Optimal Incentives under Moral Hazard: From Theory to Practice

George Georgiadis

Michael Powell

Northwestern Kellogg

Motivation

• Imagine you have to design an employee performance pay plan.

- If you know all payoff-relevant parameters (*i.e.*, agent preferences, production function, etc), you can find optimal contract (in principle).
- Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?

- What information do you need?
- 2 And how should you use that information?

Motivation

- Imagine you have to design an employee performance pay plan.
- If you know all payoff-relevant parameters (*i.e.*, agent preferences, production function, etc), you can find optimal contract (in principle).
- Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?

- What information do you need?
- 2 And how should you use that information?

Motivation

- Imagine you have to design an employee performance pay plan.
- If you know all payoff-relevant parameters (*i.e.*, agent preferences, production function, etc), you can find optimal contract (in principle).
- Otherwise, agency theory gives us guiding principles (trade-offs, CS)
- This paper: How to improve an existing PPP?
 - What information do you need?
 - And how should you use that information?

- Framework: Static agency model with a risk-averse agent
 - Principal knows only distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
 - Goal: Find a new contract that raises profits as much as possible.

Key Lemma:

If the principal *takes a stance on* the agent's marginal utility for money, she can predict the distribution of output corresponding to *any* contract.

- Then, the principal can find an optimal perturbation.
- Application using real-effort experiment of DellaVigna and Pope ('17)
 - Predictions: Use any pair of treatments to predict the other 5
 - Counterfactuals: Estimate model and evaluate optimal perturbations

- Framework: Static agency model with a risk-averse agent
 - Principal knows only distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
 - Goal: Find a new contract that raises profits as much as possible.

Key Lemma:

If the principal *takes a stance on* the agent's marginal utility for money, she can predict the distribution of output corresponding to *any* contract.

- Then, the principal can find an *optimal perturbation*.
- Application using real-effort experiment of DellaVigna and Pope ('17)
 - Predictions: Use any pair of treatments to predict the other 5
 - 2 *Counterfactuals:* Estimate model and evaluate optimal perturbations

- Framework: Static agency model with a risk-averse agent
 - Principal knows only distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
 - Goal: Find a new contract that raises profits as much as possible.

Key Lemma:

If the principal *takes a stance on* the agent's marginal utility for money, she can predict the distribution of output corresponding to *any* contract.

- Then, the principal can find an optimal perturbation.
- Application using real-effort experiment of DellaVigna and Pope ('17)
 - Predictions: Use any pair of treatments to predict the other 5
 - 2 *Counterfactuals:* Estimate model and evaluate optimal perturbations

- Framework: Static agency model with a risk-averse agent
 - Principal knows only distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
 - Goal: Find a new contract that raises profits as much as possible.

Key Lemma:

If the principal *takes a stance on* the agent's marginal utility for money, she can predict the distribution of output corresponding to *any* contract.

- Then, the principal can find an optimal perturbation.
- Application using real-effort experiment of DellaVigna and Pope ('17)
 - **O** *Predictions:* Use any pair of treatments to predict the other 5
 - 2 Counterfactuals: Estimate model and evaluate optimal perturbations

Related Literature

- Agency problems Theory:
 - Mirrlees (1976), Holmström (1979), ...
 - Gibbons (1998), Murphy (1999), ...
- Agency problems Empirics:
 - Lazear (2000), Shearer (2004), Bandiera et al. (2007, 2009), ...
 - Chiappori & Salanie (2002), Prendergast (2002), ...
- Sufficient statistics:
 - Monopoly pricing: Lerner (1934), Tirole (1988), ...
 - Optimal taxation: Saez (2001), Golosov et al. (2014), Chetty (2009), ...

Model

- Principal-agent model with the following timing:
 - **1** Principal offers a contract $w(\cdot)$.
 - 2 Agent observes $w(\cdot)$ and chooses effort $a(w) \in \mathbb{R}$.
 - Solution Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)
- Preferences:
 - Agent's utility: $\int v(w(x))f(x|a)dx c(a)$
 - Principal's profit: $\pi(w) \coloneqq ma(w) \int w(x)f(x|a)dx$.
- Information:
 - Agent knows all payoff-relevant parameters
 - Principal knows (only) $f(\cdot|a(w_A)), f(\cdot|a(w_B))$, and

$$f_{a}(\cdot|a(w_{A})) \simeq \frac{f(\cdot|a(w_{B})) - f(\cdot|a(w_{A}))}{a(w_{B}) - a(w_{A})}$$

Model

- Principal-agent model with the following timing:
 - **1** Principal offers a contract $w(\cdot)$.
 - **2** Agent observes $w(\cdot)$ and chooses effort $a(w) \in \mathbb{R}$.
 - Solution Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)
- Preferences:
 - Agent's utility: $\int v(w(x))f(x|a)dx c(a)$
 - Principal's profit: $\pi(w) \coloneqq ma(w) \int w(x)f(x|a)dx$.

• Information:

- Agent knows all payoff-relevant parameters
- Principal knows (only) $f(\cdot|a(w_A)), f(\cdot|a(w_B))$, and

$$f_{a}(\cdot|a(w_{A})) \simeq \frac{f(\cdot|a(w_{B})) - f(\cdot|a(w_{A}))}{a(w_{B}) - a(w_{A})}$$

Model

- Principal-agent model with the following timing:
 - **1** Principal offers a contract $w(\cdot)$.
 - **2** Agent observes $w(\cdot)$ and chooses effort $a(w) \in \mathbb{R}$.
 - Solution Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)
- Preferences:
 - Agent's utility: $\int v(w(x))f(x|a)dx c(a)$
 - Principal's profit: $\pi(w) \coloneqq ma(w) \int w(x)f(x|a)dx$.
- Information:
 - Agent knows all payoff-relevant parameters
 - Principal knows (only) $f(\cdot|a(w_A)), f(\cdot|a(w_B))$, and

$$f_{\mathsf{a}}(\cdot|\mathsf{a}(w_A)) \simeq \frac{f(\cdot|\mathsf{a}(w_B)) - f(\cdot|\mathsf{a}(w_A))}{\mathsf{a}(w_B) - \mathsf{a}(w_A)}$$

The Canonical Principal-Agent Problem

• In the canonical formulation (Holmström, 1979), the principal solves

$$\max_{w(\cdot),a} \int [mx - w(x)] f(x|a) dx$$

s.t.
$$\int v(w(x)) f(x|a) dx - c(a) \ge \underline{u}$$
(IR)
$$a \in \arg \max_{\widetilde{a}} \left\{ \int v(w(x)) f(x|\widetilde{a}) dx - c(\widetilde{a}) \right\}$$
(IC)

- To do so, she must know $v(\cdot)$, \underline{u} , c(a), and $f(\cdot|a)$ for all a.
- In our setting, only knows $f(\cdot|a(w_i))$ for $i \in \{A, B\}$, and $f_a(\cdot|a(w_A))$

• Notations:

$$\widehat{a}\coloneqq a(w_A)$$
 , $\widehat{f}\coloneqq f(\cdot|a(w_a))$, and $\widehat{f}_a\coloneqq f_a(\cdot|a(w_a))$

The Canonical Principal-Agent Problem

• In the canonical formulation (Holmström, 1979), the principal solves

$$\max_{v(\cdot),a} \int [mx - w(x)] f(x|a) dx$$

s.t.
$$\int v(w(x)) f(x|a) dx - c(a) \ge \underline{u}$$
(IR)
$$a \in \arg \max_{\widetilde{a}} \left\{ \int v(w(x)) f(x|\widetilde{a}) dx - c(\widetilde{a}) \right\}$$
(IC)

- To do so, she must know $v(\cdot)$, \underline{u} , c(a), and $f(\cdot|a)$ for all a.
- In our setting, only knows $f(\cdot|a(w_i))$ for $i \in \{A, B\}$, and $f_a(\cdot|a(w_A))$

• Notations:

и

$$\widehat{a} \coloneqq a(w_A)$$
, $\widehat{f} \coloneqq f(\cdot|a(w_a))$, and $\widehat{f}_a \coloneqq f_a(\cdot|a(w_a))$

The Canonical Principal-Agent Problem

• In the canonical formulation (Holmström, 1979), the principal solves

$$\max_{v(\cdot),a} \int [mx - w(x)] f(x|a) dx$$

s.t.
$$\int v(w(x)) f(x|a) dx - c(a) \ge \underline{u}$$
(IR)
$$a \in \arg \max_{\widetilde{a}} \left\{ \int v(w(x)) f(x|\widetilde{a}) dx - c(\widetilde{a}) \right\}$$
(IC)

- To do so, she must know $v(\cdot)$, \underline{u} , c(a), and $f(\cdot|a)$ for all a.
- In our setting, only knows $f(\cdot|a(w_i))$ for $i \in \{A, B\}$, and $f_a(\cdot|a(w_A))$

• Notations:

и

$$\widehat{a}\coloneqq a(w_A)$$
 , $\widehat{f}\coloneqq f(\cdot|a(w_a))$, and $\widehat{f}_a\coloneqq f_a(\cdot|a(w_a))$

Agent's Problem

• Assume optimal effort a(w) satisfies the first-order condition

$$\int v(w(x))f_a(x|a(w))dx = c'(a(w))$$
(IC)

- Suppose $w(\cdot)$ is replaced by (some) contract $w(\cdot) + \theta t(\cdot)$, θ small.
- Define the directional (Gateaux) derivative

J

$$\mathcal{D}a(w,t) \coloneqq \left. \frac{da(w+\theta t)}{d\theta} \right|_{\theta=0},$$

interpreted as the MC of a when w perturbed in the direction of w + t.

• Assume the principal knows

$$\mathcal{D}a(w_A, w_B - w_A) \simeq a(w_B) - a(w_A).$$

• Implicitly assuming $||w_B - w_A|| \simeq 0$ and $|a(w_B) - a(w_A)| \simeq 0$

Agent's Problem

• Assume optimal effort a(w) satisfies the first-order condition

$$\int v(w(x))f_a(x|a(w))dx = c'(a(w))$$
(IC)

- Suppose $w(\cdot)$ is replaced by (some) contract $w(\cdot) + \theta t(\cdot)$, θ small.
- Define the directional (Gateaux) derivative

$$\mathcal{D}a(w,t) \coloneqq \left. \frac{da(w+\theta t)}{d\theta} \right|_{\theta=0},$$

interpreted as the MC of a when w perturbed in the direction of w + t.

• Assume the principal knows

$$\mathcal{D}a(w_A, w_B - w_A) \simeq a(w_B) - a(w_A).$$

• Implicitly assuming $||w_B - w_A|| \simeq 0$ and $|a(w_B) - a(w_A)| \simeq 0$

Agent's Problem

• Assume optimal effort a(w) satisfies the first-order condition

$$\int v(w(x))f_a(x|a(w))dx = c'(a(w))$$
(IC)

- Suppose $w(\cdot)$ is replaced by (some) contract $w(\cdot) + \theta t(\cdot)$, θ small.
- Define the directional (Gateaux) derivative

$$\mathcal{D}a(w,t) \coloneqq \left. \frac{da(w+\theta t)}{d\theta} \right|_{\theta=0},$$

interpreted as the MC of a when w perturbed in the direction of w + t.

• Assume the principal knows

$$\mathcal{D}a(w_A, w_B - w_A) \simeq a(w_B) - a(w_A).$$

• Implicitly assuming $||w_B - w_A|| \simeq 0$ and $|a(w_B) - a(w_A)| \simeq 0$

• If $w(\cdot)$ is replaced by (some) $w(\cdot) + \theta t(\cdot)$, then the principal's profit

$$\pi(w+\theta t)\simeq \pi(w)+\theta \mathcal{D}\pi(w,t)\,,$$

where $\mathcal{D}\pi(w,t)$ is the derivative of $\pi(w)$ in direction of w + t, and

$$\mathcal{D}\pi(w,t) \coloneqq \left. \frac{d\pi(w+\theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int w f_a dx \right) \mathcal{D}a(w,t) - \int t f dx$$

• Assume the principal's goal is to maximize $D\pi(w_A, t)$ subject to $w_A + \theta t$ giving the agent at least as much utility as w_A .

• Using (IC), this (participation) constraint can be rewritten as

$$\int tv'(w_A)\widehat{f}\,dx \ge 0$$

• If $w(\cdot)$ is replaced by (some) $w(\cdot) + \theta t(\cdot)$, then the principal's profit

$$\pi(w+\theta t)\simeq \pi(w)+\theta \mathcal{D}\pi(w,t)\,,$$

where $\mathcal{D}\pi(w,t)$ is the derivative of $\pi(w)$ in direction of w + t, and

$$\mathcal{D}\pi(w,t) \coloneqq \left. \frac{d\pi(w+\theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int w f_a dx \right) \mathcal{D}a(w,t) - \int t f dx$$

- Assume the principal's goal is to maximize $D\pi(w_A, t)$ subject to $w_A + \theta t$ giving the agent at least as much utility as w_A .
- Using (IC), this (participation) constraint can be rewritten as

$$\int tv'(w_A)\widehat{f}\,dx \ge 0$$

• If $w(\cdot)$ is replaced by (some) $w(\cdot) + \theta t(\cdot)$, then the principal's profit

$$\pi(w+\theta t)\simeq \pi(w)+\theta \mathcal{D}\pi(w,t)\,,$$

where $\mathcal{D}\pi(w,t)$ is the derivative of $\pi(w)$ in direction of w + t, and

$$\mathcal{D}\pi(w,t) \coloneqq \left. \frac{d\pi(w+\theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int w f_a dx \right) \mathcal{D}a(w,t) - \int t f dx$$

- Assume the principal's goal is to maximize $D\pi(w_A, t)$ subject to $w_A + \theta t$ giving the agent at least as much utility as w_A .
- Using (IC), this (participation) constraint can be rewritten as

$$\int tv'(w_A)\widehat{f}\,dx \ge 0$$

• If $w(\cdot)$ is replaced by (some) $w(\cdot) + \theta t(\cdot)$, then the principal's profit

$$\pi(w+\theta t)\simeq \pi(w)+\theta \mathcal{D}\pi(w,t)\,,$$

where $\mathcal{D}\pi(w,t)$ is the derivative of $\pi(w)$ in direction of w + t, and

$$\mathcal{D}\pi(w,t) \coloneqq \left. \frac{d\pi(w+\theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int w f_a dx \right) \mathcal{D}a(w,t) - \int t f dx$$

- Assume the principal's goal is to maximize $D\pi(w_A, t)$ subject to $w_A + \theta t$ giving the agent at least as much utility as w_A .
- Using (IC), this (participation) constraint can be rewritten as

$$\int tv'(w_A)\widehat{f}\,dx\geq 0$$

Simplifying the Informational Requirements

• Using (IC), we can write $\mathcal{D}a(w,t)$ in terms of primitives as

$$\mathcal{D}a(w,t) = \frac{\int tv'(w)f_a dx}{c''(a(w)) - \int v(w)f_{aa} dx}$$

Remark 1. For any (upper semi-continuous) t:

$$\mathcal{D}a(w_A, t) = \frac{\mathcal{D}a(w_A, w_B - w_A)}{\int (w_B - w_A)v'(w_A)\widehat{f}_a dx} \underbrace{\int tv'(w_A)\widehat{f}_a dx}_{\mathcal{D}M(w_A, t)}$$

• Perturbation leads to a change in the agent's marginal incentives, $\mathcal{D}M(w_A, t)$, which is predictable given v' and \hat{f}_a . Locally,

 $\mathcal{D}a(w_A,t) = C imes \mathcal{D}M(w_A,t)$, where $C = rac{\mathcal{D}a(w_A,w_B-w_A)}{\mathcal{D}M(w_A,w_B-w_A)}$

• If the principal *takes a stance on* v', she can predict $\mathcal{D}a(w_A, t)$ $\forall t$

Simplifying the Informational Requirements

• Using (IC), we can write $\mathcal{D}a(w,t)$ in terms of primitives as

$$\mathcal{D}a(w,t) = \frac{\int tv'(w)f_a dx}{c''(a(w)) - \int v(w)f_{aa} dx}$$

Remark 1. For any (upper semi-continuous) t:

$$\mathcal{D}a(w_A, t) = \frac{\mathcal{D}a(w_A, w_B - w_A)}{\int (w_B - w_A)v'(w_A)\widehat{f}_a dx} \underbrace{\int tv'(w_A)\widehat{f}_a dx}_{\mathcal{D}M(w_A, t)}$$

• Perturbation leads to a change in the agent's marginal incentives, $\mathcal{D}M(w_A, t)$, which is predictable given v' and \hat{f}_a . Locally,

$$\mathcal{D}a(w_A, t) = C \times \mathcal{D}M(w_A, t)$$
, where $C = \frac{\mathcal{D}a(w_A, w_B - w_A)}{\mathcal{D}M(w_A, w_B - w_A)}$.

• If the principal *takes a stance on* v', she can predict $\mathcal{D}a(w_A, t) \ \forall t$.

Simplifying the Informational Requirements

• Using (IC), we can write $\mathcal{D}a(w,t)$ in terms of primitives as

$$\mathcal{D}a(w,t) = \frac{\int tv'(w)f_a dx}{c''(a(w)) - \int v(w)f_{aa} dx}$$

Remark 1. For any (upper semi-continuous) t:

$$\mathcal{D}a(w_A, t) = \frac{\mathcal{D}a(w_A, w_B - w_A)}{\int (w_B - w_A)v'(w_A)\widehat{f}_a dx} \underbrace{\int tv'(w_A)\widehat{f}_a dx}_{\mathcal{D}M(w_A, t)}$$

• Perturbation leads to a change in the agent's marginal incentives, $\mathcal{D}M(w_A, t)$, which is predictable given v' and \hat{f}_a . Locally,

$$\mathcal{D}a(w_A, t) = C \times \mathcal{D}M(w_A, t)$$
, where $C = \frac{\mathcal{D}a(w_A, w_B - w_A)}{\mathcal{D}M(w_A, w_B - w_A)}$.

• If the principal takes a stance on v', she can predict $\mathcal{D}a(w_A, t) \ \forall t$.

9 / 25

• The principal solves

$$\max_{\substack{t \text{ u.s.c}}} \mu \int tv'(w_A)\widehat{f}_a dx - \int t\widehat{f} dx$$

s.t $\int tv'(w_A)\widehat{f} dx \ge 0$
 $\int |t|^p dx \le 1$

where $p \in \{1, 2, ...\}$ normalizes the *length* of *t*.

• Problem is convex, so it can be solved using standard techniques.

) Necessary & sufficient condition for w_A to be optimal

Opt. Perturbation: Replace w_A with $w \equiv w_A + \theta t$ for some $\theta > 0$ small

• The principal solves

$$\max_{\substack{t \text{ u.s.c}}} \mu \int tv'(w_A)\widehat{f}_a dx - \int t\widehat{f} dx$$

s.t $\int tv'(w_A)\widehat{f} dx \ge 0$
 $\int |t|^p dx \le 1$

where $p \in \{1, 2, ...\}$ normalizes the *length* of *t*.

• Problem is convex, so it can be solved using standard techniques.

Necessary & sufficient condition for w_A to be optimal

Opt. Perturbation: Replace w_A with $w \equiv w_A + \theta t$ for some $\theta > 0$ small

• The principal solves

$$\max_{\substack{t \text{ u.s.c}}} \mu \int tv'(w_A)\widehat{f}_a dx - \int t\widehat{f} dx$$

s.t $\int tv'(w_A)\widehat{f} dx \ge 0$
 $\int |t|^p dx \le 1$

where $p \in \{1, 2, ...\}$ normalizes the *length* of *t*.

- Problem is convex, so it can be solved using standard techniques.
 - **1** Necessary & sufficient condition for w_A to be optimal
 - 2) Opt. Perturbation: Replace w_A with $w \equiv w_A + \theta t$ for some $\theta > 0$ small

• The principal solves

$$\max_{\substack{t \text{ u.s.c}}} \mu \int tv'(w_A)\widehat{f}_a dx - \int t\widehat{f} dx$$

s.t $\int tv'(w_A)\widehat{f} dx \ge 0$
 $\int |t|^p dx \le 1$

where $p \in \{1, 2, ...\}$ normalizes the *length* of *t*.

- Problem is convex, so it can be solved using standard techniques.
 - **1** Necessary & sufficient condition for w_A to be optimal
 - **2** Opt. Perturbation: Replace w_A with $w \equiv w_A + \theta t$ for some $\theta > 0$ small

- Goal: Develop algorithm for finding optimal non-local perturbations
- A.1. For all *a* in some interval that contains \widehat{a} , $f_a(\cdot|a) \equiv \widehat{f}_a$
 - Hence, the marginal incentive of effort corresponding to w,

$$M(w) = \int v(w)\widehat{f}_a dx$$

does not depend on a itself – agent's FOC: M(w) = c'(a)

A.2. For any w, effort and marginal incentives are related by

$$\log a(w) = \beta + \epsilon \log M(w) ,$$

where β and ϵ estimated using A-B test data and assumed $v'(\cdot)$

• Implicitly assuming the agent has isoelastic cost function.

Georgiadis and Powell

• Goal: Develop algorithm for finding optimal non-local perturbations

A.1. For all *a* in some interval that contains \hat{a} , $f_a(\cdot|a) \equiv \hat{f}_a$

• Hence, the marginal incentive of effort corresponding to w,

$$M(w) = \int v(w)\widehat{f}_a dx$$

does not depend on a itself – agent's FOC: M(w) = c'(a)

A.2. For any w, effort and marginal incentives are related by

$$\log a(w) = \beta + \epsilon \log M(w) ,$$

where β and ϵ estimated using A-B test data and assumed $v'(\cdot)$

• Implicitly assuming the agent has isoelastic cost function.

Georgiadis and Powell

- Goal: Develop algorithm for finding optimal non-local perturbations
- A.1. For all *a* in some interval that contains \hat{a} , $f_a(\cdot|a) \equiv \hat{f}_a$
 - Hence, the marginal incentive of effort corresponding to w,

$$M(w) = \int v(w)\widehat{f}_a dx$$

does not depend on a itself – agent's FOC: M(w) = c'(a)

A.2. For any w, effort and marginal incentives are related by

$$\log a(w) = \beta + \epsilon \log M(w) ,$$

where β and ϵ estimated using A-B test data and assumed $v'(\cdot)$

• Implicitly assuming the agent has isoelastic cost function.

Georgiadis and Powell

- Goal: Develop algorithm for finding optimal non-local perturbations
- A.1. For all *a* in some interval that contains \hat{a} , $f_a(\cdot|a) \equiv \hat{f}_a$
 - Hence, the marginal incentive of effort corresponding to w,

$$M(w) = \int v(w)\widehat{f}_a dx$$

does not depend on a itself – agent's FOC: M(w) = c'(a)

A.2. For any w, effort and marginal incentives are related by

$$\log a(w) = \beta + \epsilon \log M(w),$$

where β and ϵ estimated using A-B test data and assumed $v'(\cdot)$

• Implicitly assuming the agent has isoelastic cost function.

Claim: Principal should solve

$$\max_{w(\cdot),\Delta a} m(\widehat{a} + \Delta a) - \int w(\widehat{f} + \Delta a \widehat{f}_a)$$
(P)

s.t.
$$\int v(w)\widehat{f}_{a} = \left(\frac{\widehat{a} + \Delta a}{\widehat{a}}\right)^{1/\epsilon} \int v(w_{A})\widehat{f}_{a}$$
(IC)
$$\int v(w)\left(\widehat{f} + \Delta a\widehat{f}_{a}\right) \ge \int v(w_{A})\left(\widehat{f} + \Delta a\widehat{f}_{a}\right)$$
(IR)

• Suppose $a(w) = \hat{a} + \Delta a$. Using a first-order approximation:

 $f(\cdot|\widehat{a} + \Delta a) \simeq \widehat{f} + \Delta a \widehat{f}_a$ and $c(\widehat{a} + \Delta a) \simeq c(\widehat{a}) + \Delta a \int v(w_A) \widehat{f}_a$

- It follows from $\log a(w) = \beta + \epsilon \log M(w)$ that w must satisfy (IC).
- Constraint that w gives at least as much utility as w_A :

 $v(w(x))f(x|\widehat{a} + \Delta a) - c(\widehat{a} + \Delta a) \ge \int v(w_A)\widehat{f} - c(\widehat{a}) \Longrightarrow (\mathsf{IR})$

Georgiadis and Powell

Optimal Incentives under Moral Hazard

Northwestern Kellogg 12 / 25

Claim: Principal should solve

$$\max_{w(\cdot),\Delta a} m(\widehat{a} + \Delta a) - \int w(\widehat{f} + \Delta a \widehat{f}_a)$$
(P)

s.t.
$$\int v(w)\widehat{f}_{a} = \left(\frac{\widehat{a} + \Delta a}{\widehat{a}}\right)^{1/\epsilon} \int v(w_{A})\widehat{f}_{a}$$
(IC)
$$\int v(w)\left(\widehat{f} + \Delta a\widehat{f}_{a}\right) \ge \int v(w_{A})\left(\widehat{f} + \Delta a\widehat{f}_{a}\right)$$
(IR)

• Suppose $a(w) = \hat{a} + \Delta a$. Using a first-order approximation:

$$f(\cdot|\widehat{a} + \Delta a) \simeq \widehat{f} + \Delta a \widehat{f}_a$$
 and $c(\widehat{a} + \Delta a) \simeq c(\widehat{a}) + \Delta a \int v(w_A) \widehat{f}_a$

• It follows from $\log a(w) = \beta + \epsilon \log M(w)$ that w must satisfy (IC).

• Constraint that w gives at least as much utility as w_A:

 $v(w(x))f(x|\hat{a}+\Delta a) - c(\hat{a}+\Delta a) \ge \int v(w_A)\hat{f} - c(\hat{a}) \Longrightarrow (\mathsf{IR})$

Georgiadis and Powell

Optimal Incentives under Moral Hazard

Northwestern Kellogg 12 / 25

Claim: Principal should solve

$$\max_{w(\cdot),\Delta a} m(\widehat{a} + \Delta a) - \int w(\widehat{f} + \Delta a \widehat{f}_a)$$
(P)

s.t.
$$\int v(w)\widehat{f}_{a} = \left(\frac{\widehat{a} + \Delta a}{\widehat{a}}\right)^{1/\epsilon} \int v(w_{A})\widehat{f}_{a}$$
(IC)
$$\int v(w)\left(\widehat{f} + \Delta a\widehat{f}_{a}\right) \ge \int v(w_{A})\left(\widehat{f} + \Delta a\widehat{f}_{a}\right)$$
(IR)

• Suppose $a(w) = \hat{a} + \Delta a$. Using a first-order approximation:

$$f(\cdot|\widehat{a} + \Delta a) \simeq \widehat{f} + \Delta a \widehat{f}_a$$
 and $c(\widehat{a} + \Delta a) \simeq c(\widehat{a}) + \Delta a \int v(w_A) \widehat{f}_a$

• It follows from $\log a(w) = \beta + \epsilon \log M(w)$ that w must satisfy (IC).

• Constraint that w gives at least as much utility as w_A:

Georgiadis and Powell

Claim: Principal should solve

$$\max_{v(\cdot),\Delta a} m(\widehat{a} + \Delta a) - \int w(\widehat{f} + \Delta a\widehat{f}_a)$$
(P)

s.t.
$$\int v(w)\widehat{f}_{a} = \left(\frac{\widehat{a} + \Delta a}{\widehat{a}}\right)^{1/\epsilon} \int v(w_{A})\widehat{f}_{a}$$
(IC)
$$\int v(w)\left(\widehat{f} + \Delta a\widehat{f}_{a}\right) \ge \int v(w_{A})\left(\widehat{f} + \Delta a\widehat{f}_{a}\right)$$
(IR)

• Suppose $a(w) = \hat{a} + \Delta a$. Using a first-order approximation:

$$f(\cdot|\widehat{a} + \Delta a) \simeq \widehat{f} + \Delta a \widehat{f}_a$$
 and $c(\widehat{a} + \Delta a) \simeq c(\widehat{a}) + \Delta a \int v(w_A) \widehat{f}_a$

• It follows from $\log a(w) = \beta + \epsilon \log M(w)$ that w must satisfy (IC).

• Constraint that w gives at least as much utility as w_A:

$$\int v(w(x))f(x|\widehat{a}+\Delta a)-c(\widehat{a}+\Delta a) \geq \int v(w_A)\widehat{f}-c(\widehat{a}) \Longrightarrow (\mathsf{IR})$$

Georgiadis and Powell

• <u>Stage 1</u>: For every Δa , solve

$$\widehat{\Pi}(\Delta a) = \max_{w(\cdot)} m(\widehat{a} + \Delta a) - \int w(\widehat{f} + \Delta a)\widehat{f}_a)$$

s.t.
$$\int v(w)\widehat{f}_a = \left(\frac{\widehat{a} + \Delta a}{\widehat{a}}\right)^{1/\epsilon} \int v(w_A)\widehat{f}_a$$
$$\int v(w)\left(\widehat{f} + \Delta a \widehat{f}_a\right) \ge \int v(w_A)\left(\widehat{f} + \Delta a \widehat{f}_a\right)$$

Optimization program is convex as long as f + Δaf_a > 0 for all x.
Stage 2: Solve

$$\widehat{\Pi}^* = \max_{\Delta a} \widehat{\Pi}(\Delta a)$$

- Info. requirements: Must know \hat{f} , \hat{f}_a , and $v'(\cdot)$ (using $\int \hat{f}_a = 0$)
- Alternative: Can approximate v(w) ≃ v(w_A) + (w w_A)v'(w_A) to make constraints linear in w—then stage 1 program is convex ∀∆a

Georgiadis and Powell

• <u>Stage 1</u>: For every Δa , solve

$$\widehat{\Pi}(\Delta a) = \max_{w(\cdot)} m(\widehat{a} + \Delta a) - \int w(\widehat{f} + \Delta a)\widehat{f}_a)$$

s.t.
$$\int v(w)\widehat{f}_a = \left(\frac{\widehat{a} + \Delta a}{\widehat{a}}\right)^{1/\epsilon} \int v(w_A)\widehat{f}_a$$
$$\int v(w)\left(\widehat{f} + \Delta a \widehat{f}_a\right) \ge \int v(w_A)\left(\widehat{f} + \Delta a \widehat{f}_a\right)$$

• Optimization program is convex as long as $\hat{f} + \Delta a \hat{f}_a > 0$ for all x.

• <u>Stage 2:</u> Solve

$$\widehat{\Pi}^* = \max_{\Delta a} \widehat{\Pi}(\Delta a)$$

- Info. requirements: Must know \hat{f} , \hat{f}_a , and $v'(\cdot)$ (using $\int \hat{f}_a = 0$)
- Alternative: Can approximate v(w) ≃ v(w_A) + (w − w_A)v'(w_A) to make constraints linear in w—then stage 1 program is convex ∀Δ_A

Georgiadis and Powell

• <u>Stage 1</u>: For every Δa , solve

$$\widehat{\Pi}(\Delta a) = \max_{w(\cdot)} m(\widehat{a} + \Delta a) - \int w(\widehat{f} + \Delta a)\widehat{f}_a)$$

s.t.
$$\int v(w)\widehat{f}_a = \left(\frac{\widehat{a} + \Delta a}{\widehat{a}}\right)^{1/\epsilon} \int v(w_A)\widehat{f}_a$$
$$\int v(w)\left(\widehat{f} + \Delta a \widehat{f}_a\right) \ge \int v(w_A)\left(\widehat{f} + \Delta a \widehat{f}_a\right)$$

• Optimization program is convex as long as $\hat{f} + \Delta a \hat{f}_a > 0$ for all x.

Stage 2: Solve

$$\widehat{\Pi}^* = \max_{\Delta a} \widehat{\Pi}(\Delta a)$$

• Info. requirements: Must know \hat{f} , \hat{f}_a , and $v'(\cdot)$ (using $\int \hat{f}_a = 0$)

 Alternative: Can approximate v(w) ≃ v(w_A) + (w - w_A)v'(w_A) to make constraints linear in w—then stage 1 program is convex ∀∆a

• <u>Stage 1</u>: For every Δa , solve

$$\widehat{\Pi}(\Delta a) = \max_{w(\cdot)} m(\widehat{a} + \Delta a) - \int w(\widehat{f} + \Delta a)\widehat{f}_a)$$

s.t.
$$\int v(w)\widehat{f}_a = \left(\frac{\widehat{a} + \Delta a}{\widehat{a}}\right)^{1/\epsilon} \int v(w_A)\widehat{f}_a$$
$$\int v(w)\left(\widehat{f} + \Delta a \widehat{f}_a\right) \ge \int v(w_A)\left(\widehat{f} + \Delta a \widehat{f}_a\right)$$

• Optimization program is convex as long as $\hat{f} + \Delta a \hat{f}_a > 0$ for all x.

• <u>Stage 2</u>: Solve $\widehat{\Pi}^* = \max \widehat{\Pi}(A)$

$$\widehat{\Pi}^* = \max_{\Delta a} \widehat{\Pi}(\Delta a)$$

- Info. requirements: Must know \hat{f} , \hat{f}_a , and $v'(\cdot)$ (using $\int \hat{f}_a = 0$)
- Alternative: Can approximate v(w) ≃ v(w_A) + (w − w_A)v'(w_A) to make constraints linear in w—then stage 1 program is convex ∀Δa.

Georgiadis and Powell

13 / 25

Extensions

- 1. Bounded payments. Assume that $w_A(x) + t(x) \in [\underline{w}, \overline{w}]$
 - New constraints are linear, so principal's problem remains convex.
- 2. *Heterogeneous abilities.* Assume that the principal offers a common contract to multiple agents who have heterogeneous effort costs.
 - Principal must classify the agents into types (ϕ), and estimate Pr { ϕ }, \hat{f}^{ϕ} , \hat{f}^{ϕ}_{a} , and $\mathcal{D}a^{\phi}(\widehat{w}, \widehat{t})$ for each ϕ .
 - Can induce selection by imposing participation for subset of types.
- 3. Multidimensional effort. Assume agent's effort $\mathbf{a} \in \mathbb{R}^N$ at cost $c(\mathbf{a})$
 - e.g., effort towards quantity & quality, or selling different products.
 - Principal must have output data for $K \ge (N+3)/2$ contracts.

Extensions

- 4. Parametric contract classes. Assume the principal restricts attention to contracts of the form w_{α} , where α is a vector of parameters.
 - Find optimal perturbation direction z. (*New contract*: $w_{\alpha+\theta z}$)
 - Same informational requirements as general case.
- 5. Other sources of incentives. (Promotion, firing threat, prestige, etc)
 - Results hold verbatim if the agent's IC constraint can be written as $\int v(w) f_a dx + l(a(w)) = c'(a(w)) \, ,$

where I(a) denotes marginal benefit of effort due to *indirect incentives*.

- Key: Additive separability and $I(\cdot)$ not directly dependent on w.
- 6. Multiplicatively separable utility. Agent's payoff $u(\omega, a) = v(\omega)c(a)$
 - *Example*: Agent's utility satisfies CARA.
 - Principal must take a stance on v (instead of v').

Dataset

- Goal: Illustrate application & evaluate methodology
- Dataset from DellaVigna and Pope (2017)
- Real-effort experiment on M-Turk: Subjects press a-b keys for 10 min
- 7 treatments with different monetary incentives:

Contract (in ¢)	Mean effort	N
$w_1(x) = 100$	1521	540
$w_2(x) = 100 + 0.001x$	1883	538
$w_3(x) = 100 + 0.01x$	2029	558
$w_4(x) = 100 + 0.04x$	2132	566
$w_5(x) = 100 + 0.10x$	2175	538
$w_6(x) = 100 + 40 \mathbb{I}_{\{x \ge 2000\}}$	2136	545
$w_7(x) = 100 + 80 \mathbb{I}_{\{x \ge 2000\}}$	2188	532

• Each subject participates in a single treatment, once.

Two Exercises

- Assume subjects are identical, and make assumptions about v' and m
- I. Given data for any two treatments, predict effort & profits for others.
 - Test predictions of two models:

$$\log a(w) = \beta + \epsilon \log M(w)$$
$$a(w) = \beta_0 + \beta_1 M(w)$$

where $M(w) = \int v(w)\hat{f}_a$, and constants are estimated using A-B test.

- Sensitivity analysis: Prediction accuracy vs. assumptions about v'
- II. Counterfactuals:
 - Use all seven treatments to estimate the parameters of the model
 - Ocharacterize optimally perturbed contract
 - **③** Compare projected profits to those of w_A and optimal contract

Step 1

- Assume subjects have CRRA utility specifically, $v'(\omega) = \omega^{-0.3}$
- Normalize $a(w_i) = (Mean effort)_i$.
- **③** Given A-B test, estimate $f(\cdot|a(w_i))$ for $i \in \{A, B\}$, and compute

$$\widehat{f}_a(x) = \frac{f(x|a(w_B)) - f(x|a(w_A))}{a(w_B) - a(w_A)}$$

Exercise 1(a): Effort Predictions given Treatments 2 and 4

Georgiadis and Powell

Optimal Incentives under Moral Hazard

Northwestern Kellogg 18 / 25

Exercise 1(b): Effort Prediction Accuracy

Exercise 1(c): Sensitivity Analysis

Exercise 1(d): Profit Prediction Accuracy

Estimate Model

- Use estimates of $\{f(\cdot|a(w_i))\}_i$ to fit $f(\cdot|a)$ for all *a* using linear interpolation (thus assuming $f_a(x|a)$ is piece-wise linear in *a*)
- Assume agent has CRRA utility and isoelastic costs; i.e.,

$$v(\omega) = \frac{\omega^{1-\rho}}{1-\rho}$$
 and $c(a) = \frac{c_0}{p+1}a^{p+1}$,

and given w, he chooses his effort a(w) such that

$$\int v(w)f_a(\cdot|a(w))dx + I = c^p(a(w)).$$

Then, we estimate the unknown coefficients.

Solution State M = 0.2 Assign value to principal's marginal profit — specifically, m = 0.2

Exercise 2(a): Optimal Perturbation

Exercise 2(b): Profits relative to Optimal Contract

Summary & Future Work

- Framework for using agency theory to address an empirical question.
 - How to improve an existing performance pay plan?
 - What information do you need to do so?
- Other questions:
 - Optimal experimentation (ratchet effects, behavioral constraints)?
 - Extend to other settings (non-monetary instruments, dynamics)?