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Introduction

Motivation

Imagine you have to design an employee performance pay plan.

If you know all payoff-relevant parameters (i.e., agent preferences,

production function, etc), you can find optimal contract (in principle).

Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?

1 What information do you need?

2 And how should you use that information?

Georgiadis and Powell Optimal Incentives under Moral Hazard Northwestern Kellogg 2 / 25



Introduction

Motivation

Imagine you have to design an employee performance pay plan.

If you know all payoff-relevant parameters (i.e., agent preferences,

production function, etc), you can find optimal contract (in principle).

Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?

1 What information do you need?

2 And how should you use that information?

Georgiadis and Powell Optimal Incentives under Moral Hazard Northwestern Kellogg 2 / 25



Introduction

Motivation

Imagine you have to design an employee performance pay plan.

If you know all payoff-relevant parameters (i.e., agent preferences,

production function, etc), you can find optimal contract (in principle).

Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?

1 What information do you need?

2 And how should you use that information?

Georgiadis and Powell Optimal Incentives under Moral Hazard Northwestern Kellogg 2 / 25



Introduction

Preview

Framework: Static agency model with a risk-averse agent

Principal knows only distribution of output following wA(⋅) and wB(⋅).

Goal: Find a new contract that raises profits as much as possible.

Key Lemma:

If the principal takes a stance on the agent’s marginal utility for money,

she can predict the distribution of output corresponding to any contract.

Then, the principal can find an optimal perturbation.

Application using real-effort experiment of DellaVigna and Pope (’17)

1 Predictions: Use any pair of treatments to predict the other 5

2 Counterfactuals: Estimate model and evaluate optimal perturbations
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Introduction

Related Literature

Agency problems — Theory:

Mirrlees (1976), Holmström (1979), ...

Gibbons (1998), Murphy (1999), ...

Agency problems — Empirics:

Lazear (2000), Shearer (2004), Bandiera et al. (2007, 2009), ...

Chiappori & Salanie (2002), Prendergast (2002), ...

Sufficient statistics:

Monopoly pricing: Lerner (1934), Tirole (1988), ...

Optimal taxation: Saez (2001), Golosov et al. (2014), Chetty (2009), ..
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Environment

Model

Principal-agent model with the following timing:

1 Principal offers a contract w(⋅).

2 Agent observes w(⋅) and chooses effort a(w) ∈ R.

3 Output x ∼ f (⋅∣a(w)) and payoffs are realized. (Normalize E[x ∣a] = a.)

Preferences:

Agent’s utility: ∫ v(w(x))f (x ∣a)dx − c(a)

Principal’s profit: π(w) ∶= ma(w) − ∫ w(x)f (x ∣a)dx .

Information:

Agent knows all payoff-relevant parameters

Principal knows (only) f (⋅∣a(wA)), f (⋅∣a(wB)), and

fa(⋅∣a(wA)) ≃
f (⋅∣a(wB)) − f (⋅∣a(wA))

a(wB) − a(wA)
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Environment

The Canonical Principal-Agent Problem

In the canonical formulation (Holmström, 1979), the principal solves

max
w(⋅) , a

∫ [mx −w(x)] f (x ∣a)dx

s.t. ∫ v(w(x))f (x ∣a)dx − c(a) ≥ u (IR)

a ∈ arg max
ã

{∫ v(w(x))f (x ∣̃a)dx − c(ã)} (IC)

To do so, she must know v(⋅), u, c(a), and f (⋅∣a) for all a.

In our setting, only knows f (⋅∣a(wi)) for i ∈ {A,B}, and fa(⋅∣a(wA))

Notations:

â ∶= a(wA) , f̂ ∶= f (⋅∣a(wa)) , and f̂a ∶= fa(⋅∣a(wa))

Georgiadis and Powell Optimal Incentives under Moral Hazard Northwestern Kellogg 6 / 25



Environment

The Canonical Principal-Agent Problem

In the canonical formulation (Holmström, 1979), the principal solves

max
w(⋅) , a

∫ [mx −w(x)] f (x ∣a)dx

s.t. ∫ v(w(x))f (x ∣a)dx − c(a) ≥ u (IR)

a ∈ arg max
ã
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Optimal Perturbations

Agent’s Problem

Assume optimal effort a(w) satisfies the first-order condition

∫ v(w(x))fa(x ∣a(w))dx = c ′(a(w)) (IC)

Suppose w(⋅) is replaced by (some) contract w(⋅) + θt(⋅), θ small.

Define the directional (Gateaux) derivative

Da(w , t) ∶=
da(w + θt)

dθ
∣
θ=0

,

interpreted as the MC of a when w perturbed in the direction of w + t.

Assume the principal knows

Da(wA,wB −wA) ≃ a(wB) − a(wA) .

Implicitly assuming ∥wB −wA∥ ≃ 0 and ∣a(wB) − a(wA)∣ ≃ 0
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Optimal Perturbations

Principal’s Problem

If w(⋅) is replaced by (some) w(⋅) + θt(⋅), then the principal’s profit

π(w + θt) ≃ π(w) + θDπ(w , t) ,

where Dπ(w , t) is the derivative of π(w) in direction of w + t, and

Dπ(w , t) ∶=
dπ(w + θt)

dθ
∣
θ=0

= (m − ∫ wfadx)Da(w , t) − ∫ tfdx

Assume the principal’s goal is to maximize Dπ(wA, t) subject to

wA + θt giving the agent at least as much utility as wA.

Using (IC), this (participation) constraint can be rewritten as

∫ tv ′(wA)f̂ dx ≥ 0

Info Requirements: Da(wA, t) for all t & marg. utility function v ′(⋅)
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Optimal Perturbations

Simplifying the Informational Requirements

Using (IC), we can write Da(w , t) in terms of primitives as

Da(w , t) = ∫ tv ′(w)fadx

c ′′(a(w)) − ∫ v(w)faadx

Remark 1. For any (upper semi-continuous) t:

Da(wA, t) =
Da(wA,wB −wA)

∫ (wB −wA)v ′(wA)f̂adx
∫ tv ′(wA)f̂adx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
DM(wA,t)

Perturbation leads to a change in the agent’s marginal incentives,

DM(wA, t), which is predictable given v ′ and f̂a. Locally,

Da(wA, t) = C ×DM(wA, t) , where C =
Da(wA,wB −wA)

DM(wA,wB −wA)
.

If the principal takes a stance on v ′, she can predict Da(wA, t) ∀t.
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Optimal Perturbations

Principal’s Problem (Cont’d)

The principal solves

max
t u.s.c

µ∫ tv ′(wA)f̂adx − ∫ tf̂ dx

s.t ∫ tv ′(wA)f̂ dx ≥ 0

∫ ∣t ∣p dx ≤ 1

where p ∈ {1,2, ...} normalizes the length of t.

Problem is convex, so it can be solved using standard techniques.

1 Necessary & sufficient condition for wA to be optimal

2 Opt. Perturbation: Replace wA with w ≡ wA + θt for some θ > 0 small
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An Approximate Algorithm

Non-Local Perturbations

Goal: Develop algorithm for finding optimal non-local perturbations

A.1. For all a in some interval that contains â, fa(⋅∣a) ≡ f̂a

Hence, the marginal incentive of effort corresponding to w ,

M(w) = ∫ v(w)f̂adx

does not depend on a itself – agent’s FOC: M(w) = c ′(a)

A.2. For any w , effort and marginal incentives are related by

log a(w) = β + ε log M(w) ,

where β and ε estimated using A-B test data and assumed v ′(⋅)

Implicitly assuming the agent has isoelastic cost function.
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An Approximate Algorithm

Towards an Optimal non-local Perturbation

Claim: Principal should solve

max
w(⋅),∆a

m(â +∆a) − ∫ w(f̂ +∆af̂a) (P)

s.t. ∫ v(w)f̂a = (
â +∆a

â
)

1/ε

∫ v(wA)f̂a (IC)

∫ v(w) (f̂ +∆af̂a) ≥ ∫ v(wA) (f̂ +∆af̂a) (IR)

Suppose a(w) = â +∆a. Using a first-order approximation:

f (⋅∣̂a +∆a) ≃ f̂ +∆af̂a and c(â +∆a) ≃ c(â) +∆a∫ v(wA)f̂a

It follows from log a(w) = β + ε log M(w) that w must satisfy (IC).

Constraint that w gives at least as much utility as wA:

∫ v(w(x))f (x ∣̂a +∆a) − c(â +∆a) ≥ ∫ v(wA)f̂ − c(â) Ô⇒ (IR)
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It follows from log a(w) = β + ε log M(w) that w must satisfy (IC).

Constraint that w gives at least as much utility as wA:
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An Approximate Algorithm

Solving for the Optimal non-local Perturbation

Stage 1: For every ∆a, solve

Π̂(∆a) = max
w(⋅)

m(â +∆a) − ∫ w(f̂ +∆af̂a)

s.t. ∫ v(w)f̂a = (
â +∆a

â
)

1/ε

∫ v(wA)f̂a

∫ v(w) (f̂ +∆af̂a) ≥ ∫ v(wA) (f̂ +∆af̂a)

Optimization program is convex as long as f̂ +∆af̂a > 0 for all x .

Stage 2: Solve
Π̂∗

= max
∆a

Π̂(∆a)

Info. requirements: Must know f̂ , f̂a, and v ′(⋅) (using ∫ f̂a = 0)

Alternative: Can approximate v(w) ≃ v(wA) + (w −wA)v ′(wA) to

make constraints linear in w—then stage 1 program is convex ∀∆a.
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An Approximate Algorithm

Extensions

1. Bounded payments. Assume that wA(x) + t(x) ∈ [w ,w]

New constraints are linear, so principal’s problem remains convex.

2. Heterogeneous abilities. Assume that the principal offers a common

contract to multiple agents who have heterogeneous effort costs.

Principal must classify the agents into types (φ), and estimate Pr {φ},

f̂ φ, f̂ φ
a , and Daφ(ŵ , t̂) for each φ.

Can induce selection by imposing participation for subset of types.

3. Multidimensional effort. Assume agent’s effort a ∈ RN at cost c(a)

e.g., effort towards quantity & quality, or selling different products.

Principal must have output data for K ≥ (N + 3)/2 contracts.
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An Approximate Algorithm

Extensions

4. Parametric contract classes. Assume the principal restricts attention

to contracts of the form wα, where α is a vector of parameters.

Find optimal perturbation direction z. (New contract: wα+θz)

Same informational requirements as general case.

5. Other sources of incentives. (Promotion, firing threat, prestige, etc)

Results hold verbatim if the agent’s IC constraint can be written as

∫ v(w)fadx + I(a(w)) = c ′(a(w)) ,

where I(a) denotes marginal benefit of effort due to indirect incentives.

Key: Additive separability and I(⋅) not directly dependent on w .

6. Multiplicatively separable utility. Agent’s payoff u(ω, a) = v(ω)c(a)

Example: Agent’s utility satisfies CARA.

Principal must take a stance on v (instead of v ′).
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Empirical Validation

Dataset

Goal: Illustrate application & evaluate methodology

Dataset from DellaVigna and Pope (2017)

Real-effort experiment on M-Turk: Subjects press a-b keys for 10 min

7 treatments with different monetary incentives:

Contract (in ¢) Mean effort N

w1(x) = 100 1521 540

w2(x) = 100 + 0.001x 1883 538

w3(x) = 100 + 0.01x 2029 558

w4(x) = 100 + 0.04x 2132 566

w5(x) = 100 + 0.10x 2175 538

w6(x) = 100 + 40 I{x≥2000} 2136 545

w7(x) = 100 + 80 I{x≥2000} 2188 532

Each subject participates in a single treatment, once.
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Empirical Validation

Two Exercises

Assume subjects are identical, and make assumptions about v ′ and m

I. Given data for any two treatments, predict effort & profits for others.

Test predictions of two models:

log a(w) = β + ε log M(w)

a(w) = β0 + β1M(w)

where M(w) = ∫ v(w)f̂a, and constants are estimated using A-B test.

Sensitivity analysis: Prediction accuracy vs. assumptions about v ′

II. Counterfactuals:

1 Use all seven treatments to estimate the parameters of the model

2 Characterize optimally perturbed contract

3 Compare projected profits to those of wA and optimal contract
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Empirical Validation

Step 1

1 Assume subjects have CRRA utility — specifically, v ′(ω) = ω−0.3

2 Normalize a(wi) = (Mean effort)i .

3 Given A-B test, estimate f (⋅∣a(wi)) for i ∈ {A,B}, and compute

f̂a(x) =
f (x ∣a(wB)) − f (x ∣a(wA))

a(wB) − a(wA)
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Empirical Validation

Exercise 1(a): Effort Predictions given Treatments 2 and 4

1 2 3 4 5 6 7

Treatment

1500

1750

2000

2250

2500

E
ff

o
rt

Predicted effort using the two models
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Empirical Validation

Exercise 1(b): Effort Prediction Accuracy
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Empirical Validation

Exercise 1(c): Sensitivity Analysis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3

4

5

6

7

Georgiadis and Powell Optimal Incentives under Moral Hazard Northwestern Kellogg 20 / 25



Empirical Validation

Exercise 1(d): Profit Prediction Accuracy
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Empirical Validation

Estimate Model

1 Use estimates of {f (⋅∣a(wi))}i to fit f (⋅∣a) for all a using linear
interpolation (thus assuming fa(x ∣a) is piece-wise linear in a)

2 Assume agent has CRRA utility and isoelastic costs; i.e.,

v(ω) =
ω1−ρ

1 − ρ
and c(a) =

c0

p + 1
ap+1 ,

and given w , he chooses his effort a(w) such that

∫ v(w)fa(⋅∣a(w))dx + I = cp
(a(w)) .

Then, we estimate the unknown coefficients.

3 Assign value to principal’s marginal profit — specifically, m = 0.2
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Empirical Validation

Exercise 2(a): Optimal Perturbation
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Empirical Validation

Exercise 2(b): Profits relative to Optimal Contract
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Discussion

Summary & Future Work

Framework for using agency theory to address an empirical question.

How to improve an existing performance pay plan?

What information do you need to do so?

Other questions:

Optimal experimentation (ratchet effects, behavioral constraints)?

Extend to other settings (non-monetary instruments, dynamics)?
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