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Abstract

This paper presents a present-biased general equilibrium model that explains many

features of bond behavior. Present-biased investors increase (decrease) short-term

(long-term) hedge demands compared to standard preferences. Hence, present bias

drives up (down) short-term bond prices (yields) and drives down (up) long-term bond

prices (yields), explaining the bond premium puzzle. The model produces realistic

bond behavior with a present-bias factor of β = 0.35 and a long-term annual discount

factor of δ = 0.97, in line with the experimental literature. Bond behavior is best

explained for a present-bias interval of at most 1 year, providing an estimate for the

investor’s duration of the present.
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Over the past three decades, researchers analyzing excess bond returns and the term

structure of interest rates have uncovered an anomaly that has been termed the bond pre-

mium puzzle. For reasonable coefficients of relative risk aversion, standard representative

agent general equilibrium models cannot match the sign, magnitude and variability of excess

long-term bond returns nor produce an average upward-sloping term structure of interest

rates as found in the data (Backus et al., 1989; Campbell and Shiller, 1991; Bansal and

Coleman, 1996; Rudebusch and Swanson, 2008; Van Binsbergen et al., 2012). Excess bond

returns have empirically a positive relation with maturities up to 10 years (Boudoukh et

al., 1999), but standard representative agent models produce an essentially flat relationship

between both. The present literature about equilibrium bond pricing needs unreasonable

coefficients of risk aversion in excess of 80 to explain the bond premium puzzle (see, e.g.,

Van Binsbergen et al., 2012), or can only explain the short-term of the term structure of

interest rates (e.g., up to maturities of 5 years, as in Wachter (2006)).

In this paper, we argue that it is possible to understand asset properties on a macro

level by using experimentally observed behavior on a micro level. Specifically, we explain

the bond premium puzzle by refining the way we model investor time preferences. Financial

economists almost always capture impatience by assuming that people discount streams of

utility over time exponentially, as introduced by Samuelson (1937). Exponential preferences

have become the standard preferences and are said to be time consistent, since a person’s

relative preference for gratification at an earlier date over a later date is the same no matter

when he is asked (O’Donoghue and Rabin, 1999). However, over the last few decades,

researchers analyzing empirically the behavior of individuals have uncovered a wide range

of phenomena that violate the assumptions of Samuelson’s exponential discounted-utility

framework (see Frederick et al. (2002) for an extensive overview).

Using experimental evidence, people were found to prefer immediate gratification over

future gratification. Specifically, discount rates over a short horizon are much higher than

discount rates for rewards in the distant future (Thaler, 1981). For this reason, people

are biased towards the present. Present bias leads to so-called time-inconsistent behavior,

because an agent will deviate from his original plans even when no now information is

observed. For example, when presented a choice between one apple on April 1 versus two

apples on April 2, if asked on February 1 virtually everyone would prefer the two apples on

April 2. But come April 1, given the same choice, most of us prefer the one apple immediately
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over the two apples tomorrow April 2. In contrast, a time-consistent agent always chooses

two apples on April 2, no matter when asked.

Present bias is a pillar of modern behavioral economics (Augenblick et al., 2015), hav-

ing added generally to economists’ understanding of the tensions involved in consumption-

savings choices, task performance, temptation and self-control beyond the standard model of

exponential discounting (Samuelson, 1937). Given the position of present-biased preferences

in the behavioral literature, there is a clear importance constructing equilibrium asset-pricing

models that incorporate present bias. A widely used way to model present bias is by a simple

generalization of the standard exponential discount model. Rather than only having a long-

term discount factor δ, behavioral economists’ introduced an additional present-bias factor

β (Strotz, 1956; Phelps and Pollak, 1968; Loewenstein and Prelec, 1992; O’Donoghue and

Rabin, 1999; Laibson, 1997). This discount model is known as “beta-delta” discounting or

quasi-hyperbolic discounting.

A crucial question that arises when using present bias is whether people are aware of

their behavior. An agent is sophisticated when he foresees that he will deviate from his

original plan and, thus, is aware of his present-biased behavior. A naive agent is unaware of

his present-biased behavior and, therefore, does not foresee that in the future he will deviate

from his original plan. More and more research suggest that models with naive agents seem

to better explain observed behavior (O’Donoghue and Rabin, 2015), so we consider a naive

representative agent.

In our analysis, we study optimal portfolio choice and equilibrium properties of asset

returns. The representative investor has either standard time-consistent preferences, mod-

elled by exponential discounting, or has time-inconsistent preferences in the form of present

bias, modelled by quasi-hyperbolic discounting. If the representative investor has standard

time-consistent preferences, then we are unable to explain the bond premium puzzle with

plausible time preferences. These results replicate earlier findings in the financial economists’

literature. Exponential discounting models have difficulty with explaining the behavior of

bonds in equilibrium. However, if the representative investor is present biased, then we find

that optimal portfolio behavior differs compared to standard time-consistent preferences.

Consequently, this behavior creates an explanation for the bond premium puzzle.

In our first set of results, out of three, we show in closed form that present-biased in-

vestors have a higher demand for short-term bonds but a lower demand for long-term bonds
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compared to time-consistent investors. Investment demands contain speculative and hedging

demands. Since we assume no predictability of Sharpe ratios, speculative demand is inde-

pendent of time and the investor’s horizon (Merton, 1969; Brennan and Xia, 2002), such that

time preferences have no effect on this demand. Hence, differences in demands for short-

and long-term bonds between time-consistent and present-biased investors are driven com-

pletely by hedging motives. We find that present-biased investors increase short-term hedge

demands by 9 percentage points and decrease long-term hedge demands by 17 percentage

points compared to time-consistent investors. The rationale is that present-biased investors

put less value to the future and, therefore, care less about hedging opportunities for the long

run and as such prefer short-term investments. This result holds for our baseline analysis,

where we use a present-bias factor of β = 0.35 and a long-term annual discount factor of

δ = 0.97, in line with many estimates in the experimental literature.

Secondly, we find that present bias produces many of the bond characteristics as ob-

served in the markets, while time-consistent preferences do not. Based on 4 measures, we

find that present bias explains the bond premium puzzle. Firstly, in equilibrium, present-

biased investment behavior matches the observed sign, magnitude and Sharpe ratio of excess

(nominal) bond returns. The observed Sharpe ratio of 3 years (10 years) excess bond returns

is 0.48 (0.38), the time-consistent Sharpe ratio of 3 years (10 years) excess bond returns is

only 0.27 (0.26), while the present-biased Sharpe ratio of 3 years (10 years) excess bond

returns equals 0.41 (0.42). Secondly, we show that present bias produces a slope of the yield

curve that fits the observed actual yield curve much closer than time-consistent behavior.

The observed yield spread equals 1.78%, the time-consistent yield spread is only 1.04%, while

the present-biased implied yield spread is 1.88%. Our third and fourth measures are bond

risk premia and coefficients of “long-rate” regressions (Campbell and Shiller, 1991), which

support the conclusion that present bias fits observed data while time consistency is unable

to do so.

In our third set of results, instead of traditionally asking how risk averse the representative

investor has to be to explain the bond premium puzzle, we ask a different question. Present-

biased preferences require a distinction between the present and the future, but what is the

duration of the present? This is an open empirical question in the behavioral literature

(Ericson and Laibson, 2018), and an answer allows a connection between theoretical asset

pricing models and the experimental literature. We find that the bond premium puzzle is
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best explained if the duration of the present is at most 1 year.

To the best of our knowledge, we are the first to create and test an equilibrium asset-

pricing model with present-biased preferences. We found one related paper by Zou et al.

(2014), who study optimal portfolio decisions for sophisticated time-inconsistent investors.

They show that the classical Merton (1969) solution is unaffected by (stochastic) hyperbolic

discounting for sophisticated investors. The finding is similar to our discounting-independent

speculative demands for a naive investor, but we include hedging demands as well and our

result holds for any general discounting structure. Moreover, more and more research suggest

that models with naive agents seem to better explain observed behavior (O’Donoghue and

Rabin, 2015).

Our paper is not the only paper to address the bond premium puzzle. Early work of

Backus et al. (1989) shows that a representative agent in an endowment economy with

power utility cannot explain the puzzle. Rudebusch and Swanson (2008) examine the bond

premium puzzle with a macro-economic dynamic stochastic general equilibrium model, but

they conclude that the bond premium puzzle remains even if they include large and persistent

habits, and labor market frictions. The work of Van Binsbergen et al. (2012) considers also

a dynamic stochastic general equilibrium model, in which they include Epstein-Zin recursive

preferences, but they need a risk aversion parameter between 40 and 80 to explain the

observed bond properties. More successful is the approach of Wachter (2006), who explains

the bond premium puzzle up to a maturity of 5 years by creating a consumption-based model

with external habit, and calibrating it to macro-level data.

While present bias can potentially be a helpful way of thinking about the data, we

emphasize that it is only a potential ingredient in an equilibrium model, and by no means

a complete description of the facts. For one thing, we have not touched upon time-series

properties of bonds. An equilibrium model that combines present bias with other forms

of experimentally observed behavior is likely to be superior to a model that uses present

bias alone. Promising directions might be reference points, loss aversion, recency effects

and habit formation. Specifically, it might be promising to study asset prices with a model

that combines factors leading to a preference for improving sequences with time-inconsistent

preferences (Ericson and Laibson, 2018).
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I. The model

Present-biased investors maximize utility over consumption to find the optimal asset al-

location. The investment options are a risk-free asset, a stock, a short-term bond and a

long-term bond. For now, think of these bonds as a 3-year constant maturity bond and a

10-year constant maturity bond respectively. Equilibrium prices adjust such that the supply

equals demand for these assets.

A. Preferences: Present bias

Extensive experimental work suggests that present bias is an important feature of how people

evaluate intertemporal decisions — see Frederick et al. (2002) for an overview. The general

finding within the experimental literature is a substantial present bias. Empirical analyses

have demonstrated how present bias can improve our understanding of behavior in various

economic contexts (O’Donoghue and Rabin, 2015).

Present bias is an old idea, and the notion of people being susceptible to immediate

gratification goes back as far as the Greeks. Psychologists working with animals in the 1960s

and 1970s proposed hyperbolic discounting — a functional form of discounting that generates

present bias — as a natural way to represent how animals respond to time delays, and later

research extended this idea to humans.1 Economists in the 1960s started investigating time-

inconsistent behavior and used as present bias the β, δ functional form. Present-biased

preferences are time inconsistent: e.g., myself at time t prefers to exercise at time t′ > t,

but at time t′ I decide to take a nap at time t′ (rather than the planned exercise). The now

popular β, δ simplification of hyperbolic discounting is known as quasi-hyperbolic discounting

(Phelps and Pollak, 1968; Laibson, 1997).

Like exponential discounting, present bias is a model of discounting. Present bias is

extremely similar to standard exponential discounting and, for this reason, probably has

a wide success. Suppose that intertemporal preferences from the perspective of period t

can be represented by U t =
∑T

j=tD(j − t)u(Wj), in which u(Wj) is utility experienced

from consuming wealth W in period j ≥ t and D(x) reflects the (deterministic) discounting

associated with delay x ∈ {0, 1, 2, ...}. Many variants of time inconsistency and present

bias exist, but the generalized quasi-hyperbolic discount function takes the form (Harris and

1Ainslie, 1992 presents an overview
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Laibson, 2013)

D(x) =

δx if x = [0, TS]

β × δx if x ∈ (TS, TL].
(1)

With this functional form, β = 1 corresponds to exponential discounting, while β ∈ (0, 1)

reflects present bias. Figure 1 presents a comparison of the discount structure by plotting

one realization of the exponential discount function, the (instantaneous) quasi-hyperbolic

discount function with TS = 0 (as proposed by Laibson, 1997) and a generalized hyperbolic

discount function.

Figure 2 presents a time-line of the discounting model. Present bias requires a distinction

between the end of the present and the arrival of the future. TS is the duration of the present

and it indicates the short-term planning horizon.2 After date TS the future starts, which

lasts up to the terminal long-term horizon TL. The discount function decays exponentially

at rate − ln δ up to time TS, drops discontinuously at TS to a fraction β of its level just prior

to TS, and decays exponentially at rate − ln δ thereafter.

The model’s predictions depend on whether one is aware of how time preferences change

over time (sophisticated), unaware of how preferences change over time (naive), or something

in between (partially naive). We incorporate the idea of a naive present-biased investor. The

current self is unaware of the future self’s present bias, and instead believes that future self

will discount exponentially. More and more research suggests that models with naive agents

seem to better explain observed behavior (O’Donoghue and Rabin, 2015). An alternative

would be to assume sophisticated present bias, where the current self is aware of the future

self’s present — a higher form of rationality. Sophistication would bring an additional layer

of complexity, because the current self has to solve an equilibrium game with his future

selves.

B. Financial market

The representative investor has access to an arbitrage-free complete financial market con-

sisting of a stock, constant maturity bonds and cash. The short rate rt is assumed to be

2The end of the present at time TS might be stochastic, as shown by Harris and Laibson (2013). In
our analysis, we work with the frequently used deterministic horizons. In our theoretical derivations and
empirical findings, the determinstic horizons can be replaced by stochastic horizons.
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affine in an N -dimensional factor of state variables Ft

rt = A0 + ι′Ft, (2)

where ι denotes an N -dimensional vector of ones.3 The factors Ft follow an N -dimensional

multivariate Ornstein-Uhlenbeck process:

dFt = κ (θ − Ft) dt+ σFdZF,t, (3)

where κ is the N×N diagonal mean-reversion speed matrix, θ is the N -dimensional column

vector of long-run averages, σF is the N×N lower triangular covariance matrix with strictly

positive elements on its diagonal and ZF,t is the N -dimensional column vector of independent

standard Brownian motions.

Empirically, not all the parameters of the affine model can be identified and certain

assumptions are necessary. We assume that there are two factors driving the short rate rt.

For identification purposes, we normalize the long-run means of the factors θ to zero (De

Jong, 2000).

The investment opportunities depend on the pricing kernel in the economy, which deter-

mines the expected returns on all securities in the financial market. We assume absence of

arbitrage and, thus, the existence of a stochastic discount factor process Mt with M0 = 1:

dMt

Mt

= −rtdt− λ′dZt, (4)

where λ = [λS;λF ] and Zt = [ZS,t;ZF,t] are (N + 1)-dimensional vectors. λS is the constant

price-of-risk for the stock and λF is the N-dimensional vector with the constant prices-of-risk

for the bonds. ZS,t is a standard Brownian motion representing shocks to the stock, and it

is independent of the shocks ZF,t to the state variables.

The dynamics of the stock price and the dynamics of the N -dimensional vector of bond

3Without loss of generality, see, e.g., De Jong (2000), we thus assume that the instantaneous interest
rate equals a constant plus the sum of the factors.
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prices follow from
dSt
St

= (rt + σ′λ)dt+ σ′dZt

dPt
Pt

= (rt − B(τ)′σFλF )dt− B(τ)′σFdZF,t,

(5)

where σ = [σS;σFS] is an N + 1-dimensional vector. σS is the volatility parameter of the

stock and σFS is an N -dimensional vector governing the covariance between stock and bond

returns.4 B(τ) follows from

B(τ) = [B(τ1)ι, ...,B(τN)ι],

where

B(t) = (I − exp(κt))κ−1. (6)

in which τj for j = 1, ..., N denotes the maturity of bond j. B(.) is an N ×N -dimensional

matrix, so B(.) has the same dimensions.

C. Consumption and asset allocation

Turning now to the issue of optimal portfolio strategies for long-lived investors, we consider

two classical cases. In the first, the investor solves a terminal consumption problem. He is

concerned with maximizing the expected utility of wealth on some fixed horizon T . This

problem has the merits of both simplicity and of clarifying the role of the horizon. The

second case we consider is an intermediate consumption problem, which boils down to solving

multiple terminal consumption problems sequentially. This problem, which is only slightly

more complicated, corresponds to an investor who is concerned with maximizing the expected

value of a time-additive utility function defined over lifetime consumption.

To shed some light on the second case, consider that total available wealth at each

time t has to be split in an amount needed to finance the first consumption moment, an

amount needed to finance the second consumption moment, and so forth. To finance each

consumption moment you use (a part of) total wealth, which we call a money pot. Thus,

4The dynamics of the bond prices follow from the explicit bond prices in the financial market, which can
be directly obtained by Lemma 1 for α = 1.
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think of total available wealth at each time t as the present value of the first money pot, the

second money pot, and so forth. Essentially, optimizing the allocation for the first money pot

is a stand-alone terminal wealth problem, the second money pot is a stand-alone terminal

wealth problem as well, and so forth. What matters eventually, is the optimal division

of total wealth over each of the money pots. This approach provides a convenient way to

think about intermediate allocation and smoothing of consumption over time by sequentially

solving multiple terminal wealth problems. This approach works thanks to the completeness

of the market.

The representative investor maximizes CRRA utility, with risk aversion parameter γ,

over consumption to find the optimal asset allocation. At each time t, the representative

agent discounts utility of all future intermediate consumption Wj according to his discount

structure. Think of consumption as consuming a pot of money with monetary value Wj. All

derivations below hold for general deterministic discount structures D(x). Eventually, we

use the quasi-hyperbolic formulation in (1) as a specific case to demonstrate the empirical

success of the present-biased model.

We present explicit analytical solutions for the optimal consumption and asset allocation

strategies for a general discount structure. The investor has to both determine the opti-

mal allocation of wealth over time for consumption, and decide on the optimal investment

strategy for each money pot. We show that speculative demands are independent of the

discount structure, but hedge demands depend on the discount structure D(x). The reason

is that planned consumption matters for the optimal hedge allocation through the planning

horizon dependence. Namely, consumption itself depends on the discounting model. As

methodology, we use the martingale method of Cox and Huang (1989) in both cases.

Terminal consumption problem — Today, the representative investor maximizes expected

utility of future wealth W for investment horizon T :

max
WT

E0

[
W 1−γ
T

1− γ

]
, (7)

subject to his budget constraint

E0 [WTMT ] = W0, (8)
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where W0 is initial total available wealth. Obviously, the terminal consumption formulation

is independent of any discount structure. For this reason, discounting models do not influence

the optimal consumption and the optimal asset allocation. We formalize this observation in

the theorem below.

Theorem 1. For an investor that maximizes terminal wealth:

1. The optimal fraction of wealth invested in constant maturity τ -year bonds at time t for

investment horizon T is a vector

π∗
B(t, T ) =

1

γ

(
λS
σS
σ′FS − λ′F

)
(σF )−1(B(τ)′)−1 + (1− 1/γ)ι′B(T − t)(B(τ)′)−1,

and the optimal fraction of wealth invested in stocks is

π∗S =
λS
γσS

,

whereas the remainder is invested in cash.

2. The optimal consumption path at time t for horizon Tj is W ∗
t , and is explicitly given

in Appendix A by equation (25).

Theorem 1 is identical to the 1-factor model result of Brennan and Xia (2002), but

our result also holds for a N -factor Vasicek model.5 The fraction allocated to stocks is

independent of time t, and equals the market price of risk divided by the risk aversion and

the volatility of stock market risk. So, although the stock market returns are influenced

by all of the N + 1 sources of risk, only the stock market shocks matter for the optimal

investment fraction to stocks. The result equals that of Merton (1969).

The optimal fraction of wealth allocated to bonds has two components: speculative

demand and hedge demand. The first component closely resembles the form of the optimal

stock market allocation. The second component depends on the investment horizon of the

investor and the investor uses this component to hedge against unfavorable changes in the

state variables. Note that indeed the optimal asset allocation and consumption path are

independent of the discounting model.

5For completeness, we provide a proof in Appendix A for a N -factor Vasicek model.
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Intermediate consumption problem — We now start at time t with the allocation of total

available wealth to the money pots for each year. Think of the total available wealth to

be used to finance the individual money pots j = 1, ..., n for the years Tj for fixed n. Each

money pot has its own optimal consumption strategy and investment policy during the years

t + h = t, ..., Tj. So, we need to keep track of these 3 dates and, for this reason, we use the

following notation. Wt,Tj ,t+h denotes optimal planned wealth at time 0 ≤ t ≤ Tj (first index),

where the investor plans for money pot j in year Tj ≥ t (second index) with in between date

t+ h (third index). Only in case the agent has time-consistent preferences Wt,Tj ,t+h will not

depend on the first index t, because at every time t he makes identical decisions.

The optimization problem at each time t becomes:

max
{Wt,T1,T1

,...,Wt,Tn,Tn}
Et

[
n∑
j=1

D(Tj − t)
W 1−γ
t,Tj ,Tj

1− γ

]
, (9)

subject to his budget constraint at each time t

Et

[
n∑
j=1

Wt,Tj ,TjMTj

]
= WtMt (10)

with Wt the total available wealth at time t (including portfolio returns). Clearly, the inter-

mediate consumption formulation depends on the general discount structure D(x). Because

the way of discounting influences the optimal consumption path, the optimal asset alloca-

tion changes accordingly since the distribution of total available wealth over the money pots

changes. We formalize this intuition in the next theorem.

Theorem 2. For an investor, with general discount structure D(x) and delay x = Tj − t,
that maximizes intermediate consumption:

1. The optimal fraction of actual total wealth invested in asset i = {stock, constant ma-

turity τ -year bond, cash} at time t for investment horizon Tj is

ω∗i (t, Tj) =

∑n
j,j>t π

∗
i (t, Tj)W

∗
t,Tj ,t

(D(Tj − t))∑n
j,j>tW

∗
t,Tj ,t

(D(Tj − t))
(11)

where π∗i (t, Tj) follows from Theorem 1.
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2. The actual optimal consumption path at each time t for all horizons Tj is W ∗
t,Tj ,t

(D(Tj − t)),

and is explicitly given in Appendix C by equation (41).

Theorem 2 shows that the optimal consumption path is a function of the discount struc-

ture D(x) and, consequently, the optimal asset allocation depends on the discount structure

through consumption. The consumption path W ∗
t,Tj ,t

(D(Tj − t)) prescribes how much the

investor at time t should optimally allocate to, and consume at, money pot Tj. The con-

sumption rule W ∗
t,Tj ,t+h

(D(Tj − t)), given in Appendix C by (41), prescribes for each money

pot Tj, at each time t, the optimal planned consumption paths for all in-between dates

t ≤ t + h ≤ Tj. Alternatively, W ∗
t,Tj ,t

(D(Tj − t)) is the actual consumption path of total

wealth, while W ∗
t,Tj ,t+h

(D(Tj − t)) also includes the planned consumption paths.

Regarding the actual optimal asset allocation, observe that the optimal proportions

π∗i (t, Tj), for each asset, invested for each separate money pot remain identical to the termi-

nal consumption problem and, thus, independent of the discount structure. However, note

that we are interested in the investment strategy of total wealth, i.e., the summation over

all money pots j. The optimal proportions ω∗i (t, Tj), for each asset, invested over all money

pots become dependent on the discount structure. The reason is that the actual allocation of

total wealth W ∗
t,Tj ,t

(D(Tj − t)) over the money pots — i.e., your actual optimal consumption

path — depends on the investor’s time preferences through the discounting structure.6

More specifically, Theorem 2 shows that speculative demands (including the stock al-

location) are independent of the discount structure, while hedge demands depend on the

discount structure. Remember, from Theorem 1, that the stock allocation and speculative

bond demands are independent of both current time and the investment horizon. In other

words, the stock allocation and speculative bond demands for money pot 1 are identical

to the stock allocation and speculative bond demands for money pot 2, and so forth. In

mathematical terms, π∗i (t, Tj) is independent of every money pot j in (11). So, for the stock

allocation and speculative bond demands we respectively have ω∗S = π∗S and ω∗B,spec = π∗B,spec.

The hedge bonds demands in Theorem 1 depend on both current time and investment

horizon. In other words, the hedge bond demands for money pot 1 could be different from

the hedge bond demands for money pot 2, and so forth. In mathematical terms, π∗i (t, Tj)

6Similar to planned consumption, one can also easily derive the planned optimal investment strategy for
all in-between dates t ≤ t+ h ≤ Tj , at each time t for money pot Tj . Use W ∗t,Tj ,t+h

(D(Tj − t)) rather than

W ∗t,Tj ,t
(D(Tj − t)) in Theorem 2.
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depends on the consumption moment of each money pot j in (11). Therefore, the optimal

fraction of total invested wealth depends on the discount structure through the optimal

consumption path.

Theorem 2 generalizes the result of Brennan and Xia (2002) and Zou et al. (2014) con-

siderably, since (i) we include hedging demands, through a N -factor Vasicek model, and

because (ii) we consider a general discount structure.

D. Equilibrium

Here, we introduce the concept of general equilibrium, such that we can compute equilibrium

excess bond returns and equilibrium yields by solving for the equilibrium bond prices-of-risk

λF .

Definition 1. The market is in general equilibrium if both of the following conditions are

satisfied:

1. The representative investor solves the intermediate consumption problem (9) subject to

his budget constraint (10).

2. Bond markets clear continuously, such that for all t ∈ [0, Tn] we have:

ω∗B(t, Tj) = ŵB(t)

where ω∗
B(t, Tj) is the optimal bond demand from Theorem 2 and ŵB(t) is the exoge-

nously given supply of bonds in the economy.

The first condition determines the demand for the stock, bonds and cash in the economy.

The representative investor is infinitely lived. So, at each time t, the representative investor

solves the intermediate consumption problem with discount structure D(x) and terminal

horizon Tn, i.e., the last pot of money.

The second condition states that the demand and supply for bonds is equal to each other

in equilibrium. The market is complete, so the number of bonds with different maturities

equals the number N of state variable factors. Thus, to match the supply and demand of N

bonds, we needN free parameters for an exactly identified system. Standard macroeconomics
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uses prices to match demand and supply. We follow this approach, and we use the N prices-

of-risk in the vector λF as free parameters to match demand and supply of all N bonds in

equilibrium. We denote the estimated equilibrium prices-of-risk by λ̂F .

Using the estimated equilibrium prices-of-risk, we compute equilibrium excess returns

and equilibrium yields. Note that the investor may still invest in the stock market, but we

do not impose equilibrium in that market. Since the optimal stock allocation is independent

of the discounting model, there is no need to examine how discounting influences equilibrium

stock prices (and, as a consequence, the money market).

II. Empirical findings

Given the analytical solutions derived in the previous section, in this section we can explicitly

calculate optimal asset allocations, and equilibrium bond prices and yields. We consider both

the exponential discounting model and the quasi-hyperbolic discounting model, reflecting

time-consistent and present-biased preferences respectively.

A. Data

We use monthly zero-coupon yields with multiple maturities and monthly stock returns from

1 October 1976 to 1 January 2019. Source of the yield data is the Fed database at the St.

Louis Federal Reserve and source of the stock returns is Kenneth R. French’s Website.

Regarding the yield data, we take the yields with maturities 2 years, 3 years, 5 years,

7 years and 10 years from the Treasury Constant Maturity Rates, while the shorter-term

yields with a maturity of 3 months and 1 year are from Treasury Bills: Secondary market

rates, because these series contain less missing values. All yield data is reported in percent

per annum, and annualized using a 360-day year or bank interest. As risk-free rate we use

the 3 month treasury bill.

As for the stock data, we use the stock market returns from Kenneth R. French’s Website.

This is a value-weighted index of all CRSP firms incorporated in the U.S. and listed on the

NYSE, AMEX or NASDAQ.

Table 1 gives some descriptive statistics of the yield and stock data. On average, the

term-structure of interest rates is upward sloping. Moreover, the long-maturity interest rates
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are somewhat less volatile than the short rates. High interest rates show up in the 1980s,

while the low interest rates show up at the end of our sample period. Clearly, stocks have

higher returns, at the cost of higher volatility.

To determine the supply of bonds in the economy, we use monthly data from 1 October

1976 to 1 January 2019 on U.S. government debt in line with e.g. Wachter (2006) and

Rudebusch and Swanson (2008). The source is Datastream’s U.S. Maturity Distribution,

Interest Bearing Public Debt. Table 2 provides some descriptive statistics, while Figure 3

gives a visualization of the U.S. debt development throughout time. The ratio of short-term

debt — maturities smaller than 1 year, and between 1 and 5 years — to total debt declines

during our sample period from roughly 84% to 69%. On the other hand, the ratio of long-

term debt — maturities exceeding 5 years — to total debt increases from 15% at October

1976 to 30% at January 2019. Table 2, Panel C, shows that approximately on average 73%

of the debt has a maturity lower than 5 years, while 17% of the debt has a maturity higher

than 5 years.

Regarding the choice of the sample period, we did not go further back than October

1976, because yield curve estimations and debt data from earlier years contain relatively

high standard errors and missing values.

B. Calibration and estimation

We calibrate our model to the monthly market data by using a standard Kalman filter and

maximum likelihood estimation. Exact discretization of our economy is possible by writing

the financial market processes as a multivariate Ornstein-Uhlenbeck process.

Regarding the choice of maturities for the yields, we follow De Jong (2000). For maturities

over 10 years, bond data is somewhat scarce, so interpolation is less accurate. In the very

short-term interest rates of one and two months, there are sometimes exceptionally large

one-period changes. We feel more confident using interest rates of 3 months and longer, and

of 10 years and shorter. To keep estimation feasible, we confine ourselves to four maturities

— 3 months, 1 year, 5 years and 10 years.

The maximum likelihood estimation starts from multiple initial values to prevent that

the optimizer finds a local optimum. We estimate 12 model parameters and 4 measurement

errors for each maturity. We assume that each maturity has its own measurement error, such
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that the variance of the errors depends on maturity (Geyer and Pichler, 1999). Each error

is drawn from a uniform distribution, and both serially and cross-sectionally uncorrelated.7

Table 3 shows the Kalman estimates and standard errors for our financial market. The

standard errors follow from the square root of the diagonal elements of the inverted Hessian

matrix
√
H−1ii for i = 1, .., k where k is the number of estimated parameters. Factor 2

exhibits stronger mean reversion than factor 1. The long-term mean of the short-rate A0 is

estimated at 3.59%. Both prices-of-risk for the two factors are negative. The negative sign

of σF,21 implies that there is negative correlation between the two factors. The price-of-risk

of the stock λS equals 0.4095, and the volatility of the stock σS is 15.04% per annum.

Both factors have an interpretation. Factor 1 is very highly correlated with the 10-year

yield and factor 2 is very closely related to the spread between the 3-month yield and the

10-year yield. These results are in line with De Jong (2000), who identifies the factors

respectively as a level factor and a slope factor.

Since our model has two factors driving the short rate, we need two constant maturity

bonds (of different maturities) to assure market completeness. To determine the maturities

of these two bonds, we use the U.S. government debt data. In line with Horvath et al. (2017),

we assume that all debt with maturity lower than 5 years reflects a U.S. government bond

with a maturity of 3 years, while all debt with maturity higher than 5 years reflects a U.S.

government bond with a maturity of 10 years. So, in equilibrium, we match the supply of

3-year and 10-year U.S. government bonds with the model-implied demand for both bonds.

Thus, we estimate the equilibrium prices-of-risk every October of each year by matching the

demand with supply for both 3-year and 10-year bonds.8

C. Preferences

We compare the asset allocations and equilibrium bond prices of a representative time-

consistent investor with a representative present-biased investor. We assume that the risk

preferences are the same for both investors. Since our benchmark model features CRRA

utility, we assume that both representative investors have a risk aversion level of γ = 10.

7Assuming only one error variance for all maturities is a possible and convenient simplification.
8Because of our monthly nature of the data, we can also compute equilibrium prices-of-risk each month

of the year, but results stay nearly identical to the annual matching (differences emerge at 0.1 basispoint),
which yields some computational advantage.
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This value is the maximum value considered plausible by Mehra and Prescott (1985) and a

frequent assumption by financial economists (see, e.g., Van Binsbergen et al., 2008).

Regarding the time-consistent investor, we assume time preferences that are common in

the financial economists’ literature. Van Binsbergen et al. (2012) try to match characteristics

of bond returns and yields with a discount factor of 0.997, which is “a standard result in the

literature”. Barberis and Huang (2001) study individual stock returns with a value of 0.98,

Campbell and Cocco (2003) study mortgage choice with a discount factor of 0.98 and Wachter

(2006) studies characteristics of bond returns and yields with a discount factor of 0.98. We

assume an annual long-term discount factor of δ = 0.97, which implies approximately an

annual discount rate of 3% per year. Our assumed factor is a bit lower than in the literature,

which biases our results in favor of the time-consistent agent.

Regarding the present-biased investor, we assume a long-term discount factor of δ = 0.97

as well. We do this for comparability reasons, such that all variation in our results comes

from the present-bias factor only. We assume a naive present-biased investor with a present-

bias factor of β = 0.35. The assumption of naivete implies that the investor is unaware of

his present-biased behavior and, therefore, does not foresee that in the future he will deviate

from his original plan. An alternative would be to assume a sophisticated investor, who

foresees that he will deviate from his original plan and, thus, is aware of his present-biased

behavior.9 However, more and more research suggest that models with naive agents seem to

better explain observed behavior (O’Donoghue and Rabin, 2015).

The present-bias factor of β = 0.35 implies substantial present bias. The estimates for

time preferences, including present bias and discount factors, vary quite a lot within the

experimental literature. As we focus on financial decision making, we feel most comfortable

by using the estimates of Laibson et al. (2015). Their estimates are particularly helpful for

our research because the authors distinguish between time-preference estimates for sophis-

ticated and naive agents, and their model is close to ours in terms of the realm of decision

making. Namely, they use a structural life-cycle model with actual data on consumption

and investment decisions. Their model estimates a present-bias factor of β = 0.35 and a

long-term discount factor of δ = 0.97 for a naive agent.

Many other time preference estimates exist in the literature, but we consider them irrel-

9A sophisticated investor has characteristics of so-called hyper rationality, because the current self plays
a dynamic game with his future selves.
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evant for our research purposes because the areas of decision making are too distinct from

our model. Using data on food stamps, Shapiro (2005) estimates a present bias parameter

of 0.96. DellaVigna and Paserman (2005) estimate a present bias-factor of 0.89 for naive

agents and 0.90 for sophisticated agents, in a job search model. Focusing on primary rewards

(such as fruit juice or water) in a neuroimaging laboratory experiment, McClure et al. (2007)

estimate a present-bias factor of 0.52. Paserman (2008) studies job search and cannot distin-

guish between naivete and sophistication; his present-bias factor estimates range from 0.40

to 0.48 for low and medium wage works. Fang and Silverman (2009) studies labor supply

decisions and estimates a present-bias factor of β = 0.36 for naive agents. Augenblick et al.

(2015) study real effort tasks and find a present-bias factor of 0.89 for effort-based decisions,

but 0.97 for money-based decision. Using decisions over time-dated monetary rewards, Bal-

akrishnan et al. (2017) find similar estimates approximately equal to 0.90. In an experiment

on unpleasant transcription tasks, Augenblick and Rabin (2019) find a present-bias factor 0f

0.83.

Interestingly, estimated long-term discount factors for exponential discounting in the

experimental literature differ substantially from the typically assumed values by financial

economists. In many cases, financial economists assume discount factors that are higher than

typically found in the experimental literature. In other words, they tend to underestimate

the degree of actual impatience. For example, Laibson et al. (2015) estimate a long-term

discount factor δ = 0.63 in the exponential discounting model, while typically values of

δ = 0.97−0.99 have been used in previous financial economist’ studies. Shapiro (2005) finds

δ = 0.23, DellaVigna and Paserman (2005) find δ = 0.59 and Fang and Silverman (2009)

find δ = 0.41.

Regarding the discount and utility structure, we assume in the discounting model D(x)

in equation (1) that the naive investor uses a present with a duration TS = 1 year and

a long-term planning horizon TL = 10 years. In terms of the intermediate consumption

model (9), we assume that the investor has two consumption moments: one consumption

moment during the present and one consumption moment during the future. We let the first

consumption moment coincide with time TS and the second consumption moment coincides

with time TL.10

10The model would qualitatively yield the same results if the consumption moments differ from the
bounds: e.g., the first consumption moment takes place somewhere during the present [0, TS ] and the second
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Specifically, the 2-period model works as follows. The investor discounts utility of the 2

consumption moments by D(x). The investor is infinitely lived, since time runs from today

towards infinity. At each time t, the investor uses the discount structure D(x) to discount

future utility of money pot 1 and money pot 2. Money pot 1 coincides with TS = 1 year

and corresponds to consumption during the present. Money pot 2 coincides with TL = 10

years and corresponds to consumption during the future. Thus, at each year t, the investor

discounts utility of money pot 1 by δ — because the consumption moment falls within the

present — and the investor discounts utility of money pot 2 by an additional scalar β —

because the consumption moment falls in the future. So, at each year t, the investor decides

how to optimally split wealth over the present and the future, and how to optimally invest

for these two moments.

Empirically, we can also solve a consumption model with more than two consumption

moments — as we did in the theoretical derivations for n money pots. But, we feel that the 2-

period model is simpler, since it reveals the key mechanisms and intuition for present-biased

investing which requires a distinction between the present and the future. The 2-period

model cleanly groups behavior in the present and the future. We do so, because we feel that

this provides a helpful discipline. Moreover, we do not allow ourselves the luxury of selecting

the time-preference parameters that would fit the data best.

D. Asset allocation

We show the optimal consumption strategy and optimal investment strategy for a time-

consistent investor and a present-biased investor. The optimal consumption path that is

actually followed by the investor is given by W ∗
t,Tj ,t

(D(Tj − t)). The optimal planned con-

sumption path is given by W ∗
t,Tj ,t+h

(D(Tj − t)). Both actual and planned consumption paths

depend on the discounting model. For a time-consistent investor, the actual consumption

path is identical to the planned consumption path. Since the investor is time consistent, he

sticks to his plan. The investor consumes at each time t + h, what he planned to consume

at time t given the state of the world.

Regarding the present-biased investor, the actual consumption path differs from the

planned consumption path. Since the investor is time inconsistent, he deviates from his

consumption moment takes place somewhere during the future (TS , TL]. For interpretability, we let them
coincide.
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plans. At time t, the present-biased investor plans how much to consume at time t + h.

But, if the investor actually arrives at time t+ h, he decides to consume more than initially

planned at time t. For this reason, a present-biased investor has a higher consumption rate at

every time t than a time-consistent agent. The consumption rate equals the ratio of current

consumption over current total wealth, and for both investors this ratio is concave upward

sloping and reaches 1 at the terminal horizon.

Optimal investment strategies are determined by the Kalman calibrated parameter val-

ues. Table 4 summarizes the optimal asset allocations under present bias and time consis-

tency for a 3-year bond, a 10-year bond, a stock and cash. The first observation is that

speculative demands for the short-term bond, the long-term bond and the stock are inde-

pendent of being present biased or time consistent. Secondly, the short-term hedge demand

for a present-biased investor is 9 percentage points higher than for a time-consistent investor,

while the long-term hedge demand for a present-biased investor is 17 percentage points lower

than for a time-consistent investor. This is entirely driven by the higher consumption rate

of a present-biased investor. The key mechanism is that a present-biased investor cares less

about the future and, therefore, cares less about hedging opportunities for the long run but

values short-term opportunities. The total demand across all assets sums up to 1, such that

the investor invests all of his total wealth.

Table 5, Panel A, shows the optimal asset allocation for a present-biased investor for three

different present-bias factors. The main observation is that a lower present-bias factor drives

up the short-term hedge demands but lowers the long-term hedge demands, because the less

the investor cares about future consumption opportunities. An extremely low present-bias

factor of 0.05 causes the investor to go short in terms of 10-year bond hedge demands.

One might wonder, whether we could quantitatively reach similar results if we use ex-

ponential discounting model only. Table 5, Panel B, shows that a time-consistent investor

with a long-term annual discount factor of δ = 0.86 replicates the optimal asset allocation

decisions for a present-biased investor with β = 0.35, δ = 0.97. The hedge demands for the

3-year and 10-year bonds equal 0.49 and 0.04 of total wealth.

However, note that financial economists typically find a value of δ = 0.86 too low, since it

implies an annual discount rate of roughly 16%. On the other hand, the experimental liter-

ature finds δ = 0.86 too high in the exponential discounting model, because their estimates

range from δ = 0.23 to δ = 0.63.
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E. Equilibrium returns and yields

The bond premium puzzle states that for reasonable coefficients of relative risk aversion,

standard representative agent general equilibrium models cannot match the sign, magnitude

and variability of excess long-term bond returns nor produce an average upward-sloping yield

curve as found in the data (Backus et al., 1989; Campbell and Shiller, 1991; Bansal and

Coleman, 1996; Rudebusch and Swanson, 2008; Van Binsbergen et al., 2012). The present

literature about equilibrium bond pricing needs unreasonable coefficients of risk aversion in

excess of 80 to explain the bond premium puzzle (see, e.g., Van Binsbergen et al., 2012), or

can only explain the short-term of the term structure of interest rates (e.g., up to maturities

of 5 years, as in Wachter (2006)).

In this section, we find that present bias leads to the observed sign, magnitude and

Sharpe ratio of excess bond returns, and produces an average upward-sloping yield curve

as found in the data. Present-biased behavior drives down (up) short-term bond yields

(prices) but drives up (down) long-term bond yields (prices). This is the key mechanism

that explains all of our findings below. Namely, a present-biased investor has higher short-

term hedge demands but lower long-term hedge demands compared to a time-consistent

investor. Moreover, we confirm that a standard time-consistent investor cannot match the

observed behavior of bonds for reasonable parameters.

To examine the model’s ability to fit the data, we use 4 measures that are common in

the literature. The literature has focused on the risk premium to describe bond behavior.

However, it is not directly observed in the data. Accordingly, the literature has also focused

on three other empirical measures that are more easily observed: excess bond returns, the

yield spread and the slope coefficients from a Campbell-Shiller (1991) “long-rate” regression.

1. Expected excess bond returns

Our main and first measure is the excess return on short-term and long-term bonds. That is,

the expected instantaneous τj-year bond return in excess of the the short rate rt. The mean

and standard deviation of excess bond returns are a popular measure for characterizing bond

behavior (Rudebusch and Swanson, 2008). For the case of a τj-year bond, this excess return
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along with its standard deviation is given by

rB(τj) = −(B(τj)ι)
′σF λ̂F , (12)

sB(τj) =
√

(B(τj) ∗ ι)′σFσ′F (B(τj) ∗ ι). (13)

Clearly, the mean excess bond returns depend on the discounting model through the equi-

librium estimated prices-of-risk λ̂F . The standard deviation of bonds is independent of the

prices-of-risk. So, in equilibrium, our model does not allow for a direct match on the vari-

ability of excess bond returns. However, indirectly we do, because in equilibrium we account

for the observed variability of bonds through the Kalman estimated bond standard deviation

σ̂F . For this reason, we study the Sharpe ratio — the mean of the excess return (12) divided

by the standard deviation (13) — of bonds, providing us with a comprehensive measure of

excess bond return behavior.

Empirically, excess bond returns have a positive relation with maturities up to 10 years

(Boudoukh et al., 1999). Table 6, Panel A, confirms that present bias supports the data, while

time consistency fails to fit the data. Indeed, excess bond returns are increasing in maturity,

since the mean excess return on a 3-year bond is 1.90% and the mean excess return on a

10-year bond is 4.10%, during October 1976 - January 2019. The standard representative

agent model is unable to match the data in terms of mean returns and Sharpe ratios. For

a time-consistent investor the equilibrium Sharpe ratios of short-term and long-term bonds

are simply too low compared to the data.

On the other hand, the present-biased investor yields a consistent fit with the data in

terms of sign, magnitude and Sharpe ratio. In equilibrium, the mean 3-year bond return

is 1.59% and the mean 10-year bond return is 4.45%. The short- and long-term bond

Sharpe ratios are both similar to the data and, thus, present bias yields a large but simple

improvement over time consistency. Our present-bias model underpredicts short-term bond

returns by 0.31 and overpredicts long-term bond returns by 0.35.

Note that the fit with stock returns is close, such that the equity premium puzzle is absent

in our model. Unlike Rudebusch and Swanson (2008) and Van Binsbergen et al. (2012) that

find distorted predictions in the stock market, we find a reasonable price-of-risk for the stock

λS.

Table 6, Panel B, shows that the estimated equilibrium prices-of-risk λ̂F are negative and
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statistically significantly estimated. So, we conclude that the equilibrium expected excess

returns are not only economically significant, but also statistically.

2. Yield spread, or slope of the yield curve

The second measure is the yield spread, also known as the slope of the yield curve. The slope

of the yield curve is simply the difference between the yield to maturity on a long-term bond

and the risk-free rate. The yield vector for zero-coupon bonds is a linear transformation of

the factors, where the intercept and factor loadings are time-invariant functions of time to

maturity vector τ

Yt(τ) ≡ − lnPt(τ)/τ = −A(τ)/τ + ι′B(τ)Ft/τ, (14)

where Pt(τ) is the price vector of zero-coupon bonds with time-to-maturity vector τ , as given

by (23) in Appendix A, and a function of the estimated equilibrium prices-of-risk vector λ̂F .

The literature uses different proxies for long term bonds. Wachter (2006) and Van Bins-

bergen et al. (2012) uses a 5-year nominal bond and Rudebusch and Swanson (2008) use a

10-year nominal bond. For comparability, we show both results for 5 years and for 10 years

bonds. The n-year yield spread at time t in our setting equals

yt(n)− yt(3 month), (15)

where n = 5 or 10 years, and where we proxy the risk-free rate by a 3 month yield.

Table 7 shows that present bias creates the observed, on average, upward sloping yield

curve, while time consistency produces a too flat relationship between yields and maturity.

The average difference in yields between the 5-year bond and the 3-month bond in our sample

equals 1.33%, which indeed confirms an upward-sloping yield curve. Under time consistency,

the equilibrium mean 5-year yield spread is too flat and not steep enough to match the data

since the difference is 0.72 percentage points. Under present bias, the slope of the yield

curve (1.03%) is close to our sample observation (1.33%) and the difference equals only 0.30

percentage points.

In the case of a longer long-term bond, our present-biased model performs even better.

The observed 10-year yield spread is 1.78%. The time-consistent preferences produce an
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equilibrium 10-year yield spread of 1.04%, indicating a downward mismatch of 0.74 percent-

age points. Present-biased preferences produce an equilibrium 10-year yield spread of 1.88%,

indicating an upward mismatch of only 0.10%. Again, our model by construction, does fit

the standard deviations reasonably well in both discounting cases.

The main observation is that, indeed, equilibrium yield curves under exponential dis-

counting provide an essentially flat relationship between yields and maturity, while the

equilibrium term structure of interest rates under present bias provides the upward slop-

ing positive relationship as observed in the data (Boudoukh et al., 1999). So, present bias is

a potential explanation for why the term structure of interest rates is upward sloping.

3. Bond risk premia

Arguably the cleanest conceptual measure of long-term bond risk is the term premium, also

known as the bond risk premium. The risk premium or term premium is typically expressed

as the difference between the yield on the bond and the unobserved risk-neutral yield for

that same bond (Rudebusch and Swanson, 2008). However, the term premium is not directly

observed in the data and must be inferred using term-structure models (or other methods).

The term premium in our setting equals

yt(n)− ỹt(n), (16)

where ỹt(n) is the risk-neutral yield for an n-year bond at time t. We compute the risk-

neutral yields at every time t by setting both the prices-of-risk for the stock λS and for the

factors λF to zero.

As can be seen from Table 8, the average term premium under time consistency is 0.88%

for a 5-year bond and 1.55% for a 10-year bond, respectively 0.52 and 0.57 percentage points

smaller than the data. The simulated results are much closer to the data for present-biased

preferences. For 5-year bonds the equilibrium term premium 1.32% is nearly identical to our

sample 1.40%. The 10-year bond premium under present bias also matches the data, contrary

to time consistency. By construction, our model is unable to fit the standard deviations and,

therefore, we do not show these.
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4. Campbell-Shiller (1991) “long-rate” slope coefficients

Our final and fourth measure of long-term bond risk is based on the “long-rate” regressions

performed by Campbell and Shiller (1991) to test the hypothesis of constant risk premia on

bonds, also known as the generalized expectations hypothesis. The regression equation is

yt+1(n− 1)− yt(n) = constantn + αn
1

n− 1
(yt(n)− yt(3 month)) + εn,t+1, (17)

where the dependent variable is the change in the n-period zero-coupon yield from period

t to t + 1, and the independent variable is the slope of the yield curve at time t divided

by n − 1. The intercept ‘constantn’ and slope coefficient αn are maturity specific. If bond

risk premia are constant, and hence excess returns on long-term bonds are unpredictable,

αn should be equal to one. Instead, Campbell and Shiller (1991) find a coefficient that is

negative at all maturities, and significantly different from one. Time variation in the term

premium pushes αn away from unity. Moreover, the higher the maturity, the lower is αn.

Table 9 shows the coefficients αn when we run the regression equation (17) on the sample,

and under time consistency and present bias. The estimated coefficients from the sample

are -1.87 and -3.46. The 10-year slope coefficient is similar to Rudebusch and Swanson

(2008), who find a slope coefficient α10 of -3.49. We confirm the failure of the expectations

hypothesis, because the coefficients are negative at both the 5-year and 10-year maturities,

and are decreasing in maturity. This is equivalent to the statement that excess returns on

long-term bonds are predictable (in sample).

The time consistency model goes a long way in explaining the failure of the expectations

hypothesis, but the present bias model comes closer to the data. Under both discounting

models, the signs of both slope coefficients are correct and negative. However, present-biased

preferences provide more support for the data in terms of magnitudes.

III. Duration of the present

What is the duration of the present? This is an open empirical question in the behavioral

literature by Ericson and Laibson (2018). Using a discounting model based on present bias

requires distinguishing between “now” and later. Experimental evidence over consumption

such as juice, water and effort finds a duration of the present ranging from a few minutes
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to a few weeks (McClure et al., 2007; Augenblick et al., 2015). However, a different picture

emerges if we study structural models with annual periods. These models treat consumption

anytime “this year” as immediate (Angeletos et al., 2001). The paper closest to ours is the

myopic loss aversion paper Benartzi and Thaler (1995), who study investment behavior under

myopic loss aversion. They report an investment evaluation period of 1 year for decision

making. To the extent of our knowledge, there are no papers measuring the duration of the

present for investment decisions and we try to fill this gap here.

We repeat our analysis from above, however we estimate equilibrium excess returns for a

short-term planning horizon of TS = 3 months and TS = 3 years, rather than 1 year. So, for

TS = 3 months (years), the first consumption is during the present and coincides with TS = 3

months (years), while the second consumption moment is during the future and coincides

with TL = 10 years. Since a short-term planning horizon of 3 months makes the investor by

definition more myopic — the first consumption moment arrives earlier — we presume that

we need a higher present-bias factor (i.e., more patience). A short-term planning horizon of

3 years makes the investor more far-sighted — the first consumption moment arrives later

— we presume that we need a lower present-bias factor (i.e., more impatient). We keep the

long-term annual discount factor still equal to δ = 0.97.

Table 10 shows the equilibrium properties of the excess returns for the 3 different horizons.

The key result is that a shorter duration of the present, i.e 3 months, leads to a more

consistent fit with the data than a longer duration of the present, i.e 3 years. Specifically,

a duration of 3 months with β = 0.7 provides even a better fit with the data than our

benchmark duration of 1 year with β = 0.35. If the duration of the present equals 3 years,

then we are unable to solve the bond premium puzzle even though we adopt an unreasonable

low present-bias parameter β = 0.05. The value of the present-bias factor β = 0.7 is in

line with estimated present-bias factors in the experimental literature. β = 0.05 seems

unreasonable, but Laibson et al. (2015) do estimate such low values of present bias for a

sophisticated agent.

For this reason, we conclude that the present has a duration of at most 1 year, since for

reasonable preference specifications we can match the excess bond returns.11 This value is

in line with the finding of Benartzi and Thaler (1995). They are successful in explaining the

11We do not report yield spreads, risk premia and “long-rate” slope coefficients, because these measures
lead to similar conclusions.
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equity premium puzzle by means of an evaluation period of 1 year. It may not come as a

surprise, and actually be very plausible, that investors use the same duration in stock and

bond markets. For this reason, we conclude that on average investors use a duration of the

present no longer than 1 year.

A. Do organizations display this behavior?

A possible objection to our model might be that it is based on an individual representative

investor, while the majority of assets we are concerned with are held by organizations such as

pension funds (Benartzi and Thaler, 1995). We argue that a principal-agent problem due to

decentralized investment might be an interpretation for our 2-period present-biased model,

which groups behavior in the present and in the future.

Pension funds have essentially an infinite time horizon, as our representative investor in

the general equilibrium. At each time t, the pension fund has to decide how to allocate the

pot of wealth over the 2 ’consumption’ moments at dates TS = 1 year and TL = 10 years.

While the pension fund is indeed likely to exist as long as the company remains in business,

the pension fund manager — for example a Chief Investment Officer (CIO) — does not

expect to be in this job forever. The investment horizon for a CIO is typically somewhat

long and might equal a long-term planning horizon up to 10 years (Van Binsbergen et al.,

2008).

But, the CIO typically delegates portfolio decisions to his asset managers, who are usually

compensated on an annual basis. So, the investment horizons of the CIO and the asset

managers differ. Due to the annual compensation, the investment horizons of asset managers

are generally short and run no further than 1 year. Gains and losses after the 1-year duration

of the present matter less for the asset managers than for the CIO. The CIO has the incentive

to invest for a longer term of 10 years. Therefore, the infinitely-lived pension fund is subject

to a long-term planning horizon of 10 years — by means of the incentives of the CIO —

while the fund is directly subject to present bias — by means of the incentives of the asset

managers.

In conclusion, a principal-agent problem due to decentralized investment might produce

the present-biased behavior with a present duration of at most 1 year, and a long-term

planning horizon of 10 years. The duration of the present has a similar interpretation and
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identical magnitude as the evaluation period of 1 year reported by Benartzi and Thaler

(1995). Their evaluation period, similar to our duration of the present, should not, in any

way, be confused with the long-term planning horizon of the investor.

B. Impatient time-consistent investor

One might wonder which value of the long-term discount factor δ in the exponential dis-

counting model is required to explain observed bond characteristics. In other words, can we

find a time-consistent investor, who requires only one parameter δ, that supports the data?

This is a fair question, and we address it here.

We know from the empirical optimal asset allocation that a time-consistent investor

with β = 1, δ = 0.86 replicates the hedge and speculative demands of a present-biased

investor with β = 0.35, δ = 0.97 for a 1-year duration of the present. We repeat our

equilibrium analysis, regarding excess bond returns, for an impatient time-consistent investor

with a discount factor of 0.86. The value δ = 0.86 implies severe impatience, because

the time-consistent investor uses an unreasonable discount rate of approximately 16% per

year. Typically, financial economists find such a value too low, since they tend to use

annual discount factor close to 1. On the other hand, the experimental literature finds the

factor δ = 0.86 too high in the exponential discounting model, because their discount factor

estimates range from δ = 0.23 to δ = 0.63.

Table 11 shows the excess returns in the data and in equilibrium, for an impatient time-

consistent investor (β = 1, δ = 0.86) and the present-biased investor (β = 0.35, δ = 0.97) with

TS = 1 year. The impatient time-consistent investor replicates the equilibrium findings of

the present-biased investor nearly identically, such that an impatient time-consistent investor

supports the data as well. Also the factor prices-of-risk λF are closely replicated.

So, if one is willing to assume unreasonable discount factors in the exponential discounting

model, then bond characteristics can be explained as well. However, it appears from our

model that it is necessary to introduce a distinction between the present and the future by

means of present bias, for example. Our finding is in line with many experimental evidence

that people are subject to present bias.
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IV. Conclusion

In this paper, we offer an explanation to the bond premium puzzle based on the time pref-

erences of a representative investor. Our solution to the puzzle is a simple introduction of

present-biased preferences into the standard exponential expected utility framework (Phelps

and Pollak, 1968; Laibson, 1997). We formulate a dynamic investment problem with a gen-

eral discount function in a market for bonds and stocks, where interest rates are driven by

a 2-factor Gaussian affine term structure model (such as Vasicek, 1977).

We give explicit analytical solutions by using the martingale method (Cox and Huang,

1989) for the representative investor’s optimal consumption path and optimal portfolio choice

for general deterministic time preferences, including present bias. These optimal solutions

imply equilibrium bond returns and yields, which show that a present-biased investor —

a special case of our discounting model — is able to explain many characteristics of bond

behavior using preference parameters as previously estimated in the experimental literature.

Specifically, present-biased behavior explains expected excess bond returns, the yield spread,

bond risk premia and long-rate slope coefficients while time-consistent behavior is unable to

do so.

In summary, a substantial body of experimental literature suggests that present bias

plays an important role in making intertemporal decisions (Frederick et al., 2002). Present-

biased investors, modelled by quasi-hyperbolic discounting, value the present more than the

future and, therefore, care less about hedging opportunities for the long run. For this reason,

present-biased investors have a lower long-term hedge demand and demand a premium to

hold long-term bonds. As a result, the term structure of interest rates is on average upward

sloping and matches the data. We find a realistic premium if the present is at most 1 year,

providing an indication for the duration of the present.
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Appendix

A. Proof of Theorem 1

The result is fairly standard and present for completeness only. We solve firstly for the

optimal consumption path and, then, for the optimal investment strategy. The representative

investor maximizes expected CRRA utility of wealth at a terminal horizon. He solves (7)

subject to his budget constraint (8).

Standard calculations using the Lagrange method, lead to implicit optimal consumption

W ∗
t =

1

Mt

Et [W ∗
TMT ] =

W0

Mt

Et

[
M

1−1/γ
T

]
E0

[
M

1−1/γ
T

] , (18)

where we use the first fundamental theorem of asset pricing.

Lemma 1. For positive α, the conditional expectation at time t of the stochastic discount

factor follows from

Et

[(
MT

Mt

)α]
= exp

(
αm(Ft, T − t) +

1

2
α2v2(T − t)

)
(19)

= e
1
2
(α−1)αv2(T−t)Pt(T − t)α (20)

where (τ = T − t)

m(Ft, τ) = − (A0 + ι′θ) (τ)− ι′B(τ) (Ft − θ)− 1

2
λ′λ(τ) (21)

v2(τ) =

∫ τ

0

||ι′B(τ − v)σF ||2dv + λ′λ(τ) + 2

∫ τ

0

〈ι′B(τ − v)σF ,λF 〉dv, (22)

and

Pt(T − t) = exp (A(T − t)− ι′B(T − t)Ft) (23)
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with deterministic functions

A(T − t) = − (A0 + ι′θ) (T − t) + ι′B(T − t)θ

+
1

2

∫ T

t

||ι′B(T − v)σF ||2dv +

∫ T

t

〈ι′B(T − v)σF ,λ
′
F 〉dv (24)

Appendix provides the proof of Lemma 1. Now, the explicit optimal consumption path

follows directly from (18) by plugging in the result of Lemma 1. Mathematically,

W ∗
t = W0 exp

(
−
∫ t

0

rsds−
∫ t

0

λ′dZs −
1

2

∫ t

0

λ′λds

)α−1
× exp

(
1

2
(α− 1)αv2(T − t)− 1

2
(α− 1)αv2(T )

)
× {exp[− (A0 + ι′θ) (T − t)− ι′B(T − t) (Ft − θ)

+
1

2

∫ T

t

||ι′B(T − v)σF ||2dv +

∫ T

t

〈ι′B(T − v)σF ,λ
′
F 〉dv]α

− exp[− (A0 + ι′θ) (T )− ι′B(T ) (F0 − θ)

+
1

2

∫ T

0

||ι′B(T − v)σF ||2dv +

∫ T

0

〈ι′B(T − v)σF ,λ
′
F 〉dv]α}. (25)

Note that the stochasticity in (25) comes from

−(α− 1) (λ′FZF,t + λSZS,t)

and from

−αι′B(T − t)Ft.

So, rewriting (25) into a stochastic differential equation, with α = 1 − 1/γ due to CRRA

utility, yields

d logW ∗
t = g1(r, T − t)dt+

λS
γ
dZS,t +

(
λ′F
γ
− (1− 1/γ)ι′B(T − t)σF

)
dZF,t, (26)

where the drift term g1(r, T − t) is a function of the interest rate rt and the remaining

investment horizon τ = T − t.
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Finally, consider the return on a portfolio that consists of the three available assets. Let

π∗ = (π∗S(t),π∗
B(t, τ), π∗M(t)) be the optimal proportion of wealth invested at time t in a

stock, in a vector of bonds with maturities τ and in cash. If the individual invests in such a

portfolio, then total wealth A(t) evolves according to

dAt
At

=

(
πS(t)

dSt
St

+ πB(t, τ)′
dPt
Pt

+ πM(t)
dBt

Bt

)
, (27)

where Bt is the process for the risk-free asset, or cash. Substituting the dynamics of the

assets and taking the log, yields

d logAt = g2(.)dt+ πS(t)σSdZS,t + (πS(t)σ′FS − πB(t, τ)′B(τ)′σF ) dZF,t, (28)

where g2(.) is the drift term.

Then, the optimal investment demands π∗ follow by simply equating the coefficients of

the diffusion terms in (26) and (28).

B. Proof of Lemma 1

Using (2) and (3), we have

rt = A0 + ι′ [θ + exp(−κt)(F0 − θ)] +

∫ t

0

ι′ exp(−κ(t− s))σFdZF,s

= A0 + ι′θ + ι′ exp(−κt)(F0 − θ) +

∫ t

0

ι′ exp(−κ(t− s))σFdZF,s, (29)

which follows directly from the solution of the stochastic differential equation to the Orstein-

Uhlenbeck process (see, e.g., Chin et al. (2014)).
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From the above, we find∫ t

0

rvdv =

∫ t

0

(
A0 + ι′θ + ι′ exp(−κv)(F0 − θ) +

∫ v

0

ι′ exp(−κ(v − s))σFdZF,s

)
dv

= (A0 + ι′θ) t+ ι′B(t) (F0 − θ) +

∫ t

0

(∫ v

0

ι′ exp(−κ(v − s))σFdZF,s

)
dv

= (A0 + ι′θ) t+ ι′B(t) (F0 − θ) +

∫ t

0

ι′B(t− v)σFdZF,v (30)

where in the second equality we use (6) and in the third equality we use stochastic integration

by parts. More general∫ T

t

rvdv = (A0 + ι′θ) (T − t) + ι′B(T − t) (Ft − θ) +

∫ T

t

ι′B(T − v)σFdZF,v, (31)

which has a normal distribution with (conditional) mean and variance:

Et

[∫ T

s

rvdv

]
= (A0 + ι′θ) (T − s) + ι′B(T − s) (Fs − θ) , (32)

Vt

[∫ T

s

rvdv

]
=

∫ T

t

||ι′B(T − v)σF ||2dv, (33)

where we use Itô isometry to obtain the variance.12 Hence, the stochastic discount factor

follows a log-normal distribution with mean

m(rt, T − t) = Et

[
ln
MT

Mt

]
= Et

[
−
∫ T

s

rvdv −
∫ T

s

λ′dZv −
1

2

∫ T

s

λ′λdv

]
= − (A0 + ι′θ) (T − s)− ι′B(T − s) (Fs − θ)− 1

2
λ′λ(T − s), (34)

12||.|| denotes the Euclidean norm of a vector (i.e., the square root of inner product of the vector and
itself).
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and variance

v2(T − t) = Vt

[
ln
MT

Mt

]
= Vt

[
−
∫ T

s

rvdv −
∫ T

s

λ′dZv −
1

2

∫ T

s

λ′λdv

]
=

∫ T

s

||ι′B(T − v)σF ||2dv + λ′λ(T − s) + 2Et

[∫ T

s

rvdv

∫ T

s

λ′FdZF,v

]
=

∫ T

s

||ι′B(T − v)σF ||2dv + λ′λ(T − s) + 2

∫ T

s

〈ι′B(T − v)σF ,λ
′
F 〉dv. (35)

We use that the prices-of-risk are constant, ZS is independent of ZF and Itô isometry.

C. Proof of Theorem 2

We first solve for the optimal consumption path and, then, for the optimal investment

strategy. The representative investor maximizes CRRA utility of intermediate consumption.

He solves (9) subject to his budget constraint (10).

Using η as Lagrange multiplier for the budget constraint, we find

L = Et

 n∑
j=1,t≤Tj

D(Tj − t)
W 1−γ
t,Tj ,Tj

1− γ

+ η

WtMt − Et

 n∑
j=1,t≤Tj

Wt,Tj ,TjMTj

 . (36)

Taking the first order conditions with respect to terminal wealth for every state of the world,

yields

∂L
∂Wt,Tj ,Tj

= D(Tj − t)W−γ
t,Tj ,Tj

− ηMTj = 0. (37)

This implies implicit optimal terminal wealth

W ∗
t,Tj ,Tj

= D1/γ(Tj − t)
(
ηMTj

)−1/γ
. (38)
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and isolating the Lagrange multiplier with the budget constraint yields

η−1/γ =
WtMt

Et
[∑n

j=1,t≤Tj D
1/γ(Tj − t)M1−1/γ

Tj

] . (39)

Substituting the expression for the Lagrange multiplier in implicit optimal terminal wealth

yields explicit optimal terminal wealth

W ∗
t,Tj ,Tj

= D1/γ(Tj − t)MtM
−1/γ
Tj

Wt∑n
j=1,t≤Tj D

1/γ(Tj − t)Et
[
M

1−1/γ
Tj

] . (40)

Now, using the first the fundamental theorem of asset pricing, the actual optimal consump-

tion path at time t with horizon Tj ≥ t for in-between dates t+ h = t, ..., Tj for every money

pot j = 1, ..., n equals

W ∗
t,Tj ,t+h

(D(Tj − t)) =
1

Mt+h

Et+h
[
W ∗
t,Tj ,Tj−tMTj

]
= D(Tj − t)1/γWt

Mt

Mt+h

Et+h
[
M

1−1/γ
Tj

]
∑n

j=1,t≤Tj D(Tj − t)1/γEt
[
M

1−1/γ
Tj

]
= D(Tj − t)1/γWtMtM

−1/γ
t+h

exp
(

1
2
1−γ
γ2
v2(Tj − (t+ h))

)
Pt+h(Tj − (t+ h))1−1/γ∑n

j=1,t≤Tj D(Tj − t)1/γEt
[
M

1−1/γ
Tj

]
= D(Tj − t)1/γWtM

1−1/γ
t exp

(
−
∫ t+h

t

rsds− λ′ (Zt+h −Zt)−
1

2
λ′λ((t+ h)− t)

)

·
exp

(
1
2
1−γ
γ2
v2(Tj − (t+ h))

)
Pt+h(Tj − (t+ h))1−1/γ∑n

j=1,t≤Tj D(Tj − t)1/γEt
[
M

1−1/γ
Tj

] , (41)

where we use Lemma 1 in the third equation, and in the fourth equation we use the explicit

expression of the stochastic discount factor.

The optimal investment strategy π∗i (t, Tj) for asset i = {stock, constant maturity τ -year bonds, cash}
at time t for investment horizon Tj follows from Theorem 1. So, the optimal fraction of ac-

tual total invested wealth at time t for each money pot j follows from the investor’s planned

optimal consumption path W ∗
t,Tj ,t+h

with h = 0, leading to the investor’s actual optimal
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consumption path W ∗
t,Tj ,t

. Both consumption paths are a function of the discount structure

D(Tj − t). This proves Theorem 2.13

13Note that j > t because investments are for future dates, i.e., the investor does not invest for a payment
at a payment date
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Tables

Table 1: Descriptive Statistics of Yields and Stock Returns. The data consists of monthly
U.S. interest rates and stock returns from 1 October 1976 to 1 January 2019. All values are annualized.

Mean Standard deviation Minimum Maximum
3-month yield 4.52 3.59 0.01 16.30
1-year yield 5.03 3.83 0.10 16.72
5-year yield 5.85 3.50 0.62 15.93
10-year yield 6.29 3.23 1.50 15.32
Stock return 11.97 15.18 - -
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Table 2: U.S. Government Debt by Maturity. Panel A of this table presents the composition of
U.S. government debt at 1 October 1976. Panel B of this table presents the composition of U.S. government
debt at 1 January 2019. Panel C shows the mean debt composition during the observation period 1 October
1976 to 1 January 2019.

Panel A: Composition at 1 October 1976
Debt outstanding (million USD) Fraction of total debt outstanding

Total 294,595 1.00
< 1 year 153,302 0.52
1-5 years 94,845 0.32
5-10 years 31,247 0.11
10-20 years 7,939 0.03
> 20 years 7,262 0.02

Panel B: Composition at 1 January 2019
Debt outstanding (million USD) Fraction of total debt outstanding

Total 13,385,359 1.00
< 1 year 3,927,279 0.29
1-5 years 5,426,079 0.41
5-10 years 2,524,238 0.19
10-20 years 113,097 0.01
> 20 years 1,394,666 0.10

Panel C: Composition from 1 October 1976 to 1 January 2019
Debt outstanding (million USD) Fraction of total debt outstanding

Total 3,798,442 1.00
< 1 year 1,263,723 0.37
1-5 years 1,460,573 0.36
5-10 years 623,445 0.14
10-20 years 147,308 0.05
> 20 years 303,393 0.08
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Table 3: Estimates of Model Parameters. This table reports maximum likelihood estimates
and standard errors for the parameters of the financial market with monthly observations. At each time, we
observed 4 points on the U.S. zero-coupon yield curve, corresponding with maturities of 3 months, 1 year, 5
years and 10 years. And, we observed the (value-weighted) stock market index. The observation period is 1
October 1976 to 1 January 2019

Parameter Estimate Standard error
κ̂1 0.0398 0.0015
κ̂2 0.4623 0.0119

Â0 0.0359 0.0015

λ̂F,1 -0.1378 0.0044

λ̂F,2 -0.4785 0.0383

λ̂S 0.4095 0.1381
σ̂F,11 0.0139 0.0004
σ̂F,21 -0.0065 0.0007
σ̂F,22 0.0166 0.0005
σ̂FS,1 -0.0264 0.0259
σ̂FS,2 -0.0171 0.0101
σ̂S 0.1504 0.0020

Table 4: Optimal asset allocation under present bias and time consistency. This table
reports the the optimal fraction of total wealth invested in a 3-year bond, a 10-year bond, a stock and cash.
Panel A presents the optimal demands for the present-biased investor with preferences β = 0.35, δ = 0.97.
Panel B presents the optimal demands for the time-consistent investor with preferences β = 1, δ = 0.97.

3-year bond 10-year bond Stock Cash
Panel A: Present-biased investor

Hedge demand 0.48 0.04
Speculative demand 2.44 -0.63 0.27
Total demand 2.92 -0.59 0.27 -1.61

Panel B: Time-consistent investor
Hedge demand 0.39 0.21
Speculative demand 2.44 -0.63 0.27
Total demand 2.83 -0.42 0.27 -1.68
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Table 5: Sensitivity optimal asset allocation under present bias and time consis-
tency. For several discount models, this table reports the optimal fraction of total wealth invested in a
3-year bond, a 10-year bond, a stock and cash. Panel A presents the optimal demands for the present-biased
investor with varying present-bias factors β. Panel B presents the optimal demands for the time-consistent
investor.

3-year bond 10-year bond Stock Cash
Panel A: Present-biased investor

β = 0.05, δ = 0.97
Hedge demand 0.54 -0.06 - -
Speculative demand 2.44 -0.63 0.27 -
Total demand 2.98 -0.69 0.27 -1.56

β = 0.5, δ = 0.97
Hedge demand 0.46 0.09 - -
Speculative demand 2.44 -0.63 0.27 -
Total demand 2.90 -0.54 0.27 -1.63

β = 0.8, δ = 0.97
Hedge demand 0.42 0.16 - -
Speculative demand 2.44 -0.63 0.27 -
Total demand 2.85 -0.47 0.27 -1.66

Panel B: Time-consistent investor

β = 1, δ = 0.86
Hedge demand 0.49 0.04 - -
Speculative demand 2.44 -0.63 0.27 -
Total demand 2.92 -0.59 0.27 -1.60
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Table 6: Properties of asset returns in the data and in the model. Data runs from
October 1976 to January 2019. The time-consistent investor has preferences β = 1, δ = 0.97, and the
present-biased investor has preferences β = 0.35, δ = 0.97. Panel A presents 3-year bond, 10-year bond and
stock returns per annum, in excess of the risk-free rate. The Sharpe ratio is the mean of the excess return
divided by the standard deviation. Panel B reports the estimated coefficients and standard errors for the
equilibrium prices-of-risk λ̂F .

Data Time consistency Present bias
Panel A: Excess returns

3-year bond
Mean 1.90 1.06 1.59
Sharpe 0.48 0.27 0.41

10-year bond
Mean 4.10 2.79 4.45
Sharpe 0.38 0.26 0.42

Stock
Mean 7.27 7.01 7.48
Sharpe 0.48 0.46 0.49

Panel B: Prices-of-risk

Factor 1: λ̂F,1
Coefficient -0.1304 -0.2221 -0.3741
Standard error 0.0039 0.0480 0.0335

Factor 2: λ̂F,2
Coefficient -0.5059 -0.1578 -0.1945
Standard error 0.0288 0.0109 0.0056
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Table 7: Yield spreads in the data and in the model. This table reports the mean and
standard deviation of the yield spread, also known as the slope of the yield curve. The yield spread is the
difference in yields between the long-term n-year bond and the 3-month bond. Data runs from October
1976 to January 2019. The time-consistent investor has preferences β = 1, δ = 0.97, and the present-biased
investor has preferences β = 0.35, δ = 0.97.

Maturity n Data Time consistency Present bias
5 years

Mean 1.33 0.61 1.03
Standard deviation 0.97 0.96 0.97

10 years
Mean 1.78 1.04 1.88
Standard deviation 1.22 1.28 1.30

Table 8: Bond risk premia in the data and in the model. This table reports the mean
bond risk premium. The bond risk premium, or term premium, is the difference between the yield on the
long-term n-year bond and the unobserved risk-neutral yield for that same bond. Data runs from October
1976 to January 2019. The time-consistent investor has preferences β = 1, δ = 0.97, and the present-biased
investor has preferences β = 0.35, δ = 0.97.

Maturity n Data Time consistency Present bias
5 years

Mean 1.40 0.88 1.32

10 years
Mean 2.12 1.55 2.41

Table 9: “Long-rate” regressions in the data and in the model. Coefficients αn from the
regression yt+1(n − 1) − yt(n) = constantn + αn

1
n−1 (yt(n) − yt(3 month)) + εn,t+1 using actual and model

data on bond yields with annual periods. According to the expectations hypothesis, this coefficient should
equal one. Constant terms (not shown) are included in all regressions. Robust standard errors are below
estimated coefficients. Data runs from October 1976 to January 2019. The time-consistent investor has
preferences β = 1, δ = 0.97, and the present-biased investor has preferences β = 0.35, δ = 0.97.

Maturity n Data Time consistency Present bias
5 years

Coefficient -1.87 -2.35 -2.23

10 years
Coefficient -3.46 -4.31 -3.91
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Table 10: Properties of asset returns in the data, and for present bias with multiple
durations of the present. Data runs from October 1976 to January 2019. The present-biased investor
has varying pairs of durations of the present and present-bias factors (TS , β): (3 months, 0.7), (1 year, 0.35)
and (3 years, 0.05). The long-term discount factor equals δ = 0.97 in all cases. The table presents 3-year
bond, 10-year bond and stock returns per annum, in excess of the risk-free rate. The Sharpe ratio is the
mean of the excess return divided by the standard deviation.

Duration present

Data 3 months 1 year 3 years
3-year bond

Mean 1.90 1.66 1.59 1.05
Sharpe 0.48 0.42 0.41 0.27

10-year bond
Mean 4.10 4.39 4.45 3.11
Sharpe 0.38 0.41 0.42 0.29

Stock
Mean 7.27 7.50 7.48 7.05
Sharpe 0.48 0.49 0.49 0.46
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Table 11: Properties of asset returns in the data, and for impatient time consis-
tency and present bias. Data runs from October 1976 to January 2019. The impatient time-consistent
investor has preferences β = 1, δ = 0.86, and the present-biased investor has preferences β = 0.35, δ = 0.97.
Panel A presents 3-year bond, 10-year bond and stock returns per annum, in excess of the risk-free rate.
The Sharpe ratio is the mean of the excess return divided by the standard deviation. Panel B reports the
estimated coefficients and standard errors for the equilibrium prices-of-risk λ̂F .

Data Impatient time consistency Present bias
Panel A: Excess returns

3-year bond
Mean 1.90 1.61 1.59
Sharpe 0.48 0.41 0.41

10-year bond
Mean 4.10 4.48 4.45
Sharpe 0.38 0.42 0.42

Stock
Mean 7.27 7.49 7.48
Sharpe 0.48 0.49 0.49

Panel B: Prices-of-risk

Factor 1: λ̂F,1
Coefficient - -0.3772 -0.3741
Standard error - 0.0332 0.0335

Factor 2: λ̂F,2
Coefficient - -0.1953 -0.1945
Standard error - 0.0055 0.0056
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Figures

Figure 1: Three discount functions. This figure graphs the exponential discount function for
δ = 0.97, the instantaneous quasi-hyperbolic discount function for β = 0.6 and δ = 0.99 and a generalised
hyperbolic discount function (D(x) = (1 + αx)−β/α, α, β > 0, with α = 105 and β = 5 · 103).
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Figure 2: Quasi-hyperbolic versus exponential Discounting. This timeline presents the
discount structure for an investor with exponential discounting (E) and quasi-hyperbolic discounting (H),
from the perspective of time t = 0. The quasi-hyperbolic discount function discretely drops with size β
when the present ends and the future begins. The present-to-future transition occurs at TS = 1 year and
the future ends at year TL = 10, respectively the short-term and long-term planning horizons.

t = 0 TS = 1 TL = 10

Present
E: δTS

H: δTS

Future
E: δTL

H: β × δTL

Figure 3: Ratio of U.S. government debt by maturity to total U.S. government
debt outstanding. This figure shows per maturity the U.S. government debt as a fraction of total U.S.
government debt outstanding throughout the period 1 October 1976 to 1 January 2019.
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