - ▷ use monthly dummies?
- how to measure rail activity (cars, miles, weight, weight x miles)
 - possible link to "sloshing"
 - issues raised above

Motivation	Data	Empirics	Summary
00000	oo●oo	00000000	00

Rail traffic vs. incidents

Motivation	Data	Empirics	Summary
00000	ooo●o	00000000	00

Annual Rail Shipments Of Crude Oil Originating in US

		rail car	s carrying oil	distance	(thousand miles)	weight (tl	nousand tons)
year	oil shipments	total	per shipment	total	per shipment	total	per shipment
2009	167	942	5.6	170.8	1.023	1738.1	10.408
2010	294	9554	32.5	375.2	1.276	18613.8	63.312
2011	665	15818	23.8	843.9	1.269	29473.1	44.320
2012	1762	74525	42.3	2096.8	1.190	124203.0	70.490
2013	2508	147940	59	3001.8	1.197	223371.0	89.063
2014	2508	186954	74.5	3242.2	1.293	266733.1	106.353
Total	7904	435708	55.1	9730.7	1.231	664132.1	84.025

Motivation	Data	Empirics	Summary
	00000		

Minor Rail Incidents vs. Rail Oil Traffic

Motivation		Data 00000	Empirics ●00000000	Summary 00
	Approach			

- Monthly observations: January 1, 2009 December 31, 2014
- very few "serious" incidents \Rightarrow use two-step approach:
 - estimate relation between minor incidents and serious incidents
 - Logit analysis: probability of serious incident as function of accumulated number of recent minor incidents (3, 6, 9, 12 mos.)
 - estimate relation between rail traffic and number of minor incidents
 - Logit model (incident: yes/no)
 - Count model (Poisson; Negative Binomial)
 - estimate relation between rail traffic and
 - i) quantity of oil released
 - ii) economic damages

Motivation	Data 00000		Empirics 00000000		Summary 00	
Logit Analysis of Serious Incidents, 1						
		(1)	(2)	(3)	(4)	
# mi	nor incidents, past 3 mos.	0.363**	0.363**	0.305*	0.310***	
		(0.168)	(0.165)	(0.166)	(0.052)	
# mi	nor incidents, past 6 mos.	-0.218	-0.219	0.003		
		(0.197)	(0.192)	(0.092)		
# mi	nor incidents, past 9 mos.	0.134	0.141			
		(0.204)	(0.104)			
# mi	nor incidents, past 12 mos.	0.005				
		(0.133)				
cons	stant	-4.190***	-4.190***	-4.117***	-4.116***	
		(0.318)	(0.314)	(0.296)	(0.296)	
		. ,	. ,	. ,	. ,	

Dependent variable: indicator for serious incident, state pairs; 504 observations. Robust standard errors in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01

Motivation	Data	Empirics	Summary
		0000000	

Logit Analysis of Serious Incidents, 2

(1)
1.336***
(0.432)
1.196**
(0.599)
1.559***
(0.384)
1.255**
(0.530)
-8.129***
(0.549)

Dependent variable: indicator for serious incident, FIPS pairs; 10,477 observations. Perfectly collinear regressors dropped. Robust standard errors in parentheses.

Motivation		Data 00000		Empiric 000	s 20000		Summary 00
	 	1.61	 ~		-		

Alternative specifications for minor incidents: Miles (1, 2, 3) and Weight (4, 5, 6)

	(1)	(2)	(3)	(4)	(5)	(6)
10 ⁶ Miles (Crude)	9.842**	10.004**	11.559**			
	(4.563)	(4.427)	(4.857)			
10 ⁶ Miles (All)	12.380**	11.510**	10.566*			
	(5.743)	(5.594)	(5.617)			
10 ⁶ Tons (Crude)				0.119*	0.124*	0.117*
				(0.070)	(0.068)	(0.071)
10 ⁶ Tons (All)				0.031	0.024	0.028
				(0.053)	(0.051)	(0.054)
constant	-1.060***	-0.965***	-1.137**	-0.587*	-0.489	-0.705*
	(0.327)	(0.334)	(0.442)	(0.303)	(0.310)	(0.429)

All regressions include fixed effects for origination-destination state pairs; N = 913. Regressions 3, 6 include monthly fixed effects; 2, 5 include winter dummy

Motivation 00000	Data 00000		Empirics 000000000		Summary 00
	Logit Analysis bas	ed on rou	ites		
		(1)	(2)	(3)	(4)
10 ³	Tons, Crude	-02.19	-2.24	-8.56*	-8.55*
		(0.00770)	(0.00770)	(4.52)	(4.48)
10 ³	Miles, Crude	0.149**	0.149**	0.0971*	0.0972*
		(0.0648)	(0.0649)	(0.0542)	(0.0543)
10 ⁶	Ton-Miles, Crude	2.05	-1.36	4.42*	0.530
		(4.02)	(6.23)	(2.37)	(0.281)
10 ³	Cars, Crude	-4.34**	-4.33**	-1.09	-1.07
		(1.79)	(1.79)	(1.40)	(1.41)
10 ⁶	Ton-Miles, All Shipments		3.43		3.87**
			(4.79)		(1.57)
cons	stant			4.21***	4.22***
				(0.29)	(0.29)
Ν		873	873	2977	2977
Regr	essions based on origination-de	stination FIPS	pairs. Robust st	tandard errors	s in paren's.
Regr	essions 1, 2 (resp., 3, 4) use fixe	ed (resp., rando	m) effects base	ed on FIPS pa	irs.

ASSA-TPUG 2020 (C. Mason)	Oil by Rail	3 January, 2020 16 / 2	2
---------------------------	-------------	------------------------	---

Notivation	Data	Empirics	Summary
00000		000000000	

Alternative specifications for minor incidents, including Wheat shipments

	(1)	(2)	(3)	(4)
10 ³ cars crude	0.322***	0.244*	0.312***	0.242*
	(0.082)	(0.132)	(0.078)	(0.124)
10 ³ cars wheat	0.020	-0.080	0.114	-0.001
	(0.831)	(0.843)	(0.818)	(0.834)
10 ³ cars all		0.088		0.078
		(0.112)		(0.106)
constant	-0.756*	-0.850**	-0.535*	-0.626**
	(0.417)	(0.425)	(0.293)	(0.309)

All regressions include fixed effects for origination-destination state pairs.; N = 913. Monthly dummies (regressions 1, 2) or winter dummy (regressions 3, 4)

Motivation	Data	Empirics	Summary
		000000000	

Alternative specifications for serious incidents

Count (All)	-0.190		0.029	-0.174
L1.Count (All)	0.027		0.152	0.031
L2.Count (All)	0.175		0.323**	0.180
Count (Crude)	0.775**			0.938**
L1.Count (Crude)	-0.078			0.251
L2.Count (Crude)	0.450			0.773**
10 ³ Cars (Crude)		2.008**	2.011**	1.696
10 ³ Tons (Crude)		-1.043**	-1.342**	-1.339**
Ν	2247	2486	2178	2178

All regressions use fixed effects logit analysis of serious incidents, all liquid shipments. Coeff's for winter dummy; cars, tons, miles (all); miles (crude) insign. and not shown.

Notivation		Data 00000		Empirics 0000000●0		Summary 00
	Rail Shipm	nents and	(a) Oil S	Spilled, (b)	Total Dam	ages
		(1)	(2)	(3)	(4)	
	10 ³ cars	0.412***	0.409***	0.513***	0.511***	
	Jan		-0.491		-0.654	
	Feb		-0.388		-0.433	
	March		-0.504		-0.521	
	April		0.095		-0.036	
	Мау		0.045		-0.059	
	July		-0.240		-0.376	
	August		-0.315		-0.657	
	September		-0.158		-0.341	
	October		-0.330		-0.273	
	November		0.051		0.207	
	December		-0.271		-0.348	
	constant	-2.876***	-2.685***	-4.830***	-4.561***	

LHS vbl: amount of oil spilled (1, 2; N = 872) or damages (3, 4; N = 863).

Motivation	Data	Empirics	Summary
00000	00000	○○○○○○○●	

Impact on expected damages

above results can be used to infer the expected impact of a one unit increase in rail traffic

$$\mathcal{E}(D) = \exp(\hat{\beta} \ \overline{x}),$$

- \triangleright one unit = 1,000 rail cars
- $\hat{\beta} = 0.511$ is the estimated coefficient on rail traffic
- ▷ the average value of dollar damages is \$3,375
- thus, the expected value of total economic damages is

0.511 imes \$3,375 pprox \$1725

less than \$2 per additional car

Motivation	Data	Empirics	Summary
			•0

Spill rates: rail vs. pipeline deliveries

Motivation	Data	Empirics	Summary
			•0

Spill rates: rail vs. pipeline deliveries

Table 1: Summary Statistics for Oil Spills

mode	N	<u>mean</u>	<u>median</u>	<u>std. dev.</u>	max
rail	75	4152	0.570	32558	281989
pipeline	84	411.1	7.590	1140	8193

|--|

Motivation 00000		Data 00000	Empirics 000000000	Summary O
	Conclusion			

- statistically important, negative relation b/w accumulated minor incidents over recent months and frequency of serious events
- statistically important (pos.) rel'n b/w rail traffic & pdf over minor incidents
 - \triangleright adding 100,000 rail cars shipping oil $\Rightarrow \approx$ 1 add'n'l incidents / month
 - ho each add'n'l 3 recent minor incidents \Rightarrow one add'n'l serious event
- largest fixed effects linked to routes originating in North Dakota
- statistically important positive rel'n b/w rail traffic and pdf over costs
 - $\,\triangleright\,$ implies impact on expected costs: marginal impact of one-unit increase in rail shipments \approx \$1725
 - costs reported in database include
 - lost product and damaged capital (private costs)
 - costs from response, closure of main transportation arteries (social costs)
 - ▷ costs *do not* include
 - social costs associated with environmental damages from oil spills
 - property damages resulting from serious events (*e.g.*, spill-induced fires)
 - value of lost life