The Welfare Effect of Road Congestion Pricing: Experimental Evidence and Equilibrium Implications

Gabriel E. Kreindler

(Harvard University)
ASSA, Jan 3, 2020 Growth Centre

Traffic Congestion Widespread in Large Cities

- Bangalore average speed: 9-10 miles per hour.
- Demand for travel an indicator of economic growth.
- Costs: wasted time, uncertainty, pollution, diminished agglomeration benefits.

Economists' Approach: Price the Externality

- Traffic congestion socially inefficiently high due to driving externality
- Focus here: driving lowers road speed
- Theory solution: price externality, restore optimum (Pigou 1920, Vickrey 1969)

Economists' Approach: Price the Externality

- Traffic congestion socially inefficiently high due to driving externality
- Focus here: driving lowers road speed
- Theory solution: price externality, restore optimum (Pigou 1920, Vickrey 1969)
- Goal of this paper: how does social optimum look like in Bangalore?
- Eliminate congestion completely?
- Optimal to have some congestion? If so, how much?

This Paper: Peak-Hour Traffic Equilibrium

Source: Google Maps predicted travel times, 28 routes, Bangalore, India

- This paper holds the extensive margin fixed (return to this issue in simulations).
(1) Peak-hours $1.5 \times-2 \times$ slower than nighttime

This Paper: Peak-Hour Traffic Equilibrium

Source: Google Maps predicted travel times, 28 routes, Bangalore, India

- This paper holds the extensive margin fixed (return to this issue in simulations).
(1) Peak-hours $1.5 \times-2 \times$ slower than nighttime
(2) Intuition: should target congestion pricing precisely

This Paper: Peak-Hour Traffic Equilibrium

Source: Google Maps predicted travel times, 28 routes, Bangalore, India

- This paper holds the extensive margin fixed (return to this issue in simulations).
(1) Peak-hours $1.5 \times-2 \times$ slower than nighttime
(2) Intuition: should target congestion pricing precisely
(3) Short-term responses relevant

This Paper: Quantify Peak-Hour Congestion Inefficiency

 Research Questions:(1) Impact of peak-hour congestion pricing on commuter departure times?

This Paper: Quantify Peak-Hour Congestion Inefficiency

Research Questions:
(1) Impact of peak-hour congestion pricing on commuter departure times?
(2) Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

This Paper: Quantify Peak-Hour Congestion Inefficiency

Research Questions:
(1) Impact of peak-hour congestion pricing on commuter departure times?
(2) Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

Main steps:
(1) Model of travel demand (departure time). Key parameters:
(1) Value of time spent driving
(2) Schedule costs of arriving early / late (schedule flexibility)

This Paper: Quantify Peak-Hour Congestion Inefficiency

Research Questions:
(1) Impact of peak-hour congestion pricing on commuter departure times?
(2) Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

Main steps:
(1) Model of travel demand (departure time). Key parameters:
(1) Value of time spent driving
(2) Schedule costs of arriving early / late (schedule flexibility)
(2) GPS travel behavior data (smartphone app): measure departure times and routes

This Paper: Quantify Peak-Hour Congestion Inefficiency

Research Questions:
(1) Impact of peak-hour congestion pricing on commuter departure times?
(2) Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

Main steps:
(1) Model of travel demand (departure time). Key parameters:
(1) Value of time spent driving
(2) Schedule costs of arriving early / late (schedule flexibility)
(2) GPS travel behavior data (smartphone app): measure departure times and routes
(3) Field experiment with congestion charge policies (partial equilibrium)

This Paper: Quantify Peak-Hour Congestion Inefficiency

Research Questions:
(1) Impact of peak-hour congestion pricing on commuter departure times?
(2) Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

Main steps:
(1) Model of travel demand (departure time). Key parameters:
(1) Value of time spent driving
(2) Schedule costs of arriving early / late (schedule flexibility)
(2) GPS travel behavior data (smartphone app): measure departure times and routes
(3) Field experiment with congestion charge policies (partial equilibrium)
(4) Measure road traffic externality, and simulate the social optimum

Preview of Results

- Commuters respond to both policies:
- Peak-hour charges: leave earlier in AM, not later (vice-versa in PM)
- Route charges: take detour route

Preview of Results

- Commuters respond to both policies:
- Peak-hour charges: leave earlier in AM, not later (vice-versa in PM)
- Route charges: take detour route
- Structural preference estimates:
- High value of time spent driving (hence: congestion is costly)
- Commuters moderately schedule flexible

Preview of Results

- Commuters respond to both policies:
- Peak-hour charges: leave earlier in AM, not later (vice-versa in PM)
- Route charges: take detour route
- Structural preference estimates:
- High value of time spent driving (hence: congestion is costly)
- Commuters moderately schedule flexible
- However, moderate and linear externality

Preview of Results

- Commuters respond to both policies:
- Peak-hour charges: leave earlier in AM, not later (vice-versa in PM)
- Route charges: take detour route
- Structural preference estimates:
- High value of time spent driving (hence: congestion is costly)
- Commuters moderately schedule flexible
- However, moderate and linear externality
- Modest welfare gains from optimal pricing:
- Simulation model: modest travel time benefits, mostly offset by schedule costs
- In this setting, this conclusion driven by shape of externality

Contribution: Theory-driven Experimental Evidence

- Large theory literature in transportation economics
- First- and second-best pricing, various margins, networks, etc.
- Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93

Contribution: Theory-driven Experimental Evidence

- Large theory literature in transportation economics
- First- and second-best pricing, various margins, networks, etc.
- Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93
- Evidence from real congestion pricing policies
- Reduced traffic congestion and pollution: London, Milan, Stokholm (Karlström and Franklin 2009, Simeonova et al 2018)

Contribution: Theory-driven Experimental Evidence

- Large theory literature in transportation economics
- First- and second-best pricing, various margins, networks, etc.
- Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93
- Evidence from real congestion pricing policies
- Reduced traffic congestion and pollution: London, Milan, Stokholm (Karlström and Franklin 2009, Simeonova et al 2018)
- Welfare analysis of congestion pricing
- Walters 1961, Prud'homme and Bocarejo 2005, Small et al 2006
- Couture et al (2018), Akbar and Duranton (2018)

Contribution: Theory-driven Experimental Evidence

- Large theory literature in transportation economics
- First- and second-best pricing, various margins, networks, etc.
- Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93
- Evidence from real congestion pricing policies
- Reduced traffic congestion and pollution: London, Milan, Stokholm (Karlström and Franklin 2009, Simeonova et al 2018)
- Welfare analysis of congestion pricing
- Walters 1961, Prud'homme and Bocarejo 2005, Small et al 2006
- Couture et al (2018), Akbar and Duranton (2018)
- Growing revealed preference travel demand estimation literature
- Small et al '05, Bento et al '17, Tillema et al '13, Martin and Thornton '17
- Most studies: stated preferences (Small '82, Ben-Akiva et al '16)

Contribution: Theory-driven Experimental Evidence

- Large theory literature in transportation economics
- First- and second-best pricing, various margins, networks, etc.
- Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93
- Evidence from real congestion pricing policies
- Reduced traffic congestion and pollution: London, Milan, Stokholm (Karlström and Franklin 2009, Simeonova et al 2018)
- Welfare analysis of congestion pricing
- Walters 1961, Prud'homme and Bocarejo 2005, Small et al 2006
- Couture et al (2018), Akbar and Duranton (2018)
- Growing revealed preference travel demand estimation literature
- Small et al '05, Bento et al '17, Tillema et al '13, Martin and Thornton '17
- Most studies: stated preferences (Small '82, Ben-Akiva et al '16)
- Urban congestion literature:
- Driving restrictions (Davis '08, Kreindler '16, Hanna, Kreindler, Olken '17)
- Pollution (Hanna and Oliva '14, Gendron-Carrier et al '17)
- Land use (Field '05, Harari '17)

Plan of the Talk

(2) Data and Study Sample
(3) Experimental Design
(4) Experimental Results
(5) Externality and Policy Simulations
(2) Data and Study Sample
(3) Experimental Design
(4) Experimental Results
(5) Externality and Policy Simulations

Data: GPS Traces from Smartphone App
 - Android app designed for this study + automatic GPS data processing

Sample: Study Area, Recruitment in Gas Stations

Sample: Recruitment and Timeline

- Approached 8,641 eligible drivers (car and motorcycle)
- 2,300 installed app
- 497 experiment participants Selection

Sample: Recruitment and Timeline

- Approached 8,641 eligible drivers (car and motorcycle)
- 2,300 installed app
- 497 experiment participants Selection
- Timeline:
- Recruitment (in gas stations)
- Initial GPS data collection
- 5 weeks randomized experiment $(\mathrm{N}=497)$

Sample: Recruitment and Timeline

- Approached 8,641 eligible drivers (car and motorcycle)
- 2,300 installed app
- 497 experiment participants Selection
- Timeline:
- Recruitment (in gas stations)
- Initial GPS data collection
- 5 weeks randomized experiment $(\mathrm{N}=497)$
- Experimental platform
- Charges deducted from initial grant
- Weekly bank transfers
- Daily SMS reports Stats

Utility over Travel Time and Scheduling Costs

$$
u\left(h_{D}, T\right)=-\alpha T-\beta_{E}|\underbrace{h_{D}+T-h_{A}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{D}+T-h_{A}^{*}}_{\text {time late }}|_{+}+m
$$

- Components:
- h_{D} departure time (decision variable)
- $T=T\left(h_{D}\right)$ random travel time, realized after departure
- m money (e.g. congestion charges)

Utility over Travel Time and Scheduling Costs

$$
u\left(h_{D}, T\right)=-\alpha T-\beta_{E}|\underbrace{h_{D}+T-h_{A}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{D}+T-h_{A}^{*}}_{\text {time late }}|_{+}+m
$$

- Components:
- h_{D} departure time (decision variable)
- $T=T\left(h_{D}\right)$ random travel time, realized after departure
- m money (e.g. congestion charges)
- Preferences:
- α : value of time commuting
- Ideal arrival time h_{A}^{*} known before departure
- β_{E}, β_{L} : cost of arriving early / late

Identifying $\alpha, \beta_{E}, \beta_{L}$ with Observational Data

$$
u_{i}\left(h_{D i t}, h_{A i t}^{*}\right)=-\alpha T_{i t}-\beta_{E}|\underbrace{h_{\text {Dit }}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{\text {Dit }}+T_{i t}-h_{A i t}^{*}}_{\text {time late }}|++\varepsilon_{i t}\left(h_{\text {Dit }}\right)
$$

- Panel data on departure time $h_{\text {Dit }}$
- Observed "prices": travel time profile $T_{i t}\left(h_{D}\right) \stackrel{i i d}{\sim} \mathcal{T}_{i}\left(h_{D}\right)$
- Unobserved "prices": ideal arrival time distribution $h_{\text {Ait }}^{*} \stackrel{i i d}{\sim} \mathcal{A}_{i}$

Identifying $\alpha, \beta_{E}, \beta_{L}$ with Observational Data

$$
u_{i}\left(h_{\text {Dit }}, h_{\text {Ait }}^{*}\right)=-\alpha T_{i t}-\beta_{E}|\underbrace{h_{\text {Dit }}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{\text {Dit }}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time late }}|++\varepsilon_{i t}\left(h_{\text {Dit }}\right)
$$

- Panel data on departure time $h_{\text {Dit }}$
- Observed "prices": travel time profile $T_{i t}\left(h_{D}\right) \stackrel{i i d}{\sim} \mathcal{T}_{i}\left(h_{D}\right)$
- Unobserved "prices": ideal arrival time distribution $h_{\text {Ait }}^{*} \stackrel{i i d}{\sim} \mathcal{A}_{i}$
- Concern: commuters who face different relative prices also have different ideal arrival times

Identifying $\alpha, \beta_{E}, \beta_{L}$ with Observational Data

$$
u_{i}\left(h_{\text {Dit }}, h_{\text {Ait }}^{*}\right)=-\alpha T_{i t}-\beta_{E}|\underbrace{h_{\text {Dit }}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{\text {Dit }}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time late }}|++\varepsilon_{i t}\left(h_{\text {Dit }}\right)
$$

- Panel data on departure time $h_{\text {Dit }}$
- Observed "prices": travel time profile $T_{i t}\left(h_{D}\right) \stackrel{i i d}{\sim} \mathcal{T}_{i}\left(h_{D}\right)$
- Unobserved "prices": ideal arrival time distribution $h_{\text {Ait }}^{*} \stackrel{i i d}{\sim} \mathcal{A}_{i}$
- Concern: commuters who face different relative prices also have different ideal arrival times
- Approach here: create experimental variation in price of h_{D} and price of $T_{i t}$

Experiment: Peak-hour Departure Time Charge

- Each trip charged with per-kilometer (variable) rate

Experiment: Peak-hour Departure Time Charge

- Each trip charged with per-kilometer (variable) rate
- Sub-treatments:
- low rate $12 \mathrm{Rs} / \mathrm{Km}$ (\sim effective Uber per-km rate in Bangalore)
- high rate $24 \mathrm{Rs} / \mathrm{Km}(\sim 0.4 \$)$
- information and nudge Info

Experiment: Congestion Area Flat Charge

- Flat charge for crossing area. This induces a detour option (longer route, but free)
- Route choice informative about value of travel time
- Sub-treatments:
- (A) low / high charge $p_{A} \in\{$ Rs. 80 , Rs. 160$\}$
- (B) short / long detour $D \in[3,14]$ minutes

In Person Meeting to Explain Treatment

(2) Data and Study Sample

(3) Experimental Design
(4) Experimental Results
(5) Externality and Policy Simulations

Departure Times Shift Earlier (AM)

- Y axis: number of trips (change)
- Sample: all trips home to work, regular commuters only
- Control density plot Control Figure
- PM results PM Figure

Departure Times Shift Earlier (AM)

- Sample: all morning trips, all respondents

Area: Daily Shadow Rates Decrease

	(1) Shadow Rates Today	
Treated	$-22.82^{* * *}$	
	(5.53)	
Treated Week 1		$-26.16^{* * *}$
		(8.30)
Treated Week 4		-19.18^{*}
		(10.06)
Commuter FE	X	X
Observations	8,878	8,878
Control Mean	107.68	116.16

- Slightly higher GPS data quality in treatment group Data Quality
- Similar effects throughout treatment (days 1-5)

Area: Daily Shadow Rates Decrease

	(1) Shadow Rates Today	(2) Trips	(4) Today	
Treated	$-22.82^{* * *}$		$0.17^{* *}$	
	(5.53)		(0.08)	

- Slightly higher GPS data quality in treatment group Data Quality
- Similar effects throughout treatment (days 1-5)

Structural Model Estimation

- Structurally estimate model of morning departure time decision
- use experimental variation from the two charges

Structural Model Estimation

- Structurally estimate model of morning departure time decision
- use experimental variation from the two charges
- Results:
- High value of time spent driving ($4 \times$ in sample hourly wage)
- Commuters moderately schedule flexible

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $\alpha(\mathrm{Rs} / \mathrm{hr})$	Schedule cost early $\beta_{E}(\mathrm{Rs} / \mathrm{hr})$	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond p
$1,121.9$	319.4	36.5	36.9	0.46
(318.7)	(134.5)	(65.4)	(9.3)	(0.13)

- High value of time ($4 x$ in-sample hourly wage)
- Identified from detour vs charge (not from pure price variation)
- Also consistent with fixed cost of switching

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $\alpha(\mathrm{Rs} / \mathrm{hr})$	Schedule cost early $\beta_{E}(\mathrm{Rs} / \mathrm{hr})$	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond p
$1,121.9$	319.4	36.5	36.9	0.46
(318.7)	(134.5)	(65.4)	(9.3)	(0.13)

- High value of time ($4 x$ in-sample hourly wage)
- Identified from detour vs charge (not from pure price variation)
- Also consistent with fixed cost of switching
- Early arrival cost β_{E} low relative to value of time α
- Commuters have a moderate ability to adjust to congestion

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $\alpha(\mathrm{Rs} / \mathrm{hr})$	Schedule cost early $\beta_{E}(\mathrm{Rs} / \mathrm{hr})$	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond p
$1,121.9$	319.4	36.5	36.9	0.46
(318.7)	(134.5)	(65.4)	(9.3)	(0.13)

- High value of time ($4 x$ in-sample hourly wage)
- Identified from detour vs charge (not from pure price variation)
- Also consistent with fixed cost of switching
- Early arrival cost β_{E} low relative to value of time α
- Commuters have a moderate ability to adjust to congestion
- Probability to respond \hat{p} similar to fraction attentive

(2) Data and Study Sample

(3) Experimental Design
(4) Experimental Results
(5) Externality and Policy Simulations

Measuring the Impact of Traffic Volume on Travel Time

- The marginal social cost on travel time T at traffic volume V is

$$
(T(V+1)-T(V)) \cdot V \approx \frac{\partial T}{\partial \log V}
$$

Measuring the Impact of Traffic Volume on Travel Time

- The marginal social cost on travel time T at traffic volume V is

$$
(T(V+1)-T(V)) \cdot V \approx \frac{\partial T}{\partial \log V}
$$

- Unit: entire trips (both for volume and for travel time)

Measuring the Impact of Traffic Volume on Travel Time

- The marginal social cost on travel time T at traffic volume V is

$$
(T(V+1)-T(V)) \cdot V \approx \frac{\partial T}{\partial \log V}
$$

- Unit: entire trips (both for volume and for travel time)
- Data:
- Volume: GPS trip data (117,527 trips, 1,747 users)
- Travel time: Google Maps data (28 fixed routes, 185 days)
- Travel time: GPS trip data

Measuring the Impact of Traffic Volume on Travel Time

- The marginal social cost on travel time T at traffic volume V is

$$
(T(V+1)-T(V)) \cdot V \approx \frac{\partial T}{\partial \log V}
$$

- Unit: entire trips (both for volume and for travel time)
- Data:
- Volume: GPS trip data (117,527 trips, 1,747 users)
- Travel time: Google Maps data (28 fixed routes, 185 days)
- Travel time: GPS trip data
- Cannot distinguish externality of motorcycle vs car

Moderate, Linear Impact of Traffic Volume on Travel Time

- Peak-hour trip ($\sim 33 \mathrm{~min}$) generates $\sim 15 \mathrm{~min}$ aggregate travel time

Moderate, Linear Impact of Traffic Volume on Travel Time

- Peak-hour trip ($\sim 33 \mathrm{~min}$) generates $\sim 15 \mathrm{~min}$ aggregate travel time
- Similar: within-day and across-calendar date other Robust (Model

Moderate, Linear Impact of Traffic Volume on Travel Time

- Peak-hour trip ($\sim 33 \mathrm{~min}$) generates $\sim 15 \mathrm{~min}$ aggregate travel time
- Similar: within-day and across-calendar date Other Robust (Model

Literature: Lower Road Traffic Externalities at Higher Levels

- Simple bottleneck model may have huge externalities:
- 149 minutes marginal damage for ≈ 15 minute private cost (Lucas and Davis 2019)
- Intuition: delay everyone

Literature: Lower Road Traffic Externalities at Higher Levels

- Simple bottleneck model may have huge externalities:
- 149 minutes marginal damage for ≈ 15 minute private cost (Lucas and Davis 2019)
- Intuition: delay everyone
- US Bureau of Public Roads: delay is fourth power of volume divided by capacity

Literature: Lower Road Traffic Externalities at Higher Levels

- Simple bottleneck model may have huge externalities:
- 149 minutes marginal damage for ≈ 15 minute private cost (Lucas and Davis 2019)
- Intuition: delay everyone
- US Bureau of Public Roads: delay is fourth power of volume divided by capacity
- Bogota, Colombia looks similar to Bangalore (Akbar and Duranton, 2018, with similar unit and variation)

Literature: Lower Road Traffic Externalities at Higher Levels

- Simple bottleneck model may have huge externalities:
- 149 minutes marginal damage for ≈ 15 minute private cost (Lucas and Davis 2019)
- Intuition: delay everyone
- US Bureau of Public Roads: delay is fourth power of volume divided by capacity
- Bogota, Colombia looks similar to Bangalore (Akbar and Duranton, 2018, with similar unit and variation)
- Couture et al (2018) find -0.13 elasticity of speed to tvehicle otal time travelled in US cities

Citywide Traffic Equilibrium

Goal: citywide policy impact on traffic of (optimal) congestion charge
Two steps:
(1) Road technology: how traffic volume affects travel times
(2) Simulate equilibrium (with/without optimal charges)

- I make strong simplifying assumptions:
- Fix home and work locations, firm schedules
- Fix travel mode, carpooling, extensive margin.
- Ignore trucks and buses ($<10 \%$ of registered vehicles)
- Ignore pollution and accident externalities

Social Optimum: Notable Travel Time Benefit...

- "Best-case" social optimum: no implementation costs and all revenue redistributed lump-sum

Social Optimum: Notable Travel Time Benefit...

- "Best-case" social optimum: no implementation costs and all revenue redistributed lump-sum

Social Optimum: Small Gains from Optimal Pricing

- We just saw: moderate and linear traffic externality
- This implies: modest welfare gains from optimal pricing

Social Optimum: Small Gains from Optimal Pricing

- We just saw: moderate and linear traffic externality
- This implies: modest welfare gains from optimal pricing
- Social optimum has:
- Some travel time benefits (less congested peak-hour)
- However, low marginal externality implies travel time benefits mostly offset by schedule costs
- In this setting, the results driven by shape of externality.

Social Optimum: Small Gains from Optimal Pricing

- We just saw: moderate and linear traffic externality
- This implies: modest welfare gains from optimal pricing
- Social optimum has:
- Some travel time benefits (less congested peak-hour)
- However, low marginal externality implies travel time benefits mostly offset by schedule costs
- In this setting, the results driven by shape of externality.
- Similar results with other preferences, moderate heterogeneity, extensive margin.

Preferences, Externality, Heterogeneity, Extensive Margin

- Changing preferences (β_{E} / α ratio): welfare gains still negligible ($\leq 1 \%$)
- Convex road technology: higher travel time and welfare improvements Other Preferences, Technology

Preferences, Externality, Heterogeneity, Extensive Margin

- Changing preferences (β_{E} / α ratio): welfare gains still negligible ($\leq 1 \%$)
- Convex road technology: higher travel time and welfare improvements

Other Preferences, Technology

- Moderate heterogeneity in $\left(\alpha_{i}, \beta_{i}\right)$: welfare gains still negligible $(\leq 1 \%)$

Preferences, Externality, Heterogeneity, Extensive Margin

- Changing preferences (β_{E} / α ratio): welfare gains still negligible ($\leq 1 \%$)
- Convex road technology: higher travel time and welfare improvements

Other Preferences, Technology

- Moderate heterogeneity in $\left(\alpha_{i}, \beta_{i}\right)$: welfare gains still negligible $(\leq 1 \%)$

Preference Heterogeneity

- Incorporate extensive margin:
- Maximum welfare gains 6.2\%
- Low welfare gains when trips valuable

[^0]
Conclusion: Implications for Road Traffic Congestion

- Precisely targeted road pricing technology exists. Would it improve cities?
- In Bangalore, peak-hour pricing less attractive than believed
- Severe congestion does not automatically imply pricing is attractive
- Other important margins:
- pollution (generation \& exposure)
- public transit
- firm demand for travel

Thank You!

Data: GPS Traces from Smartphone App

- Android app designed for this study
- 76% smartphone owernship among sampling frame
- App runs in background
- Automatic GPS data processing
- identifying outliers
- raw GPS \rightarrow trips (start, end, route)
- Data coverage: 70-80\% days

(D) Last Update: Just now

Q , Cambridge, United States

Descriptive Statistics: Travel Behavior (GPS Data)

	Mean	Std. Dev.	Obs.
Panel A. Trip Characteristics			
Total Number of Trips			51,164
Number of Trips per Day	3.15	$[1.16]$	497
Median trip duration (minutes)	27.38	$[12.77]$	497
Median trip length (Km.)	7.2	$[4.7]$	497
Panel B. Commute Destination Variability			
Regular Commuter	0.76		497
Frac. of days present at Work	0.86		378
Frac. trips Home-Work or Work-Home	0.39		378
Panel C. Departure Time Variability (Std.Dev. in hours)			
First Trip (AM)	1.24	$[0.50]$	496
First Home to Work Trip (AM)	0.62	$[0.52]$	332

- Significant route and departure time heterogeneity

Distributions

Study Eligibility

	N	$\%$
Approached	10,537	100%
Own vehicle	9,893	94%
Drive ≥ 3 days/wk	9,203	87%
Drive $\geq 20 \mathrm{~km} /$ day	7,398	70%
In Bangalore	7,052	67%
Own GPS smartphone	5,372	51%

- Survey "Daily Km" three times higher than measured by GPS

Selection into Experiment

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Outcome: Respondent In Experiment						
Drives Car (z-score)	$\begin{gathered} -0.014^{* * *} \\ (0.001) \end{gathered}$			$\begin{gathered} -0.008^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.021 \\ (0.014) \end{gathered}$		$\begin{gathered} -0.118^{*} * \\ (0.051) \end{gathered}$
Age (z-score)		$\begin{gathered} -0.012^{* * *} \\ (0.001) \end{gathered}$		$\begin{gathered} -0.007^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.006) \end{gathered}$		$\begin{gathered} 0.016 \\ (0.020) \end{gathered}$
Log Vehicle Value (z-score)			$\begin{gathered} -0.010^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.000 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.014) \end{gathered}$		$\begin{gathered} 0.055 \\ (0.052) \end{gathered}$
KM Daily (Stated, z-score)					$\begin{gathered} 0.004 \\ (0.006) \end{gathered}$		$\begin{gathered} 0.018 \\ (0.020) \end{gathered}$
Value of Time (Stated, z-score)						$\begin{aligned} & 0.033^{* *} \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.018) \end{gathered}$
Schedule Flex (Stated, z-score)						$\begin{aligned} & 0.028^{*} \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.018) \end{gathered}$
Observations	8,227	8,887	7,200	7,200	3,670	952	777
Fraction in Experiment	0.06				0.12		

Selection into Experiment: Occupations

	(1) In the Experiment	(2) Not in the Experiment
Business owner or manager	16.7%	15.6%
Accountant, Teacher, Doctor	7.5%	6.3%
Software and IT	10.3%	10.1%
Engineers, Technical	14.3%	11.2%
Office staff	15.4%	18.1%
Manual jobs	8.4%	9.5%
Mobile professions	15.6%	12.0%
Student	9.0%	13.4%
Others, Retired	2.9%	3.9%
Total	455	2,464

Travel Behavior (GPS App Data)

	(1) Median	(2) Mean	(3) Std. Dev.	(4) 10	(5) 90	(6) Obs.
Panel A. Trip Characteristics						
Total Number of Trips						51,164
Number of Trips per Day	2.85	3.15	$[1.16]$	1.90	4.85	497
Median trip duration (minutes)	24.50	27.38	$[12.77]$	15.05	42.60	497
Median trip length (Km.)	5.91	7.17	$[4.66]$	2.90	13.36	497
Panel B. Commute Destination Variability						
Regular Commuter		0.76				497
Frac. trips Home-Work, Work-Home	0.38	0.39	$[0.21]$	0.13	0.67	378
Frac. of trips Work-Work	0.03	0.06	$[0.08]$	0.00	0.15	378
Frac. of days present at Work	0.91	0.86	$[0.16]$	0.61	1.00	378
Panel C. Departure Time Variability						
(Standard Deviation of the Departure	Time in hours)					
First Trip (AM)	1.27	1.24	$[0.50]$	0.52	1.85	496
Last Trip (PM)	1.72	1.71	$[0.50]$	1.06	2.34	497
First Home to Work Trip (AM)	0.48	0.62	$[0.52]$	0.15	1.28	332
Last Work to Home Trip (PM)	0.80	0.94	$[0.62]$	0.28	1.78	321

Departure Time and Traffic Equilibrium Model

- General framework for urban travel demand:
- Home and work locations (Ahlfeldt et al '15, Tsivanidis '18)
- Mode choice: bus, carpool (McFadden '74)

Departure Time and Traffic Equilibrium Model

- General framework for urban travel demand:
- Home and work locations (Ahlfeldt et al '15, Tsivanidis '18)
- Mode choice: bus, carpool (McFadden '74)
- Trip timing (scheduling) decision (Arnott, de Palma, Lindsey '93)
- Route choice

Departure Time and Traffic Equilibrium Model

- General framework for urban travel demand:
- Home and work locations (Ahlfeldt et al '15, Tsivanidis '18)
- Mode choice: bus, carpool (McFadden '74)
- Trip timing (scheduling) decision (Arnott, de Palma, Lindsey '93)
- Route choice
- Setting: home to work commuter
- Environment: distribution of travel time at each departure time

Utility over Travel Time and Scheduling Costs

$$
u\left(h_{D}, T\right)=-\alpha T-\beta_{E}|\underbrace{h_{D}+T-h_{A}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{D}+T-h_{A}^{*}}_{\text {time late }}|_{+}+m
$$

- Components:
- h_{D} departure time (decision variable)
- $T=T\left(h_{D}\right)$ random travel time, realized after departure
- m money (e.g. congestion charges)

Utility over Travel Time and Scheduling Costs

$$
u\left(h_{D}, T\right)=-\alpha T-\beta_{E}|\underbrace{h_{D}+T-h_{A}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{D}+T-h_{A}^{*}}_{\text {time late }}|++m
$$

- Components:
- h_{D} departure time (decision variable)
- $T=T\left(h_{D}\right)$ random travel time, realized after departure
- m money (e.g. congestion charges)
- Preferences:
- α : value of time commuting
- Ideal arrival time h_{A}^{*} known before departure
- β_{E}, β_{L} : cost of arriving early / late

Identifying $\alpha, \beta_{E}, \beta_{L}$ with Observational Data

$$
u_{i}\left(h_{D}, h_{A i t}^{*}\right)=-\alpha T_{i t}-\beta_{E}|\underbrace{h_{D}+T_{i t}-h_{A i t}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{D}+T_{i t}-h_{A i t}^{*}}_{\text {time late }}|_{+}+\varepsilon_{i t}\left(h_{D}\right)
$$

- Heterogeneity:
- In principle can accommodate $\alpha_{i}, \beta_{E i}, \beta_{L i}$
- $\varepsilon_{i t}\left(h_{D}\right)$ extreme value distributed

Identifying $\alpha, \beta_{E}, \beta_{L}$ with Observational Data

$$
u_{i}\left(h_{D}, h_{A i t}^{*}\right)=-\alpha T_{i t}-\beta_{E}|\underbrace{h_{D}+T_{i t}-h_{A i t}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{D}+T_{i t}-h_{A i t}^{*}}_{\text {time late }}|_{+}+\varepsilon_{i t}\left(h_{D}\right)
$$

- Heterogeneity:
- In principle can accommodate $\alpha_{i}, \beta_{E i}, \beta_{L i}$
- $\varepsilon_{i t}\left(h_{D}\right)$ extreme value distributed
- Identification challenge with observational data: price endogeneity
- Observed "prices": travel time profile $T_{i t}\left(h_{D}\right) \stackrel{i i d}{\sim} \mathcal{T}_{i}\left(h_{D}\right)$
- Unobserved "prices": ideal arrival time distribution $h_{\text {Ait }}^{*} \stackrel{i i d}{\sim} \mathcal{A}_{i}$

Identifying $\alpha, \beta_{E}, \beta_{L}$ with Observational Data

$$
u_{i}\left(h_{D}, h_{A i t}^{*}\right)=-\alpha T_{i t}-\beta_{E}|\underbrace{h_{D}+T_{i t}-h_{A i t}^{*}}_{\text {time early }}|--\beta_{L}|\underbrace{h_{D}+T_{i t}-h_{A i t}^{*}}_{\text {time late }}|_{+}+\varepsilon_{i t}\left(h_{D}\right)
$$

- Heterogeneity:
- In principle can accommodate $\alpha_{i}, \beta_{E i}, \beta_{L i}$
- $\varepsilon_{i t}\left(h_{D}\right)$ extreme value distributed
- Identification challenge with observational data: price endogeneity
- Observed "prices": travel time profile $T_{i t}\left(h_{D}\right) \stackrel{i i d}{\sim} \mathcal{T}_{i}\left(h_{D}\right)$
- Unobserved "prices": ideal arrival time distribution $h_{\text {Ait }}^{*} \stackrel{i i d}{\sim} \mathcal{A}_{i}$
- Approach here: create experimental variation in price of h_{D} and price of $T_{i t}$

Departure Time Information Sub-Treatment

Traffic Congestion in Bangalore

by weekday and time of day

- Daily SMS reports:
- Lower travel time recommendations (earlier/later)

Randomized Experiment Design

- Two main treatment arms:
- Departure time: High/Low Rate, Information, Control
- Area: High/Low Charge, Short/Long Detour

Randomized Experiment Design

- Two main treatment arms:
- Departure time: High/Low Rate, Information, Control
- Area: High/Low Charge, Short/Long Detour
- Sequential, cross-randomized, sub-treatments:
- Area (1 week), then Departure Time (3 weeks) OR
- Departure Time (3 weeks), then Area (1 week)

Randomized Experiment Design

- Two main treatment arms:
- Departure time: High/Low Rate, Information, Control
- Area: High/Low Charge, Short/Long Detour
- Sequential, cross-randomized, sub-treatments:
- Area (1 week), then Departure Time (3 weeks) OR
- Departure Time (3 weeks), then Area (1 week)
- Approx $50-60 \%$ aware of treatment during follow-up calls Inattention

[^1]
Additional Experimental Design Features

- Stratified by: car vs motorcycle, area eligibility, and average daily kilometers
- "high kilometers" strata more likely to receive "Low Rate" treatment ($25 \%-75 \%$) and vice versa
- Three days "trial period" before congestion charge treatments (area/departure time)
- Additional area Sub-treatment:
- 2 randomly chosen days (out of 5) had 50% higher rate
- Cross-randomization further balanced across time:
- Each block of 8 consecutive balanced on marginals (DT, Area)
- Problem: cover complete 8×8 bipartite graph with 8 perfect matchings (randomly)
- Solution: augmenting path algorithm to select matchings (König 1931)

Experimental Design Matrix

	Week	Control		Information		Low Rate		High Rate	
	1	AREA	control	AREA	info	AREA	low rate	AREA	high rate
	2	control control	control control	info info	info info	low rate low rate	low rate low rate	high rate high rate	high rate high rate
	4	control	AREA	info	AREA	low rate	AREA	high rate	AREA
$$	1	control	control	info	info	info	low rate	info	high rate
	2	control	control	info	info	low rate	low rate	high rate	igh rate
	3	control	control	info	info	low rate	low rate	high rate	high rate
	4	control	control	info	info	low rate	info	high rate	info

Selection into Experiment

	In Experiment (N=497)	Not in Experiment	Difference	
	Mean [SD]	Mean [SD]	in SD units	N
Panel A. All Respondents Approached	$33.3[8.2]$	$35.3[8.7]$	$-0.23^{* * *}$	8,887
Age	$0.30[0.46]$	$0.42[0.49]$	$-0.25^{* * *}$	8,227
Car driver	$10.5[0.4]$	$10.5[0.4]$	-0.00	7,200
Log vehicle price (residual)				
Panel B. Survey Respondents	$47.0[24.0]$	$45.1[25.1]$	0.08^{*}	4,427
Stated Daily Travel (Km/day)	$216.6[167.6]$	$193.0[181.4]$	$0.13^{* *}$	1,001
Stated Value of Time (Rs/hr)	$20.0[10.9]$	$18.8[12.0]$	0.10^{*}	952
Stated Schedule Flexibility (min)				

- Experiment participants are younger. Car/motorcycle mostly driven by age.
- No vehicle value difference after controling for age \& car Regression
- Similar occupation structure Occupations

Selection into Experiment

	In Experiment (N=497)	Not in Experiment	Difference	
	Mean [SD]	Mean [SD]	in SD units	N
Panel A. All Respondents Approached				
Age	$33.3[8.2]$	$35.3[8.7]$	$-0.23^{* * *}$	8,887
Car driver	$0.30[0.46]$	$0.42[0.49]$	$-0.25^{* * *}$	8,227
Log vehicle price (residual)	$10.5[0.4]$	$10.5[0.4]$	-0.00	7,200
Panel B. Survey Respondents				
Stated Daily Travel (Km/day)	$47.0[24.0]$	$45.1[25.1]$	0.08^{*}	4,427
Stated Value of Time (Rs/hr)	$216.6[167.6]$	$193.0[181.4]$	$0.13^{* *}$	1,001
Stated Schedule Flexibility (min)	$20.0[10.9]$	$18.8[12.0]$	0.10^{*}	952

- Experiment participants are younger. Car/motorcycle mostly driven by age.
- No vehicle value difference after controling for age \& car Regression
- Similar occupation structure Occupations
- Experiment participants have higher stated value of time, lower schedule costs
- Caveat: stated preferences not predictive of experimental response

Inattention to Treatment Status

- Phone survey to measure attention to experiment $(\mathrm{N}=209)$

	(1)	(2)			
	Fraction	N			
				(1)	(2)
Charges are per-KM	61.8\%	133		Fraction	N
Rate fn of departure time	57.8\%	133	Knows area location	66.9\%	132
Peak rate correct	55.1\%	133	Daily charges correct (4/5)	56.4\%	132
Two out of three correct	55.4\%	133			

Departure Time: Low Attrition

- Outcome: Dropped out (no subsequent data)
- Diff-in-diff: treatment group 0.02 higher (p-val 0.20)

Departure Times in Control (AM)

- Y axis: number of trips in control Go Back

Departure Times Shifted Later (PM)

- Go Back

Departure Times in Control (PM)

- Go Back

Departure Time: Difference in Difference Specification

$$
Y_{i t}=\gamma^{I} T_{i}^{\text {Info }^{\prime}} \times \text { Post }_{t}+\gamma^{L} T_{i}^{\text {Low }^{\prime}} \times \text { Post }_{t}+\gamma^{H} T_{i}^{\text {High }^{\prime}} \times \text { Post }_{t}+\mu_{w(t)}+\alpha_{i}+\varepsilon_{i t}
$$

- Commuter i, day t, week $w(t)$ (Post $_{t}=1$ during experiment)
- Outcomes:
- Total daily "shadow" rate
* Same peak rate (100) for all commuters
- Number of trips per day (extensive margin)
- Alternate specifications:
- Shadow charges (rate $\times \mathrm{km}$)
- Trip instead of day level

Area Difference in Difference Specification

$$
Y_{i t}=\gamma \text { Treated }_{i t}+\mu_{w(t)}+\alpha_{i}+\varepsilon_{i t}
$$

- Commuter i, day t, week $w(t)$
- Compare treated "late" (week=1) with treated "early" (week=4)
- Outcomes: total daily shadow rate, number of trips
- Shadow rate $=100$ if intersect area, 0 otherwise.

Area: No Additional Effect from Shorter Detour

	(1) Shadow Charges	(2) Google (minutes)	(3) Beliefs (minutes)	(4) Shadow Charges
Treated \times Short Detour	$-20.6^{* * *}$	$5.4^{* * *}$ (7.4)	$14.4^{* * *}$ (0.3)	(2.0)
Treated \times Long Detour	$-24.0^{* *}$	$9.1^{* * *}$	$15.6^{* * *}$	
	(12.1)	(0.5)	(1.7)	
Detour (minutes) (Short)				$-1.5^{* *}$
				(0.7)
Detour (minutes) (Long)				$-2.7^{* *}$
				(1.3)
Observations			67	67
Commuters				
Control Mean	148	67	67	2,538
P-val Short=Long	111.7	0.82	0.00	0.64

- Sub-treatment: randomly induced longer detour (across commuters)
- No "first-stage" on participant beliefs of the detour

Area: No Additional Effect from Higher Area Charge

	(1) Shadow Charges	(2) Beliefs (Rs.)	(3) Shadow Charges
Treated \times High Rate	$-26.8^{* * *}$ (7.9)	$191.6^{* * *}$ (3.3)	
Treated \times Low Rate	$-20.1^{* *}$	$101.8^{* * *}$ (7.8)	(3.2)
			$-17.3^{* * *}$
Rate (100 Rs.) (High)			(5.5)
			$-46.4^{* * *}$
Rate (100 Rs.) (Low)			(13.9)
		99	3,838
Observations	8,827	943	99
Commuters	110.2		99
Control Mean	0.55	0.00	0.05
P-val High=Low			

- Sub-treatment: low/high rate (across commuters)

Reduced Form Response Heterogeneity

- Significant overall heterogeneity:
- Nearly bi-modal response distributions
- Both departure time and area treatments
- Distributions
- Suggestive observed heterogeneity:
- Regular commuters, self-employed, more expensive vehicles, older
- Observed

Observable Heterogeneity

	(1)	(2)	(3)	(4)	(5)	(6)
Heterogeneity Dummy Variable K	Regular Destination	Self Employed	Cheap Vehicle	Older	Small Stated α	Small Stated β
Panel A. Departure Time: Trip Shadow Rate						
Charges \times Post $\times(K=0)$	$\begin{gathered} -1.25 \\ (2.17) \end{gathered}$	$\begin{gathered} -2.74^{* *} \\ (1.30) \end{gathered}$	$\begin{gathered} -5.81^{* * *} \\ (1.63) \end{gathered}$	$\begin{gathered} -1.06 \\ (1.90) \end{gathered}$	$\begin{gathered} -3.41^{* *} \\ (1.52) \end{gathered}$	$\begin{gathered} -5.04^{* * *} \\ (1.92) \end{gathered}$
Charges \times Post $\times(K=1)$	$\begin{gathered} -4.11^{* * *} \\ (1.37) \end{gathered}$	$\begin{gathered} -7.01^{* * *} \\ (2.68) \end{gathered}$	$\begin{gathered} -0.85 \\ (1.59) \end{gathered}$	$\begin{gathered} -4.70 * * * \\ (1.47) \end{gathered}$	$\begin{gathered} -4.26^{* *} \\ (1.96) \end{gathered}$	$\begin{gathered} -2.68 \\ (1.66) \end{gathered}$
Observations	43,776	43,170	43,776	43,776	40,783	39,639
P -value interaction	0.27	0.15	0.03	0.13	0.73	0.35
Panel B. Area: Trip Shadow Rate						
Treated $\times(K=0)$		$\begin{gathered} -11.91^{* * *} \\ (2.49) \end{gathered}$	$\begin{gathered} -11.29 * * * \\ (2.80) \end{gathered}$	$\begin{gathered} -7.04^{* *} \\ (3.56) \end{gathered}$	$\begin{gathered} -12.92^{* * *} \\ (2.97) \end{gathered}$	$\begin{gathered} -9.65 * * \\ (4.04) \end{gathered}$
Treated $\times(K=1)$		$\begin{gathered} -7.94^{* *} \\ (3.58) \end{gathered}$	$\begin{gathered} -12.54^{* * *} \\ (3.38) \end{gathered}$	$\begin{gathered} -14.18^{* * *} \\ (2.66) \end{gathered}$	$\begin{gathered} -10.19 * * * \\ (3.36) \end{gathered}$	$\begin{gathered} -13.07 * * * \\ (2.73) \end{gathered}$
Observations		20,367	20,594	20,594	18,741	18,260
P -value interaction		0.36	0.78	0.11	0.54	0.48

Departure Time Response Heterogeneity (AM)

- Individual Change in Shadow Charges (Post - Pre)
- Sample: regular commuters, AM trips before peak
- Go Back

Area Response Heterogeneity (AM)

- Individual Fraction of Days Taking Short Route (Intersecting Area)
- Sample: regular commuters, AM trips on days visiting work Go Back

Departure Time: No Differential Data Quality

- Outcome: Good Quality GPS Data :
- at most 3 hours effective missing data $\left(\sum_{i}\left|g a p_{i}-0.75\right|_{+}<3\right)$
- at most 2 km jump without detailed route data

	(1) Good Quality Data
High Rate \times Post	0.01
	(0.05)
Low Rate \times Post	-0.01
	(0.05)
Information \times Post	-0.01
	(0.04)
Post	$0.09 * * *$
	(0.04)
Commuter FE	X
Observations	24,827
Control Mean	0.76

Departure Time: Telephone Audit Results (pick-up)

- Outcome: Respondent picks up telephone upon first attempt
- Sample: respondents who did not immediately drop out

	(1) Departure Time	(2) Area
High Rate	0.01	
	(0.15)	
Low Rate	-0.24	
	(0.16)	
Information	0.04	
	(0.10)	
Area Treated		-0.07
		(0.20)
Strata FE	X	X
Week FE	X	X
Observations	108	73
Control Mean	0.74	0.65

Area: Sligthly Better Data Quality in Treatment

- Outcome: Good Quality GPS Data :
- at most 3 hours effective missing data ($\sum_{i}\left|g a p_{i}-0.75\right|_{+}<3$)
- at most 2 km jump without detailed route data

	(1)	(2) Good Quality Data	(4)		
	(3)				
Treated	$0.05^{* *}$	0.04	$0.05^{* *}$	0.05	
	(0.02)	(0.03)	(0.02)	(0.03)	
Post	0.06^{*}	0.06^{*}	0.03	$0.07^{* *}$	
	(0.03)	(0.03)	(0.03)	(0.04)	
Treated \times High Rate		0.01			
		(0.04)			
Treated \times High Rate Day			-0.00		
			(0.02)		
Treated \times Short Detour				-0.05	
				(0.05)	
		X	X	X	
Commuter FE	13,479	13,479	13,479	X	
Observations	0.73	0.73	0.73	0.76	
Control Mean					

Departure Time: Similar Results AM/PM

	(1) Total Shadow Rates	(2) Today	(4) Number of Trips	(5) Today		
High Rate \times Post	$-13.91^{* *}$	$-7.79^{* *}$	-6.12^{*}	-0.11	-0.04	-0.06
	(6.08)	(3.80)	(3.40)	(0.14)	(0.07)	(0.07)
Low Rate \times Post	-7.38	-2.76	-4.62	-0.06	-0.00	-0.07
	(6.26)	(3.68)	(3.82)	(0.14)	(0.07)	(0.07)
Information \times Post	-0.25	-0.25	-0.01	0.08	0.05	0.03
	(5.39)	(3.27)	(3.30)	(0.13)	(0.06)	(0.07)
Post	1.12	-0.94	2.06	0.04	-0.01	0.06
	(4.92)	(2.89)	(3.08)	(0.11)	(0.06)	(0.06)
Time of Day						
Observations	15,610	15,610	15,610	15,610	15,610	15,610
Control Mean	96.54	48.30	48.24	3.05	1.16	1.30

Departure Time: By Week in Study

	(1)	(2)	(3)	(4)	(5)	(6)
	Shadow Rates Today		Number of Trips		Today	
Sample:	Week 1	Week 2	Week 3	Week 1	Week 2	Week 3
High Rate \times Post	-10.46	$-16.07^{* *}$	-15.26^{*}	-0.10	-0.09	-0.13
	(7.41)	(7.76)	(7.87)	(0.17)	(0.18)	(0.18)
Low Rate \times Post	-8.32	-5.53	-5.30	-0.17	0.19	-0.09
	(7.61)	(8.15)	(7.84)	(0.17)	(0.18)	(0.18)
Information \times Post	-2.93	-2.11	4.16	-0.05	0.11	0.19
	(6.45)	(6.73)	(7.21)	(0.15)	(0.16)	(0.17)
Observations	11,925	11,895	11,812	11,925	11,895	11,812
Control Mean	95.87	96.75	94.09	2.93	2.96	2.95

Area sub-treatments on number of trips

	(1)	(2)	(3)	(4)
	Number of Trips Today			
Treated	$\begin{aligned} & 0.17^{* *} \\ & (0.08) \end{aligned}$	$\begin{gathered} 0.09 \\ (0.09) \end{gathered}$	$\begin{aligned} & 0.24^{* *} \\ & (0.10) \end{aligned}$	$\begin{gathered} 0.19 \\ (0.13) \end{gathered}$
Treated \times High Rate		$\begin{gathered} 0.17 \\ (0.14) \end{gathered}$		
Treated \times High Rate Day			$\begin{aligned} & -0.16^{*} \\ & (0.10) \end{aligned}$	
Treated \times Short Detour				$\begin{gathered} -0.07 \\ (0.16) \end{gathered}$
Commuter FE	x	X	x	x
Day in Study FE			X	
Observations	8,878	8,878	8,878	5,417
Control Mean	2.50	2.50	2.50	2.53

- Impact on number of trips not robust.

Nested Logit: Routes and Departure Times

$$
\begin{aligned}
u_{i}\left(h_{D}, j, h_{\text {Ait }}^{*}\right)= & -\alpha_{i} T_{i t}\left(h_{D}, j\right) \\
& -\beta_{E i}|\underbrace{h_{D}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time early }}|--\beta_{L i}|\underbrace{h_{D}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time late }}|+ \\
& +m_{i t}\left(h_{D}, j\right)+\varepsilon_{i t}\left(h_{D}, j\right)
\end{aligned}
$$

- Nested logit, random utility shocks $\varepsilon_{i t}\left(h_{D}, j\right)$ Choice Probabilities
- Upper nest: short route $j=0$ vs detour route $j=1$
- Lower nest: departure time h_{D} (5 minute bins)

Nested Logit: Routes and Departure Times

$$
\begin{aligned}
u_{i}\left(h_{D}, j, h_{\text {Ait }}^{*}\right)= & -\alpha_{i} T_{i t}\left(h_{D}, j\right) \\
& -\beta_{E i}|\underbrace{h_{D}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time early }}|--\beta_{L i}|\underbrace{h_{D}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time late }}|+ \\
& +m_{i t}\left(h_{D}, j\right)+\varepsilon_{i t}\left(h_{D}, j\right)
\end{aligned}
$$

- Nested logit, random utility shocks $\varepsilon_{i t}\left(h_{D}, j\right)$ Choice Probabilities
- Upper nest: short route $j=0$ vs detour route $j=1$
- Lower nest: departure time h_{D} (5 minute bins)

Nested Logit: Routes and Departure Times

$$
\begin{aligned}
u_{i}\left(h_{D}, j, h_{\text {Ait }}^{*}\right)= & -\alpha_{i} T_{i t}\left(h_{D}, j\right) \\
& -\beta_{E i}|\underbrace{h_{D}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time early }}|--\beta_{L i}|\underbrace{h_{D}+T_{i t}-h_{A i t}^{*}}_{\text {time late }}|+ \\
& +m_{i t}\left(h_{D}, j\right)+\varepsilon_{i t}\left(h_{D}, j\right)
\end{aligned}
$$

- Nested logit, random utility shocks $\varepsilon_{i t}\left(h_{D}, j\right)$ Choice Probabilities
- Upper nest: short route $j=0$ vs detour route $j=1$
- Lower nest: departure time h_{D} (5 minute bins)
- Congestion charges $m_{i t}^{D T}\left(h_{D}\right)+m_{i t}^{A}(j)$

Nested Logit: Routes and Departure Times

$$
\begin{aligned}
u_{i}\left(h_{D}, j, h_{A i t}^{*}\right)= & -\alpha_{i} T_{i t}\left(h_{D}, j\right) \\
& -\beta_{E i}|\underbrace{h_{D}+T_{i t}-h_{\text {Ait }}^{*}}_{\text {time early }}|--\beta_{L i}|\underbrace{h_{D}+T_{i t}-h_{A i t}^{*}}_{\text {time late }}|+ \\
& +m_{i t}\left(h_{D}, j\right)+\varepsilon_{i t}\left(h_{D}, j\right)
\end{aligned}
$$

- Nested logit, random utility shocks $\varepsilon_{i t}\left(h_{D}, j\right)$

Choice Probabilities

- Upper nest: short route $j=0$ vs detour route $j=1$
- Lower nest: departure time h_{D} (5 minute bins)
- Congestion charges $m_{i t}^{D T}\left(h_{D}\right)+m_{i t}^{A}(j)$
- $\alpha, \beta_{E}, \beta_{L}$ and discrete heterogeneity (e.g. inattention) Details
(1) Respond to congestion charges with probability p
(2) Ignore charges with probability $1-p$

Data and Estimation

- Commuter-specific choice set data:
- Google Maps travel times for alternate dep time h_{D} and route j
- Log normal travel time distribution Log Normal and Std.Dev.
- Beliefs Beliefs Travel Time

Data and Estimation

- Commuter-specific choice set data:
- Google Maps travel times for alternate dep time h_{D} and route j
- Log normal travel time distribution Log Normal and Std.Dev.
- Beliefs Beliefs Travel Time
- Sample: 308 commuters with stable work location
- Simulation: given $\alpha, \beta_{E}, \beta_{L}, h_{A i t}^{*}, \mathcal{T}_{i}$, compute choice probabilities
- Complication: invert unobserved distribution of ideal arrival $h_{\text {Ait }}^{*}$
- Two-step GMM

Estimate Model using Experimental Variation

- Use experiment variation to estimate key preference params:
- Value of time driving (α)
- Schedule costs (β_{E}, β_{L})

Estimate Model using Experimental Variation

- Use experiment variation to estimate key preference params:
- Value of time driving (α)
- Schedule costs (β_{E}, β_{L})
- Discrete choice model over routes and departure times Model
- Nested logit: route $j \in\{0,1\}$ and h_{D} in discrete grid
- Discrete heterogeneity: attentive with probability p

Estimate Model using Experimental Variation

- Use experiment variation to estimate key preference params:
- Value of time driving (α)
- Schedule costs (β_{E}, β_{L})
- Discrete choice model over routes and departure times Model
- Nested logit: route $j \in\{0,1\}$ and h_{D} in discrete grid
- Discrete heterogeneity: attentive with probability p

Estimation: Estimation

- Individual choice set (Google Maps travel times \& uncertainty)
- GMM with moments that exploit experiment variation Moments

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $\alpha(\mathrm{Rs} / \mathrm{hr})$	Schedule cost early $\beta_{E}(\mathrm{Rs} / \mathrm{hr})$	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond p
$1,121.9$	319.4	36.5	36.9	0.46
(318.7)	(134.5)	(65.4)	(9.3)	(0.13)

- High value of time ($4 x$ in-sample hourly wage)
- Identified from detour vs charge (not from pure price variation)
- Also consistent with fixed cost of switching Discusion

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $\alpha(\mathrm{Rs} / \mathrm{hr})$	Schedule cost early $\beta_{E}(\mathrm{Rs} / \mathrm{hr})$	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond p
$1,121.9$	319.4	36.5	36.9	0.46
(318.7)	(134.5)	(65.4)	(9.3)	(0.13)

- High value of time ($4 x$ in-sample hourly wage)
- Identified from detour vs charge (not from pure price variation)
- Also consistent with fixed cost of switching Discusion
- Early arrival cost β_{E} low relative to value of time α
- Commuters have a moderate ability to adjust to congestion

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $\alpha(\mathrm{Rs} / \mathrm{hr})$	Schedule cost early $\beta_{E}(\mathrm{Rs} / \mathrm{hr})$	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond p
$1,121.9$	319.4	36.5	36.9	0.46
(318.7)	(134.5)	(65.4)	(9.3)	(0.13)

- High value of time ($4 x$ in-sample hourly wage)
- Identified from detour vs charge (not from pure price variation)
- Also consistent with fixed cost of switching Discussion
- Early arrival cost β_{E} low relative to value of time α
- Commuters have a moderate ability to adjust to congestion
- Probability to respond \hat{p} similar to fraction attentive Inattention

Moments match experimental variation

All moments: in control and treatment Departure time:

- Departure time shares $\Rightarrow \beta_{E}, \beta_{L}, \sigma$

Moments match experimental variation

All moments: in control and treatment Departure time:

- Departure time shares $\Rightarrow \beta_{E}, \beta_{L}, \sigma$
- Departure time heterogeneity $\Rightarrow p$ (heterogeneity)
- Variance in individual change in shadow charges

Moments match experimental variation

All moments: in control and treatment Departure time:

- Departure time shares $\Rightarrow \beta_{E}, \beta_{L}, \sigma$
- Departure time heterogeneity $\Rightarrow p$ (heterogeneity)
- Variance in individual change in shadow charges

Route choice:

- Short/long route shares $\Rightarrow \alpha, \mu$

Moments match experimental variation

All moments: in control and treatment

Departure time:

- Departure time shares $\Rightarrow \beta_{E}, \beta_{L}, \sigma$
- Departure time heterogeneity $\Rightarrow p$ (heterogeneity)
- Variance in individual change in shadow charges

Route choice:

- Short/long route shares $\Rightarrow \alpha, \mu$
- Route choice heterogeneity $\Rightarrow p$ (heterogeneity)
- Distribution of individual short route choice frequency

Nested Logit Choice Probabilities

- Departure Time conditional on route j :

$$
\operatorname{Pr}\left(h_{D} \mid j, h_{A}^{*}\right)=\frac{\exp \left(V_{i}\left(h_{D}, j, h_{A}^{*}\right) / \sigma\right)}{\sum_{h} \exp \left(V_{i}\left(h, j, h_{A}^{*}\right) / \sigma\right)}
$$

- Denote $L S_{j}=\log \left(\sigma \sum_{h} \exp \left(V_{i}\left(h, j, h_{A}^{*}\right) / \sigma\right)\right)$
- Route choice:

$$
\operatorname{Pr}\left(j \mid h_{A}^{*}\right)=\frac{\exp \left(L S_{j} / \mu\right)}{\exp \left(L S_{0} / \mu\right)+\exp \left(L S_{1} / \mu\right)}
$$

- Nested logit restriction $\mu \geq \sigma$.

Discrete heterogeneity captures inattention

- Candidate model with random coefficients:

$$
\begin{aligned}
\alpha_{i} & =\alpha+\alpha_{X} X_{i}+\nu_{i} \\
\beta_{E i} & =\beta_{E}+\beta_{E X} X_{i}+\eta_{i} \\
\beta_{L i} & =\beta_{L}+\beta_{L X} X_{i}+\mu_{i}
\end{aligned}
$$

Discrete heterogeneity captures inattention

- Candidate model with random coefficients:

$$
\begin{aligned}
\alpha_{i} & =\alpha+\alpha_{X} X_{i}+\nu_{i} \\
\beta_{E i} & =\beta_{E}+\beta_{E X} X_{i}+\eta_{i} \\
\beta_{L i} & =\beta_{L}+\beta_{L X} X_{i}+\mu_{i}
\end{aligned}
$$

- Uni-modal distributions underestimate response heterogeneity:
- Problem: $\nu_{i} \sim \log N\left(0, \sigma_{\alpha}\right)$ leads to $\hat{\sigma}_{\alpha} \rightarrow \infty$

Discrete heterogeneity captures inattention

- Candidate model with random coefficients:

$$
\begin{aligned}
\alpha_{i} & =\alpha+\alpha_{X} X_{i}+\nu_{i} \\
\beta_{E i} & =\beta_{E}+\beta_{E X} X_{i}+\eta_{i} \\
\beta_{L i} & =\beta_{L}+\beta_{L X} X_{i}+\mu_{i}
\end{aligned}
$$

- Uni-modal distributions underestimate response heterogeneity:
- Problem: $\nu_{i} \sim \log N\left(0, \sigma_{\alpha}\right)$ leads to $\hat{\sigma}_{\alpha} \rightarrow \infty$
- Better fit: discrete heterogeneity (e.g. inattention, or inflexible)
(1) Respond to congestion charges, with probability p
(2) Ignore charges with probability $1-p$

Discrete heterogeneity captures inattention

- Candidate model with random coefficients:

$$
\begin{aligned}
\alpha_{i} & =\alpha+\alpha_{X} X_{i}+\nu_{i} \\
\beta_{E i} & =\beta_{E}+\beta_{E X} X_{i}+\eta_{i} \\
\beta_{L i} & =\beta_{L}+\beta_{L X} X_{i}+\mu_{i}
\end{aligned}
$$

- Uni-modal distributions underestimate response heterogeneity:
- Problem: $\nu_{i} \sim \log N\left(0, \sigma_{\alpha}\right)$ leads to $\hat{\sigma}_{\alpha} \rightarrow \infty$
- Better fit: discrete heterogeneity (e.g. inattention, or inflexible)
(1) Respond to congestion charges, with probability p
(2) Ignore charges with probability $1-p$
- Homogeneous preferences conditional on response:
- $\alpha_{i}=\alpha, \beta_{E i}=\beta_{E}$ and $\beta_{L i}=\beta_{L}$

Beliefs: Changes in Travel Time Overestimated

	(1)	(2)	(3)
	Trip Duration (belief)		Δ duration leaving earlier (belief)
Trip Duration (Google Maps)	$\begin{gathered} 0.70^{* * *} \\ (0.09) \end{gathered}$	$\begin{gathered} 0.70^{* * *} \\ (0.12) \end{gathered}$	
Trip Distance (Google Maps)		$\begin{gathered} 0.02 \\ (0.21) \end{gathered}$	
Δ duration leaving earlier (Google Maps)			$\begin{gathered} 1.56 * * * \\ (0.34) \end{gathered}$
Constant	$\begin{gathered} 16.20^{* * *} \\ (3.20) \end{gathered}$	$\begin{gathered} 16.23^{* * *} \\ (3.23) \end{gathered}$	$\begin{gathered} -2.75 * * * \\ (0.80) \end{gathered}$
Observations	261	261	261

- Google Maps underestimates beliefs on travel time changes
- Consistent results for area treatment detours:
- Average detour 6.5 minutes (Google Maps)
- Average detour 13.6 minutes (phone survey stated beliefs)

Log Normal Travel Time (Route \times Dep. Time Level)

- Log of normalized residual variation (across 146 weekdays)
- Distributed \approx log-normal (heavy tailed)
- $T\left(h_{D}\right) \sim \log N\left(\mu\left(h_{D}\right), \sigma\left(h_{D}\right)\right)$

Uncertainty: Substantial Travel Time Variation

- Observation $=$ route \times departure time. Computed over 146 weekdays
- $T\left(h_{D}\right) \sim \log N\left(\mu\left(h_{D}\right), \sigma\left(h_{D}\right)\right)$

Value of Time Discussion

- Transportation literature conventional estimate VOT = half of wage
- Stated preferences (Small '12)
- Hedonic regressions Ommeren and Fosgerau (2008)
- Revealed preference $>$ stated preferences (Small et al '05)
- WTA higher than WTP (De Borger and Fosgerau '08, Hess et al. '08)
- Here measuring WTA for extra time spent commuting
- Google Time lower variance compared to commuter beliefs
- commuters believed detour twice as long as Google Maps

Structural Estimation Robustness

- Good model fit, including heterogeneity Heterogeneity Fit
- Bounds on late arrival cost β_{L} (objective function flat $\beta_{L} \geq \bar{\beta}_{L}$)
- Model identification:
- Sensitivity measure (Andrews et al '17)
- Numerical check of identification using simulated data

Model Fit - Departure Times

- Good heterogeneity fit (variance in individual changes)

(A) Departure Time Market Shares

(B) Heterogeneity

Model Fit - Route Choice

- Good heterogeneity fit (inverse shape in treatment)

(A) Control

(B) Treatment

Logit Expected Utility

Expected utility with logit shocks:

$$
E u_{i}=\sigma \log \sum_{h} \exp \left(\frac{u_{i}\left(h_{D}\right)-t_{i}(h)}{\sigma}\right)+\sum_{h} \pi_{i}(h) t_{i}(h)
$$

Departure Time: Daily Shadow Rates Decrease

	(1) Shadow Rates Today	
	(2) High Rate \times Post	$-14.32^{* *}$ (7.23)
	$-13.91^{* *}$	
(6.08)		
Low Rate \times Post	-0.87	-7.38
	(7.20)	(6.26)
Information \times Post	-1.44	-0.25
	(6.44)	(5.39)
Post only	X	
Commuter FE		X
Observations Control Mean	5,599	15,610

- No differential attrition Data Quality Drop out at end $<10 \%$ (Droped Out
- Similar results AM/PM Full Results
- Effects start during second week By week

Departure Time: Daily Shadow Rates Decrease

	(1) Shadow	(2) Rates Today	(3) Trips	(4) Today
High Rate \times Post	$-14.32^{* *}$	$-13.91^{* *}$	-0.19	-0.11
	(7.23)	(6.08)	(0.21)	(0.14)
Low Rate \times Post	-0.87	-7.38	0.08	-0.06
	(7.20)	(6.26)	(0.19)	(0.14)
Information \times Post	-1.44	-0.25	-0.19	0.08
	(6.44)	(5.39)	(0.17)	(0.13)
Post only	X		X	
Commuter FE		X		X
Observations Control Mean	5,599	15,610	5,599	15,610

- No differential attrition Data Quality Drop out at end $<10 \%$ (Droped Out
- Similar results AM/PM Full Results
- Effects start during second week By week

Road Technology: Robustness

- Measuring speed. Robust to:
- Measuring speed with GPS data
- Controlling for trip characteristics
- Back

Road Technology: Robustness

- Measuring speed. Robust to:
- Measuring speed with GPS data
- Controlling for trip characteristics
- Measuring traffic volume:
- Very fine prediction by artery and time of day Artery
- Similar results with density, time lags specifications
- Back

Road Technology: Robustness

- Measuring speed. Robust to:
- Measuring speed with GPS data
- Controlling for trip characteristics
- Measuring traffic volume:
- Very fine prediction by artery and time of day Artery
- Similar results with density, time lags specifications
- Comparison to other settings:
- Different from transportation engineering (convex) (e.g. BPR)
- Similar city-wide results in Bogotá Akbar and Duranton '17
- New evidence: no hypercongestion (Anderson and Davis '18, Yang et al '18)
- Back

Linear Externality Bottleneck Model

- Impossible to fit Bangalore data with single bottleneck model
- Low capacity: queue increases monotonically throughout the day
- High capacity: no delay until very late in the day
- Solution: "traffic light" model with N consecutive bottlenecks with traffic lights
- Two assumptions predict a linear relationship:
- traffic lights create queues even for low inflows (much below capacity)
- each bottleneck is relatively high-capacity (queues do not spill between traffic light cycles)
- Intuition for linear delay: queues form behind each traffic light and dissipate during the green cycle

Road Technology Comparison

- Very similar to Akbar and Duranton (2017)
- Concave part: time lags and/or survey data bias (Zhao et al 2015)

Road Technology at Artery Level

- 22 arteries with Google Maps travel time data (in both directions)

Road Technology at Artery Level

- Traffic volume (GPS) predicts travel time profile (Google Maps)
- Adj $R^{2}=60 \%$ with time-of-day FE, artery FE, artery-specific slopes

Social Optimum with Marginal Social Cost

- MSC higher after peak-hour: pushing others towards the peak Back

Inefficiency with other Preferences and Road Technology

$$
\begin{aligned}
& \hline \text {----- Road Technology: Linear Technology: Third Power } \\
& \hline
\end{aligned}
$$

Outcome: percentage improvement going from unpriced Nash to social optimum

- Other preferences do not change conclusion
- Preferences matter more with convex road technology

Inefficiency with Preferences Heterogeneity

	(1)	(2)	(3)	(4)
Distribution	$\mathrm{SD}\left(\alpha_{i}\right) / \bar{\alpha}_{i}$	$\operatorname{Corr}\left(\alpha_{i}, \beta_{i}\right)$	Nash Welfare	\% Inefficiency
Binomial	0.33	1	-774.8	0.71%
Log-normal	0.44	1	-772.2	0.85%
Log-normal	0.44	0	-743.4	0.60%

- Binomial $\left(\alpha_{i}^{H}, \beta_{i}^{H}\right)=\left(2 \alpha_{i}^{L}, 2 \beta_{i}^{L}\right)$ or continuous (log-normal) heterogeneity
- Moderate heterogeneity in $\left(\alpha_{i}, \beta_{i}\right)$ does not change conclusion

Flexibility Compensates for Bad Road Technology

- High schedule flexibility (low β_{E} / α) diminishes the negative effect of convex road technology

Social Optimum: Notable Travel Time Benefit...

	(1) Travel Time (min.) Above Free-Flow	
Nash equilibrium	38.7	16.7
Social Optimum	37.7	15.7
Improvement	1.04	1.04
Improvement (\% of Nash)	2.7%	6.2%

... But Modest Welfare Gain

$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { (1) } \\ \text { Travel }\end{array} & \begin{array}{c}\text { (2) } \\ \text { Time (min.) } \\ \text { Above }\end{array} & \begin{array}{c}\text { (3) } \\ \text { Free-Flow }\end{array} & \begin{array}{c}\text { (4) } \\ \text { Welfare } \\ \text { (Rupees) }\end{array} \\ \text { Above } \\ \text { Free-Flow }\end{array}\right]$

- Schedule costs comparable to benefits (externality + value of time)

... But Modest Welfare Gain

$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { (1) } \\ \text { Travel }\end{array} & \begin{array}{c}\text { (2) } \\ \text { Time (min.) } \\ \text { Above }\end{array} & \begin{array}{c}\text { (3) } \\ \text { Free-Flow }\end{array} & \begin{array}{c}\text { (4) } \\ \text { Welfare } \\ \text { (Rupees) }\end{array} \\ \text { Above } \\ \text { Free-Flow }\end{array}\right]$

- Schedule costs comparable to benefits (externality + value of time)

Inefficiency with Extensive Margin Decision

- Extensive margin decision $X=\{0,1\}$ based on nested logit with trip value δ

$$
u\left(X, h_{D}\right)= \begin{cases}\delta+u\left(h_{D}\right)+\varepsilon\left(h_{D}, 1\right) & \text { if } X=1 \\ \varepsilon\left(h_{D}, 0\right) & \text { if } X=0\end{cases}
$$

Value of trip (Rs.)	Trip Probability Nash		Social Opt.
(\% of Nash)			

Inefficiency with Extensive Margin Decision

- Trip value $\delta=1,000$, welfare improvement 6.2%

$$
\begin{array}{|l|l}
\hline-=-=-=\cdot & \text { Nash eqm Social Opt } \\
---- \text { Marginal Social Cost (at S.O.) } \\
\hline
\end{array}
$$

[^0]: Extensive Margin

[^1]: Other Design Information

