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All-pay auctions and information disclosure

All-pay auctions

Examples: R&D races, bidding for procurement contracts, lawsuits/litigation,
policy debates, legislative, lobbying, electoral campaigns and sports, etc..

In many contexts, an important goal is to elicit effort, expenditure, etc..

In an auction with incomplete information, the organizer can manipulate
players’ beliefs and thus their bidding behaviors by information disclosure.

e.g., job promotions: candidates’ abilities
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Our research

We consider a 2-player all-pay auction

Binary private values; two possible value distributions (states)

The organizer commits to a public disclosure policy

Bayesian persuasion approach

Discloses a signal contingent on the state

Main finding:

If the two private values are sufficiently different, a monotone equilibrium

always exists. An uninformative disclosure policy is optimal;

If the two private values are sufficiently close, there exists two beliefs that

separate beliefs generating monotone and non-monotone equilibrium:

if the prior induces a monotone equilibrium, an uninformative disclosure policy

is optimal;

if the prior induces a non-monotone equilibrium, a partial disclosure which

generates a posterior distribution over the two separate beliefs is optimal.
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All-pay auctions with complete information:

Hillman and Riley (1989); Baye, Kovenock and de Vries (1993, 1996); Barut
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All-pay auctions with incomplete information:
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Lu and Parreiras (2017)
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Information disclosure in all-pay auctions/contests:
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Environment

Two players: i ∈ {1, 2}
ex ante symmetric, risk neutral

private value: vi ∈ {vl , vh}, (vh > vl > 0)

v1 and v2 are identically and independently drawn from distribution p(v |ω);

ω ∈ Ω = {G ,B}: a common unknown state of world;

common prior of state: (PG , 1− PG ), 0 ≤ PG ≤ 1;

p(vh |G ) = α and p(vl |B) = β.

1 ≥ α > 1− β ≥ 0: G is a good stage, higher chance for higher type

The auction organizer:

can disclose information about the state ω

in particular, discloses public signal s to players according to policy

π =
{
p(s |ω)

}
s∈S ,ω∈Ω

maximize the ex ante expected total bids
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Environment

The time line:

The organizer commits to policy π;

State ω is realized, and signal s is disclosed;

Players observes their private values and the signal;

Players places their bids.
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Belief updating

Upon receiving signal s ∈ S , player i ∈ {1, 2} has

posterior µs and private value vi

belief about opponent v−i :

ps(v |vi ) =
∑ω∈Ω p(v |ω)p(vi |ω)µs(ω)

∑ω∈Ω p(vi |ω)µs(ω)
, ∀v ∈ {vl , vh}.

Claim 1
In the posterior all-pay auction game, players’ private values are affiliated, i.e.,

ps(vi |vi ) ≥ ps(vi |vj ).
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Monotonicity condition

Condition M: For i ∈ {1, 2}, vips(v |vi ) increases in vi for every v ∈ {vh, vl}.

Let v = vh/vl , define

φ(µs(G ))

=v · α(1− α)µs(G ) + β(1− β)(1− µs(G ))

αµs(G ) + (1− β)(1− µs(G ))︸ ︷︷ ︸
ps (vl |vh)

− (1− α)2µs(G ) + β2(1− µs(G ))

(1− α)µs(G ) + β(1− µs(G ))︸ ︷︷ ︸
ps (vl |vl )

.

Condition M is equivalent to requiring φ(µs(G )) ≥ 0.
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Equilibrium

Strategy F s
i (x |v): the probability that player i bids at most x when his value

is v and belief is µs

mixed strategy

supp[F s
i (·|vi )] ∈ [0, vi ]

Given a strategy profile F s = (F s
1 ,F s

2 ), player i ’s expected payoff is

us(vi ) =
∫ vi

0

{
vi
[
ps(vh|vi )F s

−i (x |vh) + ps(vl |vi )F s
−i (x |vl )

]︸ ︷︷ ︸
expected winning probability

−x
}
dF s

i (x |vi )

Symmetric equilibria: F s
i = F s = (F s(·|vh),F s(·|vl ))

Equilibrium is monotone if and only if for any x ∈ supp[F s
i (·|vh)] and

y ∈ supp[F s
i (·|vl )], we have y ≤ x . Otherwise, it’s non-monotone.
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Equilibrium

Proposition 2.1

In the posterior all-pay auction game with distribution of value distribution µs ,

there exists a unique symmetric equilibrium. Specifically,

1 if φ(µs(G )) ≥ 0, the equilibrium is monotone, and players’ equilibrium

strategies are

F s,m(x |vl ) =
x

vlps(vl |vl )
on [0, vlps(vl |vl )],

F s,m(x |vh) =
x − vlps(vl |vl )
vhps(vh|vh)

on [vlps(vl |vl ), vlps(vl |vl ) + vhps(vh|vh)];
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Monotonic equilibrium

Figure 1: Monotone equilibrium when φ(µs (G )) ≥ 0
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Equilibrium

Proposition 2.2

In the posterior all-pay auction game with distribution of value distribution µs ,

there exists a unique symmetric equilibrium. Specifically,

1 if φ(µs(G )) < 0, the equilibrium is non-monotone, and players’ equilibrium

strategies are

F s,nm(x |vl ) = x · vhps(vh|vh)− vlps(vh|vl )
vhvl [ps(vh|vh)− ps(vh|vl )]

on [0, x(s)],

F s,nm(x |vh) =

x · vlps (vl |vl )−vhps (vl |vh)
vhvl [ps (vh |vh)−ps (vh |vl )]

on [0, x(s)]

x−vhps (vl |vh)
vhps (vh |vh)

on [x(s), vh],

where x(s) = vhvl [ps (vh |vh)−ps (vh |vl )]
vhps (vh |vh)−vlps (vh |vl )

.
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Non-monotonic equilibrium

Figure 2: Non-monotone equilibrium when φ(µs (G )) < 0

Jingfeng Lu Zijia Wang (National University of Singapore)Optimal Disclosure of Value Distribution Information in All-Pay Auctions June 28, 2019 13 / 25



Equilibrium

Corollary 2.3

In the posterior all-pay auction game with µs ,

1 if φ(µs(G )) ≥ 0, the expected total bids in equilibrium is

Rm(µs) = vlps(vl |vl ) +
(
vhps(vh|vh) + vlps(vl |vl )

)
∑

ω∈{G ,B}
µs(ω)p(vh|ω).

The low value type makes zero payoff. The high value type’s expected payoff

is vlφ(µs(G )) = vhps(vl |vh)− vlps(vl |vl ).
2 if φ(µs(G )) < 0, the expected total bids in equilibrium is

Rnm(µs) = x(s) +
vh(vh − vl )

vhps(vh|vh)− vlps(vh|vl )
· ∑

ω∈{G ,B}
µs(ω)p(vh|ω).

Both value types make zero payoff.
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Information disclosure

The organizer’s problem is

max
τ

∑
µs

τ(µs)R(µs)

s.t. ∑
µs

τ(µs)µs(ω) = µ0(ω).

if φ(µs(G )) ≥ 0 , then R(µs) = Rm(µs);

if φ(µs(G )) < 0 , then R(µs) = Rnm(µs).

Jingfeng Lu Zijia Wang (National University of Singapore)Optimal Disclosure of Value Distribution Information in All-Pay Auctions June 28, 2019 15 / 25



Information disclosure

Lemma 3.1

Define v0 = 1 +
(
√

α−
√

1−β)2

(1−α)β
. Given posterior µ,

1 if v ≥ v0, φ(µs(G )) ≥ 0 for ∀µs(G ) ∈ [0, 1], that is, for an all-pay auction

with any µs , the equilibrium is always monotone.

2 if v < v0, there exists an interval (µv
1(G ), µv

2(G )) ⊂ [0, 1] such that

φ(µs(G )) < 0 for ∀µs(G ) ∈ (µv
1(G ), µv

2(G )). That is, for an all-pay auction

with µs(G ) ∈ (µv
1(G ), µv

2(G )), the equilibrium must be non-monotone;

otherwise it is monotone.
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Information disclosure

µs(G )

φ(·)

1

Figure 3: v ≥ v0

µs(G )

φ(·)

1x1 x2

Figure 4: v < v0
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Sufficiently different types: v ≥ v0

The organizer’s problem can be formulated as

max
τ

R̂(τ) = EτR
m(µs)

s.t. ∑
µ

τ(µs)µs(ω) = µ0(ω), ∀ω.
(1)

Lemma 3.2

Rm(µs(G )) is concave in µs(G ).

Proposition 3.3

If the two value types are sufficiently different, i.e., v ≥ v0, the optimal signal is

uninformative.

Jingfeng Lu Zijia Wang (National University of Singapore)Optimal Disclosure of Value Distribution Information in All-Pay Auctions June 28, 2019 18 / 25



Sufficiently different types: v ≥ v0

µ(G )

Rm(µ(G ))

1

Figure 5: Expected revenue in posterior game: v ≥ v0
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Sufficiently close types: v ≤ v0

The organizer’s expected revenue from a posterior game induced by µs is

R(µs(G )) =

Rnm(µs(G )) if φ(µs(G )) < 0;

Rm(µs(G )) if φ(µ(G )) ≥ 0.

Lemma 3.4

For the µs such that φ(µs(G )) = 0, Rnm(µs) = Rm(µs).

Lemma 3.5

For any µs such that φ(µs) ≤ 0,

Rnm(µs(G )) ≤ vh + (vh − vl ) ·
[
(β2 − (1− α)2)µs(G )− β2

]
.

The equality holds if and only if φ(µs(G )) = 0
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Sufficiently close types: v ≤ v0

µ(G )

R(µ(G ))

µv
1(G ) µv

2(G ) 1

Figure 6: Expected revenue in posterior game: v < v0
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Sufficiently close types: v ≤ v0

Lemma 3.6

Define R̃ : [0, 1]→ [0,+∞) as:

R̃(µs(G )) =

{
vh + (vh − vl ) ·

[
(β2 − (1− α)2)µs(G )− β2

]
if φ(µs(G )) < 0;

Rm(µs(G )) if φ(µs(G )) ≥ 0.

R̃ is the concave closure of R.
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Sufficiently close types: v ≤ v0

µ(G )

R(µ(G ))

µv
1(G ) µv

2(G ) 1

Figure 7: Concave closure R̃: v < v0
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Sufficiently close types: v ≤ v0

Proposition 3.7

When the two types are relatively close, i.e., v < v0,

1 if φ(µ0(G )) ≥ 0, that is, no disclosure induces a monotone equilibrium, the

organizer’s optimal signal is uninformative, i.e., no disclosure.

2 if φ(µ0(G )) < 0, that is, no disclosure induces a non-monotone equilibrium,

the organizer’s optimal signal generates µv
1 and µv

2.

Corollary 3.8

When v ≥ pµ0(vl |vl )/pµ0(vl |vh), no disclosure is optimal; when

v < pµ0(vl |vl )/pµ0(vl |vh), the partial disclosure which generates a posterior

distribution µv
1 and µv

2 is optimal.
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Concluding Remarks

We consider a two-player all-pay auction model with binary private values.

Two possible value distributions.

The problem for the organizer is to design a revenue-maximizing disclosure

policy of value distribution

A Bayesian Persuasion approach is adopted, while focusing on public signals

When the two private values are sufficiently different, it’s optimal to choose

uninformative disclosure policy. Otherwise, an informative partial disclosure

policy is optimal.
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Thank you very much!
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