The Welfare Effect of Road Congestion Pricing: Experimental Evidence and Equilibrium Implications

Gabriel E. Kreindler

(Harvard University)

ASSA, Jan 3, 2020

Traffic Congestion Widespread in Large Cities

- Bangalore average speed: 9-10 miles per hour.
- Demand for travel an indicator of economic growth.
- Costs: wasted time, uncertainty, pollution, diminished agglomeration benefits.

Economists' Approach: Price the Externality

- Traffic congestion socially inefficiently high due to driving externality
 - Focus here: driving lowers road speed
 - ▶ Theory solution: price externality, restore optimum (Pigou 1920, Vickrey 1969)

Economists' Approach: Price the Externality

- Traffic congestion socially inefficiently high due to driving externality
 - Focus here: driving lowers road speed
 - Theory solution: price externality, restore optimum (Pigou 1920, Vickrey 1969)
- Goal of this paper: how does social optimum look like in Bangalore?
 - Eliminate congestion completely?
 - Optimal to have some congestion? If so, how much?

This Paper: Peak-Hour Traffic Equilibrium

- This paper holds the extensive margin fixed (return to this issue in simulations).
- **(**) Peak-hours $1.5 \times -2 \times$ slower than nighttime

This Paper: Peak-Hour Traffic Equilibrium

- This paper holds the extensive margin fixed (return to this issue in simulations).
- Peak-hours 1.5×-2× slower than nighttime
- Intuition: should target congestion pricing precisely

Intro

This Paper: Peak-Hour Traffic Equilibrium

- This paper holds the extensive margin fixed (return to this issue in simulations).
- Peak-hours $1.5 \times -2 \times$ slower than nighttime
- Intuition: should target congestion pricing precisely
- Short-term responses relevant

This Paper: Quantify Peak-Hour Congestion Inefficiency Research Questions:

Impact of peak-hour congestion pricing on commuter departure times?

This Paper: Quantify Peak-Hour Congestion Inefficiency Research Questions:

- **1** Impact of peak-hour congestion pricing on commuter **departure times**?
- Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

This Paper: Quantify Peak-Hour Congestion Inefficiency Research Questions:

Impact of peak-hour congestion pricing on commuter departure times?

Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

Main steps:

(1) Model of travel demand (departure time). Key parameters:

- Value of time spent driving
- Schedule costs of arriving early / late (schedule flexibility)

This Paper: Quantify Peak-Hour Congestion Inefficiency Research Questions:

Impact of peak-hour congestion pricing on commuter departure times?

Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

Main steps:

(1) Model of travel demand (departure time). Key parameters:

- Value of time spent driving
- Schedule costs of arriving early / late (schedule flexibility)

(2) GPS travel behavior data (smartphone app): measure departure times and routes

This Paper: Quantify Peak-Hour Congestion Inefficiency Research Questions:

- **1** Impact of peak-hour congestion pricing on commuter **departure times**?
- Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

Main steps:

- (1) Model of travel demand (departure time). Key parameters:
 - Value of time spent driving
 - Schedule costs of arriving early / late (schedule flexibility)
- (2) GPS travel behavior data (smartphone app): measure departure times and routes
- (3) Field experiment with congestion charge policies (partial equilibrium)

This Paper: Quantify Peak-Hour Congestion Inefficiency

Research Questions:

- Impact of peak-hour congestion pricing on commuter departure times?
- Impact of optimal congestion pricing on peak-hour congestion shape and commuter welfare?

Main steps:

- (1) Model of travel demand (departure time). Key parameters:
 - Value of time spent driving
 - Schedule costs of arriving early / late (schedule flexibility)
- (2) GPS travel behavior data (smartphone app): measure departure times and routes
- (3) Field experiment with congestion charge policies (partial equilibrium)
- (4) Measure road traffic externality, and simulate the social optimum

- Commuters respond to both policies:
 - ▶ Peak-hour charges: leave earlier in AM, not later (vice-versa in PM)
 - Route charges: take detour route

- Commuters respond to both policies:
 - Peak-hour charges: leave earlier in AM, not later (vice-versa in PM)
 - Route charges: take detour route
- Structural preference estimates:
 - High value of time spent driving (hence: congestion is costly)
 - Commuters moderately schedule flexible

- Commuters respond to both policies:
 - Peak-hour charges: leave earlier in AM, not later (vice-versa in PM)
 - Route charges: take detour route
- Structural preference estimates:
 - High value of time spent driving (hence: congestion is costly)
 - Commuters moderately schedule flexible
- However, moderate and linear externality

- Commuters respond to both policies:
 - Peak-hour charges: leave earlier in AM, not later (vice-versa in PM)
 - Route charges: take detour route
- Structural preference estimates:
 - High value of time spent driving (hence: congestion is costly)
 - Commuters moderately schedule flexible
- However, moderate and linear externality
- Modest welfare gains from optimal pricing:
 - Simulation model: modest travel time benefits, mostly offset by schedule costs
 - In this setting, this conclusion driven by shape of externality

- Large theory literature in transportation economics
 - ▶ First- and second-best pricing, various margins, networks, etc.
 - Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93

- Large theory literature in transportation economics
 - First- and second-best pricing, various margins, networks, etc.
 - Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93
- Evidence from real congestion pricing policies
 - Reduced traffic congestion and pollution: London, Milan, Stokholm (Karlström and Franklin 2009, Simeonova et al 2018)

- Large theory literature in transportation economics
 - First- and second-best pricing, various margins, networks, etc.
 - Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93
- Evidence from real congestion pricing policies
 - Reduced traffic congestion and pollution: London, Milan, Stokholm (Karlström and Franklin 2009, Simeonova et al 2018)
- Welfare analysis of congestion pricing
 - ▶ Walters 1961, Prud'homme and Bocarejo 2005, Small et al 2006
 - Couture et al (2018), Akbar and Duranton (2018)

- Large theory literature in transportation economics
 - First- and second-best pricing, various margins, networks, etc.
 - Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93
- Evidence from real congestion pricing policies
 - Reduced traffic congestion and pollution: London, Milan, Stokholm (Karlström and Franklin 2009, Simeonova et al 2018)
- Welfare analysis of congestion pricing
 - Walters 1961, Prud'homme and Bocarejo 2005, Small et al 2006
 - Couture et al (2018), Akbar and Duranton (2018)
- Growing revealed preference travel demand estimation literature
 - Small et al '05, Bento et al '17, Tillema et al '13, Martin and Thornton '17
 - Most studies: stated preferences (Small '82, Ben-Akiva et al '16)

- Large theory literature in transportation economics
 - First- and second-best pricing, various margins, networks, etc.
 - Vickrey '69, Small '82, Arnott, de Palma, and Lindsey '93
- Evidence from real congestion pricing policies
 - Reduced traffic congestion and pollution: London, Milan, Stokholm (Karlström and Franklin 2009, Simeonova et al 2018)
- Welfare analysis of congestion pricing
 - ▶ Walters 1961, Prud'homme and Bocarejo 2005, Small et al 2006
 - Couture et al (2018), Akbar and Duranton (2018)
- Growing revealed preference travel demand estimation literature
 - Small et al '05, Bento et al '17, Tillema et al '13, Martin and Thornton '17
 - Most studies: stated preferences (Small '82, Ben-Akiva et al '16)
- Urban congestion literature:
 - Driving restrictions (Davis '08, Kreindler '16, Hanna, Kreindler, Olken '17)
 - Pollution (Hanna and Oliva '14, Gendron-Carrier et al '17)
 - Land use (Field '05, Harari '17)

Plan of the Talk

2 Data and Study Sample

- 3 Experimental Design
- 4 Experimental Results
- **5** Externality and Policy Simulations

2 Data and Study Sample

- 3 Experimental Design
- 4 Experimental Results
- **(5)** Externality and Policy Simulations

Data: GPS Traces from Smartphone App • Android app designed for this study + automatic GPS data processing (Details)

Sample: Study Area, Recruitment in Gas Stations

Sample: Recruitment and Timeline

- Approached 8,641 eligible drivers (car and motorcycle)
 - ▶ 2,300 installed app
 - 497 experiment participants Selection

Bangalore Traffic Research	YOUR EXPERIENCE COUNTS HELPYOUR CITY BEAT TRAFFIC
mester contra accuracy ou contra	
A few things	to get you started
1. INSTALL THE APP कार्यव्य, ध ⁴ वि	
on your daily trips stratuided	along genter et along
on your deity trips (time, distance, traffic). Uses the GPS in your	n ang dalawar a
phone (no other data). Evizion (d • First 2 weeks: data disposition)	di ana den r adj dialaanti e dianagtei setimus dian di ana den terministri internationality internation
collection only. • Elector 2 or stortjatel day	
2. GET FEEDBACK adj	
you a personalised report	ಎರ್ಮಗೆ ವೈಯಕ್ಷಿಕ ವರದಿ, ಬೊಡಗೆ
avoid traffic congestion.	ಎಂಬ ಮಾಹಿತಿ ನೀಡುತ್ತೇವೆ
	DNEY FOR AVOIDING TRAFFIC
. EARIN MU ಚ್ರಾಫಿಕ್ ಜಾ	ಮ್ ತಪ್ಪಿಸುವುದಕ್ಕಾಗಿ ಹಣ ಗಳಿಸಿ
- You are gran	ranteed to receive Rs. 1,000 for participating.
	rticipants are randomly selected for extra incentives.
your travel a	nd trips, as per our personalised advice.
	Duration: 4 weeks
Massachusetts	J-PAL
Technology testute to fue	and insugament and leasest

Sample: Recruitment and Timeline

- Approached 8,641 eligible drivers (car and motorcycle)
 - 2,300 installed app
 - 497 experiment participants Selection
- Timeline:
 - Recruitment (in gas stations)
 - Initial GPS data collection
 - ► 5 weeks randomized experiment (N=497)

Bangalore Traffic Research Hele YOUR CITY BEAT TRAFFIC
A few things to get you started
1. INSTALL THE APP WINTON OF C SUIT
 And and a state of a state of
A CATHERDALE (A Mark A double)
for Lobit MONRY COLONG TANTER for Colong Colong Tan
Massachusetts Institute of Technology Massachusetts Massachusette et React

Sample: Recruitment and Timeline

- Approached 8,641 eligible drivers (car and motorcycle)
 - 2,300 installed app
 - 497 experiment participants Selection
- Timeline:
 - Recruitment (in gas stations)
 - Initial GPS data collection
 - ► 5 weeks randomized experiment (N=497)
- Experimental platform
 - Charges deducted from initial grant
 - Weekly bank transfers
 - Daily SMS reports Stats

Banga Trad Resea	ffic arch	YOUR EXPERIENCE OF A CONTRACT	
RESE			()
×	few things to get you	u started	
1. INSTALL THE APP S	and the second diversion of the second		
Collects information			
		AND REAL PROPERTY.	Coogle Pay
on your daily trips (time, distance, traffic). - Uses the GPS in your	(ನದುದು, ದೂರ, ಲ್ಯಾಕಿಕ್) - ನಿದ್ದು ಘಟನ್ ನಲ್ಲಿ ಜಿಪಿಎನ	Contraction of	(III) (III)
phone (no other data). • First 2 weeks: data	ಮಾಡುತ್ತೀರಿ ಎನ್ನುವುದರ ಮೇವ ಮಾಹಿತಿಯನ್ನು ಸಂಗ್ರಹಿಸುತ್ತದ (ಸದುಮ, ಡೂರ, ಚ್ರಾತ್ರಿಕೆಗೆ) - ನಿಮ್ಮ ಫೋರ್ ಸಲ್ಲಿ ಜಿಪಿಎಸ ಬಳಸುತ್ತದ (ಬೇರ ಮಾವುದೇ ವತ್ತಾಂತ ಅಲ್ಲ) - ಹೊರಲ 2 ದಾರಗಳು ಡೇಬ ಸುಗ್ರಹಗೆ ಮಾತ್ರ.		low factory 2 works data
collection only.			<u></u>
			reduce
	DBACK ಪ್ರತಿಕ್ರಿಯೆ ಸ್ಪೀ		
you a perse	ks, we will give + 2 55 onalised report, 2007 ation on how to	ತರಗಳ ನಂತರ, ನಾವು ವೈಯಕ್ತಿಕ ವರದಿ, ಶೋತಗ ರ ರಬ್ಗಕ ತಕ್ಕಿಸುವುದು ಹೇಗ ಮಾಹಿತಿ ನೀಡುತ್ತೇವೆ	
	ic congestion.	ಮಾಹಿತಿ ನೀಡುತ್ತೇವೆ	
	3. EARN MONEY FOR ಬ್ರಾಫಿಕ್ ಜಾಮ್ ತಪ್ಪಿಸು	avoiding traffic ಪುದಕ್ಕಾಗಿ ಪಣ ಗಳಿಸಿ	
			Duration: 4 weeks
Massachusetts	-180 107		PAL
Institute of Technology	Internet a Management of	team J-	Carl Party Party a

Utility over Travel Time and Scheduling Costs

$$u(h_D, T) = -\alpha T - \beta_E |\underbrace{h_D + T - h_A^*}_{\text{time early}}|_- - \beta_L |\underbrace{h_D + T - h_A^*}_{\text{time late}}|_+ + m$$

- Components:
 - *h_D* departure time (decision variable)
 - $T = T(h_D)$ random travel time, realized after departure
 - *m* money (e.g. congestion charges)

Utility over Travel Time and Scheduling Costs

$$u(h_D, T) = -\alpha T - \beta_E |\underbrace{h_D + T - h_A^*}_{\text{time early}}|_- - \beta_L |\underbrace{h_D + T - h_A^*}_{\text{time late}}|_+ + m$$

- Components:
 - *h_D* departure time (decision variable)
 - $T = T(h_D)$ random travel time, realized after departure
 - *m* money (e.g. congestion charges)
- Preferences:
 - α : value of time commuting
 - Ideal arrival time h_A^* known before departure
 - β_E , β_L : cost of arriving early / late

Identifying $\alpha, \beta_{E}, \beta_{L}$ with Observational Data

$$u_{i}(h_{Dit}, h_{Ait}^{*}) = -\alpha T_{it} - \beta_{E} |\underbrace{h_{Dit} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{L} |\underbrace{h_{Dit} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+} + \varepsilon_{it}(h_{Dit})$$

- Panel data on departure time h_{Dit}
- Observed "prices": travel time profile $T_{it}(h_D) \stackrel{iid}{\sim} T_i(h_D)$
- Unobserved "prices": ideal arrival time distribution $h_{Ait}^* \stackrel{iid}{\sim} A_i$

Identifying α , β_E , β_L with Observational Data

$$u_{i}(h_{Dit}, h_{Ait}^{*}) = -\alpha T_{it} - \beta_{E} |\underbrace{h_{Dit} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{L} |\underbrace{h_{Dit} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+} + \varepsilon_{it}(h_{Dit})$$

- Panel data on departure time h_{Dit}
- Observed "prices": travel time profile $T_{it}(h_D) \stackrel{iid}{\sim} T_i(h_D)$
- Unobserved "prices": ideal arrival time distribution $h_{Ait}^* \stackrel{iid}{\sim} A_i$
- Concern: commuters who face different relative prices also have different ideal arrival times

Identifying α , β_E , β_L with Observational Data

$$u_{i}(h_{Dit}, h_{Ait}^{*}) = -\alpha T_{it} - \beta_{E} |\underbrace{h_{Dit} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{L} |\underbrace{h_{Dit} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+} + \varepsilon_{it}(h_{Dit})$$

- Panel data on departure time h_{Dit}
- Observed "prices": travel time profile $T_{it}(h_D) \stackrel{iid}{\sim} T_i(h_D)$
- Unobserved "prices": ideal arrival time distribution $h_{Ait}^* \stackrel{iid}{\sim} A_i$
- Concern: commuters who face different relative prices also have different ideal arrival times
- Approach here: create experimental variation in price of h_D and price of T_{it}

Experiment: Peak-hour Departure Time Charge

• Each trip charged with per-kilometer (variable) rate

Experiment: Peak-hour Departure Time Charge

- Each trip charged with per-kilometer (variable) rate
- Sub-treatments:
 - \blacktriangleright low rate 12 ${\rm Rs}/{\rm Km}$ (~ effective Uber per-km rate in Bangalore)
 - high rate $24 \operatorname{Rs}/\operatorname{Km}$ (~ 0.4\$)
 - information and nudge (Info)

Experiment: Congestion Area Flat Charge

- Flat charge for crossing area. This induces a detour option (longer route, but free)
- Route choice informative about value of travel time
- Sub-treatments:
 - (A) low / high charge $p_A \in \{ \text{Rs. 80}, \text{Rs. 160} \}$
 - ▶ (B) short / long detour $D \in [3, 14]$ minutes

In Person Meeting to Explain Treatment

2 Data and Study Sample

- 3 Experimental Design
- 4 Experimental Results

5 Externality and Policy Simulations

Departure Times Shift Earlier (AM)

- Y axis: number of trips (change)
- Sample: all trips home to work, regular commuters only
- Control density plot Control Figure
- PM results (PM Figure)

Experiment

Reduced Form

Departure Times Shift Earlier (AM)

• Sample: all morning trips, all respondents

Area: Daily Shadow Rates Decrease

	(1) (2) Shadow Rates Today		
Treated	-22.82*** (5.53)		
Treated Week 1		-26.16*** (8.30)	
Treated Week 4		-19.18* (10.06)	
Commuter FE Observations Control Mean	X 8,878 107.68	X 8,878 116.16	

- Slightly higher GPS data quality in treatment group (Data Quality)
- Similar effects throughout treatment (days 1-5)

Area: Daily Shadow Rates Decrease

	(1) Shadow Ra	(2) ates Today	(3) Trips	(4) Today
Treated	-22.82*** (5.53)		0.17** (0.08)	
Treated Week 1		-26.16*** (8.30)		0.06 (0.13)
Treated Week 4		-19.18* (10.06)		0.30* (0.16)
Commuter FE Observations Control Mean	X 8,878 107.68	X 8,878 116.16	X 8,878 2.50	X 8,878 2.56

- Slightly higher GPS data quality in treatment group (Data Quality)
- Similar effects throughout treatment (days 1-5)

Structural Model Estimation

- Structurally estimate model of morning departure time decision
 - use experimental variation from the two charges

Structural Model Estimation

- Structurally estimate model of morning departure time decision
 - use experimental variation from the two charges
- Results:
 - ▶ High value of time spent driving (4× in sample hourly wage)
 - Commuters moderately schedule flexible

Data & Sample

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $lpha$ (Rs/hr)	Schedule cost early β_E (Rs/hr)	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond <i>p</i>
1,121.9 (318.7)	319.4 (134.5)	36.5 (65.4)	36.9 (9.3)	0.46 (0.13)

- High value of time (4x in-sample hourly wage)
 - Identified from detour vs charge (not from pure price variation)
 - Also consistent with fixed cost of switching

Data & Sample

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $lpha$ (Rs/hr)	Schedule cost early β_E (Rs/hr)	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond <i>p</i>
1,121.9 (318.7)	319.4 (134.5)	36.5 (65.4)	36.9 (9.3)	0.46 (0.13)

- High value of time (4x in-sample hourly wage)
 - Identified from detour vs charge (not from pure price variation)
 - Also consistent with fixed cost of switching
- Early arrival cost $\beta_{\textit{E}}$ low relative to value of time α
 - Commuters have a moderate ability to adjust to congestion

Data & Sample

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $lpha$ (Rs/hr)	Schedule cost early β_E (Rs/hr)	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond <i>p</i>
1,121.9 (318.7)	319.4 (134.5)	36.5 (65.4)	36.9 (9.3)	0.46 (0.13)

- High value of time (4x in-sample hourly wage)
 - Identified from detour vs charge (not from pure price variation)
 - Also consistent with fixed cost of switching
- Early arrival cost β_{E} low relative to value of time α
 - Commuters have a moderate ability to adjust to congestion
- Probability to respond \hat{p} similar to fraction attentive

2 Data and Study Sample

- 3 Experimental Design
- 4 Experimental Results
- **5** Externality and Policy Simulations

• The marginal social cost on travel time T at traffic volume V is

$$(T(V+1) - T(V)) \cdot V \approx \frac{\partial T}{\partial \log V}$$

• The marginal social cost on travel time T at traffic volume V is

$$(T(V+1) - T(V)) \cdot V \approx \frac{\partial T}{\partial \log V}$$

• Unit: entire trips (both for volume and for travel time)

• The marginal social cost on travel time T at traffic volume V is

$$(T(V+1) - T(V)) \cdot V \approx \frac{\partial T}{\partial \log V}$$

- Unit: entire trips (both for volume and for travel time)
- Data:
 - Volume: GPS trip data (117,527 trips, 1,747 users)
 - Travel time: Google Maps data (28 fixed routes, 185 days)
 - Travel time: GPS trip data

• The marginal social cost on travel time T at traffic volume V is

$$(T(V+1) - T(V)) \cdot V \approx \frac{\partial T}{\partial \log V}$$

- Unit: entire trips (both for volume and for travel time)
- Data:
 - Volume: GPS trip data (117,527 trips, 1,747 users)
 - Travel time: Google Maps data (28 fixed routes, 185 days)
 - Travel time: GPS trip data
- Cannot distinguish externality of motorcycle vs car

Moderate, Linear Impact of Traffic Volume on Travel Time

ullet Peak-hour trip (\sim 33 min) generates \sim 15 min aggregate travel time

Moderate, Linear Impact of Traffic Volume on Travel Time

- ullet Peak-hour trip (\sim 33 min) generates \sim 15 min aggregate travel time
- Similar: within-day and across-calendar date Other Robust (Model)

Moderate, Linear Impact of Traffic Volume on Travel Time

- ullet Peak-hour trip (\sim 33 min) generates \sim 15 min aggregate travel time
- Similar: within-day and across-calendar date Other Robust Model

- Simple bottleneck model may have huge externalities:
 - \blacktriangleright 149 minutes marginal damage for pprox 15 minute private cost (Lucas and Davis 2019)
 - Intuition: delay everyone

- Simple bottleneck model may have huge externalities:
 - 149 minutes marginal damage for pprox 15 minute private cost (Lucas and Davis 2019)
 - Intuition: delay everyone
- US Bureau of Public Roads: delay is fourth power of volume divided by capacity

- Simple bottleneck model may have huge externalities:
 - 149 minutes marginal damage for pprox 15 minute private cost (Lucas and Davis 2019)
 - Intuition: delay everyone
- US Bureau of Public Roads: delay is fourth power of volume divided by capacity
- Bogota, Colombia looks similar to Bangalore (Akbar and Duranton, 2018, with similar unit and variation)

- Simple bottleneck model may have huge externalities:
 - 149 minutes marginal damage for pprox 15 minute private cost (Lucas and Davis 2019)
 - Intuition: delay everyone
- US Bureau of Public Roads: delay is fourth power of volume divided by capacity
- Bogota, Colombia looks similar to Bangalore (Akbar and Duranton, 2018, with similar unit and variation)
- $\bullet\,$ Couture et al (2018) find -0.13 elasticity of speed to tvehicle otal time travelled in US cities

Citywide Traffic Equilibrium

Goal: citywide policy impact on traffic of (optimal) congestion charge

Two steps:

- (1) Road technology: how traffic volume affects travel times
- (2) Simulate equilibrium (with/without optimal charges)
 - I make strong simplifying assumptions:
 - Fix home and work locations, firm schedules
 - Fix travel mode, carpooling, extensive margin.
 - ▶ Ignore trucks and buses (<10% of registered vehicles)
 - Ignore pollution and accident externalities

Social Optimum: Notable Travel Time Benefit...

• "Best-case" social optimum: no implementation costs and all revenue redistributed lump-sum

Social Optimum: Notable Travel Time Benefit...

• "Best-case" social optimum: no implementation costs and all revenue redistributed lump-sum

Social Optimum: Small Gains from Optimal Pricing

- We just saw: moderate and linear traffic externality
- This implies: modest welfare gains from optimal pricing

Social Optimum: Small Gains from Optimal Pricing

- We just saw: moderate and linear traffic externality
- This implies: modest welfare gains from optimal pricing
- Social optimum has:
 - Some travel time benefits (less congested peak-hour)
 - ▶ However, low marginal externality implies travel time benefits mostly offset by schedule costs
 - In this setting, the results driven by shape of externality.

Social Optimum: Small Gains from Optimal Pricing

- We just saw: moderate and linear traffic externality
- This implies: modest welfare gains from optimal pricing
- Social optimum has:
 - Some travel time benefits (less congested peak-hour)
 - However, low marginal externality implies travel time benefits mostly offset by schedule costs
 - In this setting, the results driven by shape of externality.
- Similar results with other preferences, moderate heterogeneity, extensive margin.

Preferences, Externality, Heterogeneity, Extensive Margin

- Changing preferences ($\beta_{\it E}/\alpha$ ratio): welfare gains still negligible (\leq 1%)
- Convex road technology: higher travel time and welfare improvements

Other Preferences, Technology

Preferences, Externality, Heterogeneity, Extensive Margin

- Changing preferences ($eta_{\it E}/lpha$ ratio): welfare gains still negligible (\leq 1%)
- Convex road technology: higher travel time and welfare improvements

Other Preferences, Technology

• Moderate heterogeneity in (α_i, β_i) : welfare gains still negligible ($\leq 1\%$)

Preference Heterogeneity

Preferences, Externality, Heterogeneity, Extensive Margin

- Changing preferences (β_E/α ratio): welfare gains still negligible (\leq 1%)
- Convex road technology: higher travel time and welfare improvements

Other Preferences, Technology

- Moderate heterogeneity in (α_i, β_i) : welfare gains still negligible ($\leq 1\%$)
 - Incorporate extensive margin:
 - Maximum welfare gains 6.2%
 - Low welfare gains when trips valuable

Extensive Margin

Conclusion: Implications for Road Traffic Congestion

- Precisely targeted road pricing technology exists. Would it improve cities?
- In Bangalore, peak-hour pricing less attractive than believed
 - Severe congestion does not *automatically* imply pricing is attractive
- Other important margins:
 - pollution (generation & exposure)
 - public transit
 - firm demand for travel

Thank You!

Data: GPS Traces from Smartphone App

- Android app designed for this study
 - $\blacktriangleright~76\%$ smartphone owernship among sampling frame
 - App runs in background
- Automatic GPS data processing
 - identifying outliers
 - raw GPS \rightarrow trips (start, end, route)
- Data coverage: 70–80% days

Back

Descriptive Statistics: Travel Behavior (GPS Data)

	Mean	Std. Dev.	Obs.			
Panel A. Trip Characteristics						
Total Number of Trips			51,164			
Number of Trips per Day	3.15	[1.16]	497			
Median trip duration (minutes)	27.38	[12.77]	497			
Median trip length (Km.)	7.2	[4.7]	497			
Panel B. Commute Destination Variabili	ity					
Regular Commuter	0.76		497			
Frac. of days present at Work	0.86		378			
Frac. trips Home-Work or Work-Home	0.39		378			
Panel C. Departure Time Variability (Std.Dev. in hours)						
First Trip (AM)	1.24	[0.50]	496			
First Home to Work Trip (AM)	0.62	[0.52]	332			

• Significant route and departure time heterogeneity Distributions

Study Eligibility

	Ν	%
Approached	10,537	100%
Own vehicle	9,893	94%
$Drive \geq 3 \ days/wk$	9,203	87%
$Drive \geq 20 \; km/day$	7,398	70%
In Bangalore	7,052	67%
Own GPS smartphone	5,372	51%

• Survey "Daily Km" three times higher than measured by GPS

Selection into Experiment

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		C	Dutcome: Re	spondent In E	xperiment		
Drives Car (z-score)	-0.014*** (0.001)			-0.008*** (0.002)	-0.021 (0.014)		-0.118** (0.051)
Age (z-score)		-0.012*** (0.001)		-0.007*** (0.001)	-0.001 (0.006)		0.016 (0.020)
Log Vehicle Value (z-score)			-0.010*** (0.001)	-0.000 (0.002)	0.006 (0.014)		0.055 (0.052)
KM Daily (Stated, z-score)					0.004 (0.006)		0.018 (0.020)
Value of Time (Stated, z-score)						0.033** (0.016)	0.022 (0.018)
Schedule Flex (Stated, z-score)						0.028* (0.016)	0.022 (0.018)
Observations Fraction in Experiment	8,227 0.06	8,887	7,200	7,200	3,670 0.12	952	777

Selection into Experiment: Occupations

	(1)	(2)
	In the Experiment	Not in the Experiment
Business owner or manager	16.7%	15.6%
Accountant, Teacher, Doctor	7.5%	6.3%
Software and IT	10.3%	10.1%
Engineers, Technical	14.3%	11.2%
Office staff	15.4%	18.1%
Manual jobs	8.4%	9.5%
Mobile professions	15.6%	12.0%
Student	9.0%	13.4%
Others, Retired	2.9%	3.9%
Total	455	2,464

Travel Behavior (GPS App Data)

	(1) Median	(2) Mean	(3) Std. Dev.	(4) 10 Perc.	(5) 90 Perc.	(6) Obs.
Panel A. Trip Characteristics						
Total Number of Trips						51,164
Number of Trips per Day	2.85	3.15	[1.16]	1.90	4.85	497
Median trip duration (minutes)	24.50	27.38	[12.77]	15.05	42.60	497
Median trip length (Km.)	5.91	7.17	[4.66]	2.90	13.36	497
Panel B. Commute Destination Varial	oility					
Regular Commuter	,	0.76				497
Frac. trips Home-Work, Work-Home	0.38	0.39	[0.21]	0.13	0.67	378
Frac. of trips Work-Work	0.03	0.06	[0.08]	0.00	0.15	378
Frac. of days present at Work	0.91	0.86	[0.16]	0.61	1.00	378
Panel C. Departure Time Variability						
(Standard Deviation of the Departure	Time in I	ours)				
First Trip (AM)	1.27	1.24	[0.50]	0.52	1.85	496
Last Trip (PM)	1.72	1.71	[0.50]	1.06	2.34	497
First Home to Work Trip (AM)	0.48	0.62	[0.52]	0.15	1.28	332
Last Work to Home Trip (PM)	0.80	0.94	[0.62]	0.28	1.78	321

Departure Time and Traffic Equilibrium Model

- General framework for urban travel demand:
 - ▶ Home and work locations (Ahlfeldt et al '15, Tsivanidis '18)
 - Mode choice: bus, carpool (McFadden '74)

Departure Time and Traffic Equilibrium Model

• General framework for urban travel demand:

- ▶ Home and work locations (Ahlfeldt et al '15, Tsivanidis '18)
- Mode choice: bus, carpool (McFadden '74)
- ► Trip timing (scheduling) decision (Arnott, de Palma, Lindsey '93)
- Route choice

Departure Time and Traffic Equilibrium Model

- General framework for urban travel demand:
 - ▶ Home and work locations (Ahlfeldt et al '15, Tsivanidis '18)
 - Mode choice: bus, carpool (McFadden '74)
 - ► Trip timing (scheduling) decision (Arnott, de Palma, Lindsey '93)
 - Route choice
- Setting: home to work commuter
- Environment: distribution of travel time at each departure time

Utility over Travel Time and Scheduling Costs

$$u(h_D, T) = -\alpha T - \beta_E |\underbrace{h_D + T - h_A^*}_{\text{time early}}|_- - \beta_L |\underbrace{h_D + T - h_A^*}_{\text{time late}}|_+ + m$$

- Components:
 - *h_D* departure time (decision variable)
 - $T = T(h_D)$ random travel time, realized after departure
 - m money (e.g. congestion charges)

Utility over Travel Time and Scheduling Costs

$$u(h_D, T) = -\alpha T - \beta_E |\underbrace{h_D + T - h_A^*}_{\text{time early}}|_{-} - \beta_L |\underbrace{h_D + T - h_A^*}_{\text{time late}}|_{+} + m$$

- Components:
 - \blacktriangleright *h*_D departure time (decision variable)
 - $T = T(h_D)$ random travel time, realized after departure
 - m money (e.g. congestion charges)
- Preferences:
 - \blacktriangleright α : value of time commuting
 - Ideal arrival time h_A^* known before departure
 - β_{F} , β_{I} : cost of arriving early / late

Identifying α, β_E, β_L with Observational Data

$$u_{i}(h_{D}, h_{Ait}^{*}) = -\alpha T_{it} - \beta_{E} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{L} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+} + \varepsilon_{it}(h_{D})$$

- Heterogeneity:
 - In principle can accommodate α_i , β_{Ei} , β_{Li}
 - $\varepsilon_{it}(h_D)$ extreme value distributed

Identifying α, β_E, β_L with Observational Data

$$u_{i}(h_{D}, h_{Ait}^{*}) = -\alpha T_{it} - \beta_{E} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{L} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+} + \varepsilon_{it}(h_{D})$$

- Heterogeneity:
 - ▶ In principle can accommodate α_i , β_{Ei} , β_{Li}
 - $\varepsilon_{it}(h_D)$ extreme value distributed
- Identification challenge with observational data: price endogeneity
 - Observed "prices": travel time profile $T_{it}(h_D) \stackrel{iid}{\sim} T_i(h_D)$
 - Unobserved "prices": ideal arrival time distribution $h_{Ait}^* \stackrel{iid}{\sim} A_i$

Identifying α, β_E, β_L with Observational Data

$$u_{i}(h_{D}, h_{Ait}^{*}) = -\alpha T_{it} - \beta_{E} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{L} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+} + \varepsilon_{it}(h_{D})$$

- Heterogeneity:
 - In principle can accommodate α_i , β_{Ei} , β_{Li}
 - $\varepsilon_{it}(h_D)$ extreme value distributed
- Identification challenge with observational data: price endogeneity
 - ▶ Observed "prices": travel time profile $T_{it}(h_D) \stackrel{iid}{\sim} T_i(h_D)$
 - Unobserved "prices": ideal arrival time distribution $h_{Ait}^* \stackrel{iid}{\sim} A_i$
- Approach here: create experimental variation in price of h_D and price of T_{it}

Departure Time Information Sub-Treatment

- Daily SMS reports:
- Lower travel time recommendations (earlier/later)

Randomized Experiment Design

- Two main treatment arms:
 - **Departure time**: High/Low Rate, Information, Control
 - Area: High/Low Charge, Short/Long Detour

Randomized Experiment Design

- Two main treatment arms:
 - ► Departure time: High/Low Rate, Information, Control
 - ► Area: High/Low Charge, Short/Long Detour
- Sequential, cross-randomized, sub-treatments:
 - Area (1 week), then Departure Time (3 weeks) OR
 - **Departure Time** (3 weeks), then **Area** (1 week)

Randomized Experiment Design

- Two main treatment arms:
 - **Departure time**: High/Low Rate, Information, Control
 - ► Area: High/Low Charge, Short/Long Detour
- Sequential, cross-randomized, sub-treatments:
 - Area (1 week), then Departure Time (3 weeks) OR
 - **Departure Time** (3 weeks), then **Area** (1 week)
- Approx 50-60% aware of treatment during follow-up calls (Inattention)

Other Design Information

Additional Experimental Design Features

- Stratified by: car vs motorcycle, area eligibility, and average daily kilometers
 - "high kilometers" strata more likely to receive "Low Rate" treatment (25% 75%) and vice versa
- Three days "trial period" before congestion charge treatments (area/departure time)
- Additional area Sub-treatment:
 - ▶ 2 randomly chosen days (out of 5) had 50% higher rate
- Cross-randomization further balanced across time:
 - Each block of 8 consecutive balanced on marginals (DT, Area)
 - ▶ Problem: cover complete 8 × 8 bipartite graph with 8 perfect matchings (randomly)
 - Solution: augmenting path algorithm to select matchings (König 1931)

Experimental Design Matrix

	Week	Con	trol	Inforn	nation	Low	Rate	High	Rate
4	1	AREA	control	AREA	info	AREA	low rate	AREA	high rate
Strata 1-4	2	control	control	info	info	low rate	low rate	high rate	high rate
trat	3	control	control	info	info	low rate	low rate	high rate	high rate
S	4	control	AREA	info	AREA	low rate	AREA	high rate	AREA
ø	1	control	control	info	info	info	low rate	info	high rate
ы. Д	2	control	control	info	info	low rate	low rate	high rate	high rate
Strata 5-8	3	control	control	info	info	low rate	low rate	high rate	high rate
Ś	4	control	control	info	info	low rate	info	high rate	info

Selection into Experiment

	In Experiment (N=497)	Not in Experiment	Difference	
	Mean [SD]	Mean [SD]	in SD units	Ν
Panel A. All Respondents Appr	oached			
Age	33.3 [8.2]	35.3 [8.7]	-0.23***	8,887
Car driver	0.30 [0.46]	0.42 [0.49]	-0.25***	8,227
Log vehicle price (residual)	10.5 [0.4]	10.5 [0.4]	-0.00	7,200
Panel B. Survey Respondents				
Stated Daily Travel (Km/day)	47.0 [24.0]	45.1 [25.1]	0.08*	4,427
Stated Value of Time (Rs/hr)	216.6 [167.6]	193.0 [181.4]	0.13**	1,001
Stated Schedule Flexibility (min)	20.0 [10.9]	18.8 [12.0]	0.10*	952

• Experiment participants are younger. Car/motorcycle mostly driven by age.

► No vehicle value difference after controling for age & car (Regression)

Similar occupation structure Occupations

Selection into Experiment

	In Experiment (N=497)	Not in Experiment	Difference	
	Mean [SD]	Mean [SD]	in SD units	Ν
Panel A. All Respondents Appr	oached			
Age	33.3 [8.2]	35.3 [8.7]	-0.23***	8,887
Car driver	0.30 [0.46]	0.42 [0.49]	-0.25***	8,227
Log vehicle price (residual)	10.5 [0.4]	10.5 [0.4]	-0.00	7,200
Panel B. Survey Respondents				
Stated Daily Travel (Km/day)	47.0 [24.0]	45.1 [25.1]	0.08*	4,427
Stated Value of Time (Rs/hr)	216.6 [167.6]	193.0 [181.4]	0.13**	1,001
Stated Schedule Flexibility (min)	20.0 [10.9]	18.8 [12.0]	0.10*	952

• Experiment participants are younger. Car/motorcycle mostly driven by age.

- ► No vehicle value difference after controling for age & car (Regression)
- Similar occupation structure Occupations

• Experiment participants have higher stated value of time, lower schedule costs

Caveat: stated preferences not predictive of experimental response

Inattention to Treatment Status

• Phone survey to measure attention to experiment (N=209)

	(1) Fraction	(2) N		
Charges are per-KM	61.8%	133		(1) Fraction
Rate fn of departure time	57.8%	133	cation	66.9%
Peak rate correct	55.1%	133	correct (4/5)	56.4%
Two out of three correct	55.4%	133		

Departure Time: Low Attrition

- Outcome: Dropped out (no subsequent data)
- Diff-in-diff: treatment group 0.02 higher (p-val 0.20)

Departure Times in Control (AM)

• Y axis: number of trips in control Go Back

Departure Times Shifted Later (PM)

Departure Times in Control (PM)

Departure Time: Difference in Difference Specification

$$Y_{it} = \gamma^{I} T_{i}^{Info} \times Post_{t} + \gamma^{L} T_{i}^{Low} \times Post_{t} + \gamma^{H} T_{i}^{High} \times Post_{t} + \mu_{w(t)} + \alpha_{i} + \varepsilon_{it}$$

- Commuter *i*, day *t*, week w(t) (*Post*_t = 1 during experiment)
- Outcomes:
 - Total daily "shadow" rate
 - **\star** Same peak rate (100) for all commuters
 - Number of trips per day (extensive margin)
- Alternate specifications:
 - Shadow charges (rate × km)
 - Trip instead of day level

Area Difference in Difference Specification

$$Y_{it} = \gamma \operatorname{\textit{Treated}}_{it} + \mu_{w(t)} + \alpha_i + \varepsilon_{it}$$

- Commuter *i*, day *t*, week w(t)
- Compare treated "late" (week=1) with treated "early" (week=4)
- Outcomes: total daily shadow rate, number of trips
 - Shadow rate = 100 if intersect area, 0 otherwise.

Area: No Additional Effect from Shorter Detour

	(1)	(2)	(3)	(4)
	Shadow	Google	Beliefs	Shadow
	Charges	(minutes)	(minutes)	Charges
Treated $ imes$ Short Detour	-20.6***	5.4***	14.4***	
	(7.4)	(0.3)	(2.0)	
Treated $ imes$ Long Detour	-24.0**	9.1***	15.6***	
	(12.1)	(0.5)	(1.7)	
Detour (minutes) (Short)				-1.5**
				(0.7)
Detour (minutes) (Long)				-2.7**
				(1.3)
Observations	5,358	67	67	2,538
Commuters	148	67	67	67
Control Mean	111.7			
P-val Short=Long	0.82	0.00	0.64	0.42

- Sub-treatment: randomly induced longer detour (across commuters)
- No "first-stage" on participant beliefs of the detour

Area: No Additional Effect from Higher Area Charge

	(1)	(2)	(3)
	Shadow	Beliefs	Shadow
	Charges	(Rs.)	Charges
Treated $ imes$ High Rate	-26.8***	191.6***	
-	(7.9)	(3.3)	
Treated $ imes$ Low Rate	-20.1**	101.8***	
	(7.8)	(3.2)	
Rate (100 Rs.) (High)			-17.3***
			(5.5)
Rate (100 Rs.) (Low)			-46.4***
			(13.9)
Observations	8,827	99	3,838
Commuters	243	99	99
Control Mean	110.2		
P-val High=Low	0.55	0.00	0.05

• Sub-treatment: low/high rate (across commuters)

Reduced Form Response Heterogeneity

- Significant overall heterogeneity:
 - Nearly bi-modal response distributions
 - Both departure time and area treatments
 - Distributions
- Suggestive observed heterogeneity:
 - ▶ Regular commuters, self-employed, more *expensive* vehicles, older
 - ▶ Observed

Observable Heterogeneity

	(1)	(2)	(3)	(4)	(5)	(6)
Heterogeneity Dummy Variable <i>K</i>	Regular Destination	Self Employed	Cheap Vehicle	Older	Small Stated α	Small Stated β
Panel A. Departure Time	e: Trip Shad	low Rate				
$Charges{\times}Post{\times}(\mathcal{K}=0)$	-1.25 (2.17)	-2.74** (1.30)	-5.81*** (1.63)	-1.06 (1.90)	-3.41** (1.52)	-5.04*** (1.92)
$Charges{\times}Post{\times}({\mathcal{K}}=1)$	-4.11*** (1.37)	-7.01*** (2.68)	-0.85 (1.59)	-4.70*** (1.47)	-4.26** (1.96)	-2.68 (1.66)
Observations P-value interaction	43,776 0.27	43,170 0.15	43,776 0.03	43,776 0.13	40,783 0.73	39,639 0.35
Panel B. Area: Trip Shad	dow Rate					
$Treated\!\times\!(K=0)$		-11.91*** (2.49)	-11.29*** (2.80)	-7.04** (3.56)	-12.92*** (2.97)	-9.65** (4.04)
$Treated{\times}({\mathcal{K}}=1)$		-7.94** (3.58)	-12.54*** (3.38)	-14.18*** (2.66)	-10.19*** (3.36)	-13.07*** (2.73)
Observations P-value interaction		20,367 0.36	20,594 0.78	20,594 0.11	18,741 0.54	18,260 0.48

Departure Time Response Heterogeneity (AM)

- Individual Change in Shadow Charges (Post Pre)
- Sample: regular commuters, AM trips before peak
- Go Back

Area Response Heterogeneity (AM)

- Individual Fraction of Days Taking Short Route (Intersecting Area)
- Sample: regular commuters, AM trips on days visiting work Go Back

Departure Time: No Differential Data Quality

- Outcome: Good Quality GPS Data :
 - at most 3 hours effective missing data $(\sum_i |gap_i 0.75|_+ < 3)$
 - at most 2km jump without detailed route data

	(1)
	Good Quality Data
High Rate $ imes$ Post	0.01 (0.05)
Low Rate \times Post	-0.01 (0.05)
Information \times Post	-0.01 (0.04)
Post	0.09*** (0.04)
Commuter FE Observations Control Mean	X 24,827 0.76

Departure Time: Telephone Audit Results (pick-up)

- Outcome: Respondent picks up telephone upon first attempt
- Sample: respondents who did not immediately drop out

	(1) Departure Time	(2) Area
High Rate	0.01 (0.15)	
Low Rate	-0.24 (0.16)	
Information	0.04 (0.10)	
Area Treated		-0.07 (0.20)
Strata FE Week FE	× ×	X X
Observations Control Mean	108 0.74	73 0.65

Area: Sligthly Better Data Quality in Treatment

- Outcome: Good Quality GPS Data :
 - at most 3 hours effective missing data $(\sum_i |gap_i 0.75|_+ < 3)$
 - at most 2km jump without detailed route data

	(1)	(2)	(3)	(4)
		Good Qu	ality Data	9
Treated	0.05** (0.02)	0.04 (0.03)	0.05** (0.02)	0.05 (0.03)
Post	0.06* (0.03)	0.06* (0.03)	0.03 (0.03)	0.07** (0.04)
Treated \times High Rate		0.01 (0.04)		
Treated \times High Rate Day			-0.00 (0.02)	
Treated \times Short Detour				-0.05 (0.05)
Commuter FE	х	х	х	х
Observations	13,479	13,479	13,479	8,032
Control Mean	0.73	0.73	0.73	0.76

Departure Time: Similar Results AM/PM

	(1)	(2)	(3)	(4)	(5)	(6)
	Total Sha	adow Rate	s Today	Numbe	r of Trips	5 Today
High Rate $ imes$ Post	-13.91** (6.08)	-7.79** (3.80)	-6.12* (3.40)	-0.11 (0.14)	-0.04 (0.07)	-0.06 (0.07)
Low Rate \times Post	-7.38 (6.26)	-2.76 (3.68)	-4.62 (3.82)	-0.06 (0.14)	-0.00 (0.07)	-0.07 (0.07)
Information \times Post	-0.25 (5.39)	-0.25 (3.27)	-0.01 (3.30)	0.08 (0.13)	0.05 (0.06)	0.03 (0.07)
Post	1.12 (4.92)	-0.94 (2.89)	2.06 (3.08)	0.04 (0.11)	-0.01 (0.06)	0.06 (0.06)
Time of Day		AM	PM		AM	РM
Observations	15,610	15,610	15,610	15,610	15,610	15,610
Control Mean	96.54	48.30	48.24	3.05	1.16	1.30

Departure Time: By Week in Study

	(1)	(2)	(3)	(4)	(5)	(6)
	Shad	low Rates T	oday	Numb	er of Trips	Today
Sample:	Week 1	Week 2	Week 3	Week 1	Week 2	Week 3
High Rate $ imes$ Post	-10.46	-16.07**	-15.26*	-0.10	-0.09	-0.13
	(7.41)	(7.76)	(7.87)	(0.17)	(0.18)	(0.18)
Low Rate \times Post	-8.32	-5.53	-5.30	-0.17	0.19	-0.09
	(7.61)	(8.15)	(7.84)	(0.17)	(0.18)	(0.18)
Information \times Post	-2.93	-2.11	4.16	-0.05	0.11	0.19
	(6.45)	(6.73)	(7.21)	(0.15)	(0.16)	(0.17)
Observations	11,925	11,895	11,812	11,925	11,895	11,812
Control Mean	95.87	96.75	94.09	2.93	2.96	2.95

Area sub-treatments on number of trips

	(1) Number	(2) r of Trips	(3) Today	(4)
Treated	0.17** (0.08)	0.09 (0.09)	0.24** (0.10)	0.19 (0.13)
Treated \times High Rate		0.17 (0.14)		
Treated \times High Rate Day			-0.16* (0.10)	
Treated \times Short Detour				-0.07 (0.16)
Commuter FE Day in Study FE	Х	Х	× ×	Х
Observations Control Mean	8,878 2.50	8,878 2.50	8,878 2.50	5,417 2.53

• Impact on number of trips not robust.

$$u_{i}(h_{D}, j, h_{Ait}^{*}) = -\alpha_{i} T_{it}(h_{D}, j)$$

- $\beta_{Ei} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{Li} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+}$
+ $m_{it}(h_{D}, j) + \varepsilon_{it}(h_{D}, j)$

- Nested logit, random utility shocks $\varepsilon_{it}(h_D, j)$ (Choice Probabilities)
 - Upper nest: short route j = 0 vs detour route j = 1
 - Lower nest: departure time h_D (5 minute bins)

$$u_{i}(h_{D}, j, h_{Ait}^{*}) = -\alpha_{i} T_{it}(h_{D}, j)$$

- $\beta_{Ei} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{Li} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+}$
+ $m_{it}(h_{D}, j) + \varepsilon_{it}(h_{D}, j)$

- Nested logit, random utility shocks $\varepsilon_{it}(h_D, j)$ (Choice Probabilities)
 - Upper nest: short route j = 0 vs detour route j = 1
 - Lower nest: departure time h_D (5 minute bins)

$$u_{i}(h_{D}, j, h_{Ait}^{*}) = -\alpha_{i} T_{it}(h_{D}, j)$$

- $\beta_{Ei} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time early}}|_{-} - \beta_{Li} |\underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time late}}|_{+}$
+ $m_{it}(h_{D}, j) + \varepsilon_{it}(h_{D}, j)$

- Nested logit, random utility shocks $\varepsilon_{it}(h_D, j)$ (Choice Probabilities)
 - Upper nest: short route j = 0 vs detour route j = 1
 - Lower nest: departure time h_D (5 minute bins)
- Congestion charges $m_{it}^{DT}(h_D) + m_{it}^A(j)$

$$u_{i}(h_{D}, j, h_{Ait}^{*}) = -\alpha_{i} T_{it}(h_{D}, j)$$

- $\beta_{Ei} | \underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time early}} |_{-} - \beta_{Li} | \underbrace{h_{D} + T_{it} - h_{Ait}^{*}}_{\text{time late}} |_{+}$
+ $m_{it}(h_{D}, j) + \varepsilon_{it}(h_{D}, j)$

- Nested logit, random utility shocks $\varepsilon_{it}(h_D, j)$ (Choice Probabilities)
 - Upper nest: short route j = 0 vs detour route j = 1
 - Lower nest: departure time h_D (5 minute bins)
- Congestion charges $m_{it}^{DT}(h_D) + m_{it}^A(j)$
- α , β_E , β_L and *discrete* heterogeneity (e.g. inattention) (Details)
 - (1) Respond to congestion charges with probability p
 - (2) Ignore charges with probability 1 p

Data and Estimation

- Commuter-specific choice set data:
 - Google Maps travel times for alternate dep time h_D and route j
 - Log normal travel time distribution (Log Normal and Std.Dev.)
 - Beliefs Beliefs Travel Time

Data and Estimation

- Commuter-specific choice set data:
 - Google Maps travel times for alternate dep time h_D and route j
 - Log normal travel time distribution (Log Normal and Std.Dev.)
 - Beliefs Beliefs Travel Time
- Sample: 308 commuters with stable work location
- Simulation: given α , β_E , β_L , h^*_{Ait} , \mathcal{T}_i , compute choice probabilities
 - Complication: invert unobserved distribution of ideal arrival h_{Ait}^*
- Two-step GMM

Estimate Model using Experimental Variation

• Use experiment variation to estimate key preference params:

- Value of time driving (α)
- Schedule costs (β_E, β_L)

Estimate Model using Experimental Variation

• Use experiment variation to estimate key preference params:

- Value of time driving (α)
- Schedule costs (β_E, β_L)
- Discrete choice model over routes and departure times (Model)
 - ▶ Nested logit: route $j \in \{0,1\}$ and h_D in discrete grid
 - Discrete heterogeneity: attentive with probability p

Estimate Model using Experimental Variation

• Use experiment variation to estimate key preference params:

- Value of time driving (α)
- Schedule costs (β_E, β_L)
- Discrete choice model over routes and departure times (Model)
 - ▶ Nested logit: route $j \in \{0,1\}$ and h_D in discrete grid
 - Discrete heterogeneity: attentive with probability p

Estimation: Estimation

- Individual choice set (Google Maps travel times & uncertainty)
- GMM with moments that exploit experiment variation Moments

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $lpha$ (Rs/hr)	Schedule cost early eta_{E} (Rs/hr)	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond <i>p</i>
1,121.9 (318.7)	319.4 (134.5)	36.5 (65.4)	36.9 (9.3)	0.46 (0.13)

- High value of time (4x in-sample hourly wage)
 - Identified from detour vs charge (not from pure price variation)
 - Also consistent with fixed cost of switching Discussion

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $lpha$ (Rs/hr)	Schedule cost early eta_{E} (Rs/hr)	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond <i>p</i>
1,121.9 (318.7)	319.4 (134.5)	36.5 (65.4)	36.9 (9.3)	0.46 (0.13)

- High value of time (4x in-sample hourly wage)
 - Identified from detour vs charge (not from pure price variation)
 - Also consistent with fixed cost of switching Discussion
- Early arrival cost β_{E} low relative to value of time α
 - Commuters have a moderate ability to adjust to congestion

Results AM: Value of Time High vs. Early Arrival Cost

(1)	(2)	(3)	(4)	(5)
Value of time $lpha$ (Rs/hr)	Schedule cost early eta_{E} (Rs/hr)	Logit inner σ (dep. time.)	Logit outer μ (route)	Probability to respond <i>p</i>
1,121.9 (318.7)	319.4 (134.5)	36.5 (65.4)	36.9 (9.3)	0.46 (0.13)

- High value of time (4x in-sample hourly wage)
 - Identified from detour vs charge (not from pure price variation)
 - Also consistent with fixed cost of switching Discussion
- Early arrival cost β_{E} low relative to value of time α
 - Commuters have a moderate ability to adjust to congestion
- Probability to respond \hat{p} similar to fraction attentive (Inattention)

All moments: in control and treatment **Departure time:**

• Departure time shares $\Rightarrow \beta_E, \beta_L, \sigma$

Back

All moments: in control and treatment **Departure time:**

Back

- Departure time shares $\Rightarrow \beta_E, \beta_L, \sigma$
- Departure time heterogeneity $\Rightarrow p$ (heterogeneity)
 - Variance in individual change in shadow charges

All moments: in control and treatment **Departure time:**

- Departure time shares $\Rightarrow \beta_E, \beta_L, \sigma$
- Departure time heterogeneity $\Rightarrow p$ (heterogeneity)
 - Variance in individual change in shadow charges

Route choice:

• Short/long route shares $\Rightarrow \alpha, \mu$

All moments: in control and treatment **Departure time:**

- Departure time shares $\Rightarrow \beta_E, \beta_L, \sigma$
- Departure time heterogeneity $\Rightarrow p$ (heterogeneity)
 - Variance in individual change in shadow charges

Route choice:

Back

- Short/long route shares $\Rightarrow \alpha, \mu$
- Route choice heterogeneity $\Rightarrow p$ (heterogeneity)
 - Distribution of individual short route choice frequency

Nested Logit Choice Probabilities

• Departure Time conditional on route *j*:

$$\Pr(h_D \mid j, h_A^*) = \frac{\exp(V_i(h_D, j, h_A^*) / \sigma)}{\sum_h \exp(V_i(h, j, h_A^*) / \sigma)}$$

• Denote
$$LS_j = \log \left(\sigma \sum_h \exp \left(V_i \left(h, j, h_A^* \right) / \sigma \right) \right)$$

• Route choice:

$$\Pr\left(j \mid h_{\mathcal{A}}^*\right) = \frac{\exp\left(LS_j/\mu\right)}{\exp\left(LS_0/\mu\right) + \exp\left(LS_1/\mu\right)}$$

• Nested logit restriction $\mu \geq \sigma$.

Go Back

• Candidate model with random coefficients:

$$\alpha_{i} = \alpha + \alpha_{X}X_{i} + \nu_{i}$$
$$\beta_{Ei} = \beta_{E} + \beta_{EX}X_{i} + \eta_{i}$$
$$\beta_{Li} = \beta_{L} + \beta_{LX}X_{i} + \mu_{i}$$

• Candidate model with random coefficients:

$$\alpha_{i} = \alpha + \alpha_{X}X_{i} + \nu_{i}$$
$$\beta_{Ei} = \beta_{E} + \beta_{EX}X_{i} + \eta_{i}$$
$$\beta_{Li} = \beta_{L} + \beta_{LX}X_{i} + \mu_{i}$$

- Uni-modal distributions underestimate response heterogeneity:
 - Problem: $\nu_i \sim \log N(0, \sigma_\alpha)$ leads to $\hat{\sigma}_\alpha \to \infty$

• Candidate model with random coefficients:

 $\alpha_{i} = \alpha + \alpha_{X}X_{i} + \nu_{i}$ $\beta_{Ei} = \beta_{E} + \beta_{EX}X_{i} + \eta_{i}$ $\beta_{Li} = \beta_{L} + \beta_{LX}X_{i} + \mu_{i}$

- Uni-modal distributions underestimate response heterogeneity:
 - Problem: $\nu_i \sim \log N(0, \sigma_\alpha)$ leads to $\hat{\sigma}_\alpha \rightarrow \infty$
- Better fit: discrete heterogeneity (e.g. inattention, or inflexible)
 - (1) Respond to congestion charges, with probability p
 - (2) Ignore charges with probability 1 p

• Candidate model with random coefficients:

 $\alpha_{i} = \alpha + \alpha_{X}X_{i} + \nu_{i}$ $\beta_{Ei} = \beta_{E} + \beta_{EX}X_{i} + \eta_{i}$ $\beta_{Li} = \beta_{L} + \beta_{LX}X_{i} + \mu_{i}$

- Uni-modal distributions underestimate response heterogeneity:
 - Problem: $\nu_i \sim \log N(0, \sigma_\alpha)$ leads to $\hat{\sigma}_\alpha \rightarrow \infty$
- Better fit: *discrete* heterogeneity (e.g. inattention, or inflexible)
 - (1) Respond to congestion charges, with probability p
 - (2) Ignore charges with probability 1 p
- Homogeneous preferences conditional on response:
 - $\alpha_i = \alpha$, $\beta_{Ei} = \beta_E$ and $\beta_{Li} = \beta_L$

Appendix Beliefs: Changes in Travel Time Overestimated

	(1)	(2)	(3)
	Trip Duration (belief)		∆ duration leaving earlier (belief)
Trip Duration (Google Maps)	0.70*** (0.09)	0.70*** (0.12)	
Trip Distance (Google Maps)		0.02 (0.21)	
Δ duration leaving earlier (Google Maps)			1.56*** (0.34)
Constant	16.20*** (3.20)	16.23*** (3.23)	-2.75*** (0.80)
Observations	261	261	261

- Google Maps underestimates beliefs on travel time changes
- Consistent results for area treatment detours:
 - Average detour 6.5 minutes (Google Maps)
 - Average detour 13.6 minutes (phone survey stated beliefs)

Log Normal Travel Time (Route×Dep. Time Level)

- Log of normalized residual variation (across 146 weekdays)
- Distributed \approx log-normal (heavy tailed)
- $T(h_D) \sim \log N(\mu(h_D), \sigma(h_D))$

Uncertainty: Substantial Travel Time Variation

• Observation = route \times departure time. Computed over 146 weekdays

• $T(h_D) \sim \log N(\mu(h_D), \sigma(h_D))$

Value of Time Discussion

- $\bullet\,$ Transportation literature conventional estimate VOT = half of wage
 - Stated preferences (Small '12)
 - Hedonic regressions Ommeren and Fosgerau (2008)
- Revealed preference > stated preferences (Small et al '05)
- WTA higher than WTP (De Borger and Fosgerau '08, Hess et al. '08)
 - Here measuring WTA for extra time spent commuting
- Google Time lower variance compared to commuter beliefs
 - commuters believed detour twice as long as Google Maps

Structural Estimation Robustness

- Good model fit, including heterogeneity (Heterogeneity Fit)
- Bounds on late arrival cost β_L (objective function flat $\beta_L \geq \overline{\beta}_L$)
- Model identification:
 - Sensitivity measure (Andrews et al '17)
 - Numerical check of identification using simulated data

Back

Model Fit – Departure Times

• Good heterogeneity fit (variance in individual changes)

Model Fit - Route Choice

• Good heterogeneity fit (inverse shape in treatment)

Logit Expected Utility

Expected utility with logit shocks:

$$Eu_{i} = \sigma \log \sum_{h} \exp \left(\frac{u_{i}(h_{D}) - t_{i}(h)}{\sigma} \right) + \sum_{h} \pi_{i}(h) t_{i}(h)$$

Departure Time: Daily Shadow Rates Decrease

	(1) Shadow R	(2) ates Today	
High Rate \times Post	-14.32** (7.23)	-13.91** (6.08)	
Low Rate \times Post	-0.87 (7.20)	-7.38 (6.26)	
Information \times Post	-1.44 (6.44)	-0.25 (5.39)	
Post only Commuter FE	Х	х	
Observations Control Mean	5,599 96.54	15,610 96.54	

- No differential attrition (Data Quality) Drop out at end < 10% (Droped Out)
- Similar results AM/PM (Full Results)
- Effects start during second week (By week)

(Specification)

Departure Time: Daily Shadow Rates Decrease

	(1)	(2)	(3)	(4)
	Shadow R	ates Today	Trips	Today
High Rate \times Post	-14.32** (7.23)	-13.91** (6.08)	-0.19 (0.21)	-0.11 (0.14)
Low Rate \times Post	-0.87 (7.20)	-7.38 (6.26)	0.08 (0.19)	-0.06 (0.14)
Information \times Post	-1.44 (6.44)	-0.25 (5.39)	-0.19 (0.17)	0.08 (0.13)
Post only	Х		Х	
Commuter FE		Х		Х
Observations	5,599	15,610	5,599	15,610
Control Mean	96.54	96.54	3.05	3.05

- No differential attrition (Data Quality) Drop out at end <10% (Droped Out)
- Similar results AM/PM (Full Results)
- Effects start during second week (By week)

(Specification)

Road Technology: Robustness

- Measuring speed. Robust to:
 - Measuring speed with GPS data
 - Controlling for trip characteristics

Road Technology: Robustness

- Measuring speed. Robust to:
 - Measuring speed with GPS data
 - Controlling for trip characteristics
- Measuring traffic volume:
 - Very fine prediction by artery and time of day (Artery)
 - Similar results with density, time lags specifications

Road Technology: Robustness

- Measuring speed. Robust to:
 - Measuring speed with GPS data
 - Controlling for trip characteristics
- Measuring traffic volume:
 - Very fine prediction by artery and time of day (Artery)
 - Similar results with density, time lags specifications
- Comparison to other settings:
 - Different from transportation engineering (convex) (e.g. BPR)
 - Similar city-wide results in Bogotá (Akbar and Duranton '17)
 - ▶ New evidence: no hypercongestion (Anderson and Davis '18, Yang et al '18)
- Back

Linear Externality Bottleneck Model

• Impossible to fit Bangalore data with single bottleneck model

- Low capacity: queue increases monotonically throughout the day
- High capacity: no delay until very late in the day
- Solution: "traffic light" model with N consecutive bottlenecks with traffic lights
- Two assumptions predict a linear relationship:
 - traffic lights create queues even for low inflows (much below capacity)
 - each bottleneck is relatively high-capacity (queues do not spill between traffic light cycles)
- Intuition for linear delay: queues form behind each traffic light and dissipate during the green cycle

Road Technology Comparison

- Very similar to Akbar and Duranton (2017)
 - ► Concave part: time lags and/or survey data bias (Zhao et al 2015)

Road Technology at Artery Level

• 22 arteries with Google Maps travel time data (in both directions)

Road Technology at Artery Level

- Traffic volume (GPS) predicts travel time profile (Google Maps)
 - Adj $R^2 = 60\%$ with time-of-day FE, artery FE, artery-specific slopes

Social Optimum with Marginal Social Cost

• MSC higher after peak-hour: pushing others towards the peak Back

Inefficiency with other Preferences and Road Technology

Outcome: percentage improvement going from unpriced Nash to social optimum

- Other preferences do not change conclusion
- Preferences matter more with convex road technology

Inefficiency with Preferences Heterogeneity

Distribution	(1) $\operatorname{SD}(\alpha_i)/\bar{\alpha}_i$	(2) $\operatorname{Corr}(\alpha_i, \beta_i)$	(3) Nash Welfare	(4) % Inefficiency
Binomial	0.33	1	-774.8	0.71%
Log-normal	0.44	1	-772.2	0.85%
Log-normal	0.44	0	-743.4	0.60%

- Binomial $(\alpha_i^H, \beta_i^H) = (2\alpha_i^L, 2\beta_i^L)$ or continuous (log-normal) heterogeneity
- Moderate heterogeneity in (α_i, β_i) does not change conclusion

Back

Flexibility Compensates for Bad Road Technology

• High schedule flexibility (low $\beta_{\rm E}/\alpha)$ diminishes the negative effect of convex road technology

Social Optimum: Notable Travel Time Benefit...

	(1) Travel Ti	(2) me (min.) Above Free-Flow
Nash equilibrium	38.7	16.7
Social Optimum	37.7	15.7
Improvement	1.04	1.04
Improvement (% of Nash)	2.7%	6.2%

... But Modest Welfare Gain

	(1) Travel	(2) Time (min.)	(3) Welfare	(4) (Rupees)
		Above Free-Flow		Above Free-Flow
Nash equilibrium	38.7	16.7	-773.4	-337.8
Social Optimum	37.7	15.7	-769.0	-333.3
Improvement	1.04	1.04	4.46	4.46
Improvement (% of Nash)	2.7%	6.2%	0.6%	1.3%

• Schedule costs comparable to benefits (externality + value of time)

... But Modest Welfare Gain

	(1) Travel	(2) Time (min.)	(3) Welfare	(4) (Rupees)
		Above Free-Flow		Above Free-Flow
Nash equilibrium	38.7	16.7	-773.4	-337.8
Social Optimum	37.7	15.7	-769.0	-333.3
Improvement	1.04	1.04	4.46	4.46
Improvement (% of Nash)	2.7%	6.2%	0.6%	1.3%

• Schedule costs comparable to benefits (externality + value of time)

Inefficiency with Extensive Margin Decision

• Extensive margin decision $X=\{0,1\}$ based on nested logit with trip value δ

$$u(X, h_D) = \begin{cases} \delta + u(h_D) + \varepsilon(h_D, 1) & \text{if } X = 1\\ \varepsilon(h_D, 0) & \text{if } X = 0 \end{cases}$$

Value of trip	Trip Probability		Improvement
(Rs.)	Nash	Social Opt.	(% of Nash)
800	0.06	0.06	0.0%
900	0.49	0.45	1.6%
1,000	0.94	0.73	6.2%
1,100	1.00	0.82	4.5%
1,200	1.00	0.89	2.7%
1,300	1.00	0.95	1.6%

Inefficiency with Extensive Margin Decision

• Trip value $\delta = 1,000$, welfare improvement 6.2%

