

Pretextual Traffic Stops and Racial Disparities in their Use

Matthew Philip Makofske

Abstract

A moving-violation traffic stop is **pretextual** when it is motivated by suspicion of an unrelated crime. Using 9.5 years of traffic citations from Louisville, KY, I find evidence suggesting that pretextual stops predicated on a particular moving violation—failure to signal—were relatively frequent. Contrary to stops involving other similarly common moving violations, where arrest rates range from 0.01 to 0.09, stops involving failure-to-signal yield an arrest rate of 0.42. More importantly, pretext to stop a vehicle requires only one traffic violation. In stops involving failure-to-signal, the arrest rate is 0.52 when no other traffic violations are cited, and the presence of other traffic violations yields a 55% relative decrease in the probability of arrest. Relative to conventional traffic stops from the same period, black and Hispanic motorists account for a disproportionately high share of likely pretextual stops. Yet, within likely pretextual stops, they are arrested at significantly lower rates than other motorists. Following departmental adoption of body-worn cameras, I find a relative increase of 33-34% in the overall arrest rate in likely pretextual stops, and that the racial disparity in arrest rate becomes much smaller and statistically insignificant.

Overview

- Traffic stops are most common form of police-initiated civilian contacts in US (Bureau of Justice Statistics, 2015).
- A pretextual traffic stop is a stop for a moving-violation motivated by suspicion of a crime unrelated to traffic safety.
- In 1996, SCOTUS unanimously ruled pretextual stops do not violate Fourth Amendment (typically, traffic violations are crimes).
- Common perception: practice unfairly targets black & Hispanic motorists.
- Little known about pretextual stops beyond anecdotal evidence.

Data and Sample

- Citations from Louisville Metro Police Department (LMPD) traffic stops, January 1, 2010 to August 19, 2020.
- I analyze traffic stops with a citation for: speeding, disregarding a traffic light (DTL), disregarding a stop sign (DSS), or failure to signal (FTS) (most commonly cited driving violations in sample).
- All analyses exclude stops resulting in charge for driving under the influence (DUI) of drugs or alcohol.
- All citations issued by one of LMPD's eight geographically-defined patrol divisions.

Detecting Pretextual Stops

Unique motive for pretextual stops will concentrate them on violation that targeted motorists are most likely to commit, & lead to higher arrest rate than in conventional traffic stops.

- \blacksquare Pretextual stops occur as soon as pretext exists \Rightarrow will concentrate around violation targeted motorists most likely to commit.
- lacktriangle Pretextual stops motivated by suspicion of unrelated crime \Rightarrow more likely to involve search and arrest than conventional stops.

Most Common Driving Violations

	Speeding	DTL	DSS	Failure to Signal		
Arrest Rate	0.009	0.067	0.086	0.416		
N	213,693	19,283	15,341	8,641		
Stops resulting in DUI excluded.						

Arrest rate is 0.416 conditional on failure to signal (FTS). Pretextual stops or correlation between criminality & propensity to commit FTS? Test: condition on whether multiple traffic violations were cited during stop.

- If correlation between criminality & propensity for FTS, arrest rate should be high whenever FTS cited.
- If pretextual stops, arrest rate should be lower when multiple violations cited because pretext requires only one violation.

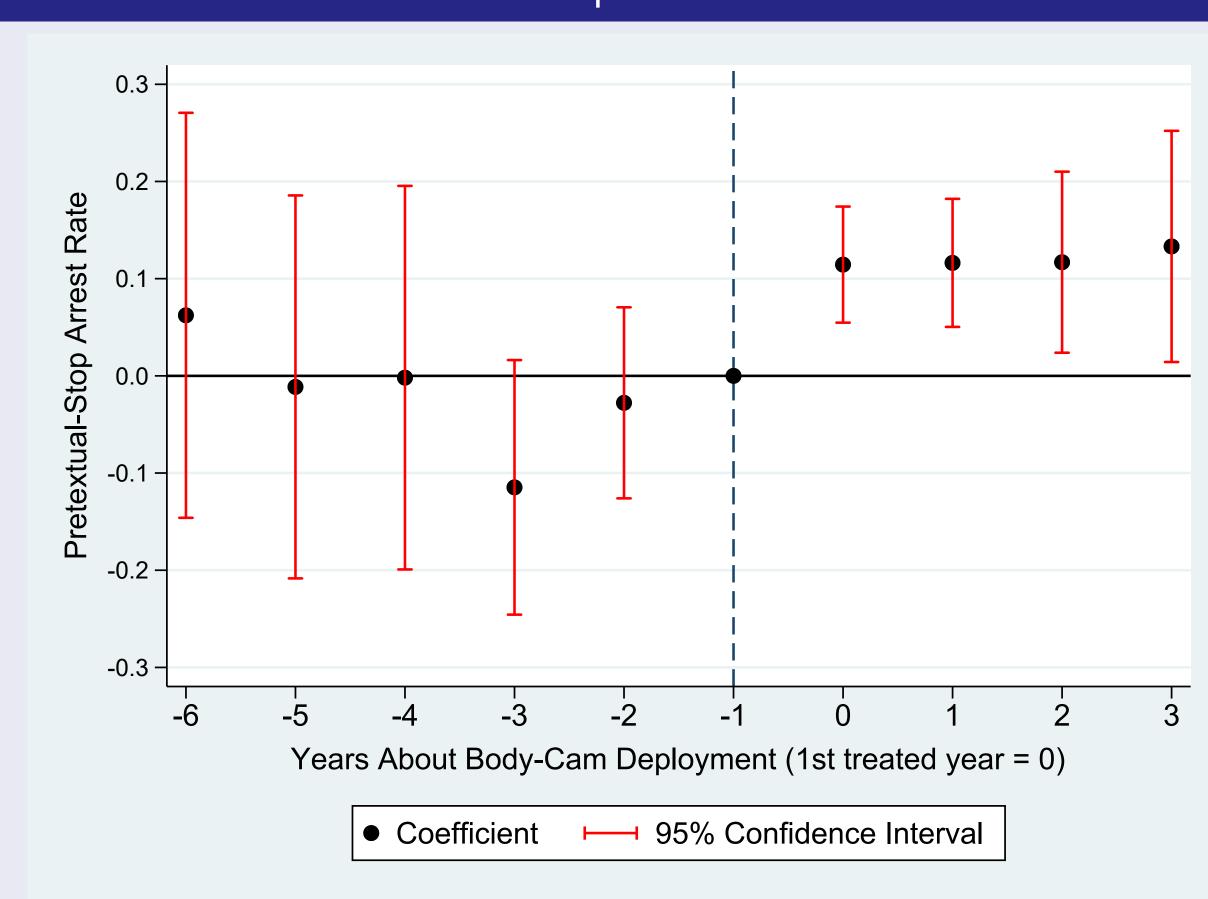
Variable	Arrest _i	Arresti	Arrest _i	$Arrest_i$
Multiple	0.0268*** (0.0025)	0.0260*** (0.0059)	0.0067 (0.0077)	- 0.2870 *** (0.0114)
N Sampled stops cite:	213,693 Speeding	19,283 DTL	15,341 DSS	8,641 FTS

OLS estimates (excluding DUI stops). Arrest_i indicates arrest occurred in stop i. Multiple indicates more than one traffic violation cited in stop. Standard errors clustered on LMPD division-by-year. Controls: LMPD division FE, hour FE, day-of-week FE, month FE, year FE. ***p < 0.01.

LMPD and Body-worn Cameras

- LMPD adopted body-worn cameras (body cams) in 2015.
- To help manage initial learning process and requests for assistance, LMPD deployed body cams on staggered basis one division at a time from June 1, 2015 to March 11, 2016.
- I examine racial disparities in pretextual stops & use variation in deployment timing to test effect of body cams on the practice.

Racial Disparities Prior to Body-cam Deployment


Before June 1, 2015:

- Black & Hispanic (B&H) motorists account for 30.2% of conventional stops & 49.3% of pretextual stops.
- \blacksquare Pretextual-stop arrest rate for B&H motorists 17.7% lower relative to others

Variable	$Arrest_i$	$Arrest_i$
Black Motorist	-0.0736***	
	(0.0196)	
Hispanic Motorist	-0.1676***	
	(0.0423)	
Black or Hispanic Motorist		-0.0823***
		(0.0189)
N	3,369	3,369

OLS estimates from stops before June 1, 2015 where FTS was only cited traffic violation (excluding DUI stops). Standard errors clustered on LMPD division-by-year. Controls: LMPD division FE, hour FE, day-of-week FE, month FE, year FE. ***p < 0.01.

Body-worn Cameras and Pretextual-stop Arrest Rate

Event study estimates. Standard errors clustered on LMPD division-by-year. Controls: division-specific annual trends, LMPD division FE, day-of-week FE, post-Sep-2012 FE (LMPD began researching body-cam adoption), post-Sep-2013 FE (LMPD sought prices from body-cam vendors), post-Michael-Brown-Shooting FE & post-Ferguson-Grand-Jury FE (credited with shifting public support toward LMPD body-cam adoption).

Body-worn Cameras and Racial Disparities in Pretextual-Stop Arrest Rate

Variable	$Arrest_i$
BodyCam × (Black or Hispanic Motorist)	0.0541
	(0.0397)
BodyCam	0.1284**
	(0.0611)
Black or Hispanic Motorist	-0.1002***
	(0.0276)
N	5,756

OLS estimates from likely pretextual stops. *BodyCam* indicates body cams in use during stop. Standard errors clustered on LMPD division-by-year. Controls: LMPD division FE, day-of-week FE, post-Sep-2012 FE, post-Sep-2013 FE, post-Michael-Brown-Shooting FE, post-Ferguson-Grand-Jury FE. ***p < 0.01, **p < 0.05.

With body cams in use, racial disparity in pretextual-stop arrest rate decreases 54% relative to pre-period.

Contact Information

Matthew Philip Makofske

Assistant Professor of Economics, Murray State University email: mmakofske@murraystate.edu

website: https://sites.google.com/site/matthewmakofske/