Identification of Auction Models Using Order Statistics

Yao Luo
Ruli Xiao
University of Toronto
Indiana University

Objectives

Identify bidder value distributions in IPV auctions with nonseparable finite auction-level unobserved heterogeneity (UH) when only observing three order statistics (OSs) of bids.
Highlights
Symmetric auction w observed competition

- Symmetric auction w unobserved competition
- Asymmetric auction
- Applications not limited to auctions

Introduction

(Auction) data may be imperfect
(1) Missing value relevant covariates $\Rightarrow \mathrm{UH}$.

- Unobserved competition
(2) Incomplete bids: only a few OSs of bids
- Auction format: (second-price/ ascending auctions)
winning bid ([1]),
the second, third, and fourth highest bids ([7])
Data truncation
Washington State DOT, publishes only top three low bids

Literature
(1) Tackle UH with all bids ([3], [6], [2])
© Tackle both UH and incomplete data

- Auxiliary variable, such as monotone in UH ([4]):
- Conditional indepen via markov property of OS ([5]).

Empirical Settings

- Timber auction m is characterized by
- Auction-level observed charac: X_{m} (acres, volume etc)
- Auction-level unobserved charac (UH): Z_{m} (quality)
- Number of bidders: n_{m}
- Bidder's value distribution: $\Phi(v \mid X, Z, n)$ (IPV)

$$
v_{i m}=\underbrace{X_{m}^{\prime} \beta_{x}}_{\text {observed }}+\underbrace{Z_{m}^{\prime} \beta_{z}}_{\text {UH }}+\underbrace{\epsilon_{i m}}_{\text {private info }}
$$

- Bidder i draws a value $v_{i m}$ and bids $b_{i m}=s\left(v_{i m}\right)$

Identification

- Data
- Ideal data:

$$
\left\{X_{m}, Z_{m}, n_{m}, b_{1}, \ldots, b_{n_{m}}\right\}_{m}
$$

- Actual data:

$$
\left\{X_{m}, \not Z_{m}, n_{m}, b_{r_{1}: n_{m}}, \ldots, b_{r_{s}: n_{m}}\right\}_{m}
$$

- Order statistics of bids: $b_{1: n}<b_{2: n}<\cdots<b_{n \cdot n}$
- Identification problem
- Can we recover value distribution $\Phi(v \mid X, Z, n)$ from actual data?
need to recover conditional bid density $f(b \mid X, Z, n)$
- First-price: $v=b+\frac{1-F(b, X, Z, n)}{n-1 f(b X X, Z, n)}$

Existing Method inapplicable

- Existing method of assuming all bids are available
- Joint distribution of any three bids conditional on k

$$
f^{k}\left(b_{1}, b_{2}, b_{3}\right)=f^{k}\left(b_{1}\right) f^{k}\left(b_{2}\right) f^{k}\left(b_{3}\right) \quad(\text { cond indep })
$$

- The correlation of b_{1}, b_{2}, b_{3} reveals information on the UH - Intuition: b_{1}, b_{2}, b_{3} are independent without UH.
- With UH, the joint distribution reflects information on the UH
- The problem of observing only $\left\{r_{1}, r_{2}, r_{3}\right\}$ OSs $f_{r_{1}, r_{2}, r_{3}: n}^{k}\left(b_{1}, b_{2}, b_{3}\right) \neq f_{r_{1}: n}^{k}\left(b_{1}\right) f_{r_{2}: n}^{k}\left(b_{2}\right) f_{r_{3}: n}^{k}\left(b_{3}\right)$, the conditional independence fails with OSs.

Our Contributions

- Our main insight: use consecutive OSs of bids

$$
f_{r-2, r-1, r: n_{m}}^{k}\left(b_{1}, b_{2}, b_{3}\right)
$$

$=c \cdot \underbrace{f_{r-2: r-2}^{k}\left(b_{1}\right) f^{k}\left(b_{2}\right) f_{1: n-r+1}^{k}\left(b_{3}\right)}_{\text {separable }} \cdot \underbrace{1\left(b_{1} \leq b_{2} \leq b_{3}\right)}_{\text {correlation }}$
where $b_{r-2: n_{m}}=b_{1}, b_{r-1: n_{m}}=b_{2}, b_{r: n_{m}}=b_{3}$.

- Symmetric auctions
- observe competition: $\left\{X_{m}, Z_{m}, n_{m}, b_{r-2 n_{m}}, b_{r-1: n_{m}}, b_{r n_{m}}\right\}_{m}$
- two dimensional UH: $\left\{X_{m}, Z_{m}, \eta_{m}, b_{r-2 \cdot n_{m}}, b_{r-1: n_{m}}, b_{r n_{m}}\right\}_{m}$
- Asymmetric auctions

Identification Sketch
(1) Divide the support into three segments l (lower), m (middle), and h (high).

- To control the correlation $\mathbb{I}\left(b_{1} \leq b_{2} \leq b_{3}\right)$

Iden only uses variation of the $r-2$, r,
OSs w.r.t segment l, m, and h, respectively.
$\mathbb{I}\left(b_{1} \leq b_{2} \leq b_{3}\right)=1$ if $b_{1} \in l, b_{2} \in m, b_{3} \in h$.
(2 Matrix representation of the joint dist:

$$
\mathbb{J}_{\ell, m_{i^{\prime}}, h}=\mathbb{L} \mathbb{D}_{m_{i^{\prime}}} \mathbb{D}_{p} \mathbb{H}^{T}, \quad i^{\prime}=1,2
$$

where
$\mathbb{J}_{l, m_{i}, h} \equiv\left\{\int_{b_{i} \in l_{i, b_{2} \in m_{i}, b_{3} \in h_{j}}} f_{r-2, r-1, r: n}\left(b_{1}, b_{2}, b_{3}\right) d b_{1} d b_{2} d b_{3}\right\}_{i, j}$ $\mathbb{L} \equiv\left\{\int_{b_{1} \in l_{i}} G_{1}\left(f^{k}\left(b_{1}\right)\right) d b_{1}\right\}_{i, k}$,
$\mathbb{D}_{m_{i^{\prime}}} \equiv \operatorname{diag}\left\{\int_{b_{2} \in m_{i^{\prime}}} f^{k}\left(b_{2}\right) d b_{2}\right\}_{k}$

$$
\mathbb{D}_{p} \equiv \operatorname{diag}\left\{\lambda_{k}\right\}_{k}
$$

$$
\begin{aligned}
\mathbb{U}_{p} & =\operatorname{aiag}\left\{\lambda_{k}\right\} k \\
\mathbb{H} & \equiv\left\{\int_{b_{3} \in h_{j}} G_{2}\left(f^{k}\left(b_{3}\right)\right) d b_{3}\right\}_{j, k},
\end{aligned}
$$

3 Eigenvalue-eigenvector representation

$$
\mathbb{J}_{l, m_{1}, h} J_{l, m_{2}, h}^{-1}=\mathbb{L} \mathbb{D}_{m_{1} / m_{2}} \mathbb{L}^{-1}
$$

- With full rank assumption (\mathbb{L} and \mathbb{H})
© Iden \mathbb{L} up to permutation and scales.
- Iden $\mathbb{L}_{b}=G_{1}\left(f^{k}(b)\right), b \in l$, up to permutation and scales $\mathbb{J}_{b, m_{i}, h}=\mathbb{L}_{b} \mathbb{D}_{m_{i}, \mathbb{D}_{p} \mathbb{H}^{T}}$
- Iden $f^{k}(b), b \in l$, up to permutation and scales via the one-to-one mapping between $G_{1}\left(f^{k}(b)\right)$ and $f^{k}(b)$
© Identify \mathbb{H} up to permutation and scales
- Iden $f^{k}(b), b \in h$, up to permutation and scales via the one-to-one mapping between $G_{2}\left(f^{k}(b)\right)$ and $f^{k}(b)$.
©Iden $f^{k}(b), b \in m$, up to permutation and scales

Pin Down Scales

- Iden type k bid dist in segments l, m, h to scales:

$$
f^{k}(x)= \begin{cases}s_{l}^{k} \cdot f_{l}^{k}(x) & \text { if } b \in l=\left(-\infty, c_{1}\right] \\ s_{m}^{k} \cdot f_{m}^{k}(x) & \text { if } b \in m=\left[c_{1}, c_{2}\right] \\ s_{h}^{k} \cdot f_{h}^{k}(x) & \text { if } b \in h=\left[c_{2},+\infty\right)\end{cases}
$$

where $s_{l}^{k}, s_{m}^{k}, s_{h}^{k}$ are the unknown scales

- scale conditions:

$$
\begin{array}{r}
s_{l}^{k} \cdot f_{l}^{k}\left(c_{1}\right)=s_{m}^{k} \cdot f_{m}^{k}\left(c_{2}\right) \\
s_{m}^{k} \cdot f_{m}^{k}\left(c_{2}\right)=s_{h}^{k} \cdot f_{h}^{k}\left(c_{3}\right) \\
s_{l}^{k} \int_{b \in l} f_{l}^{k}(x) d x+s_{m}^{k} \int_{b \in m} f_{m}^{k}(x) d x+s_{h}^{k} \int_{b \in l} f_{h}^{k}(x) d x=1
\end{array}
$$

Conclusion

- Iden auctions with UH using only OS
- Takeaways:
- Separability, instead of Conditional indepen is the key
- Separability can be provided via Consecutiveness of OSs

Companion Papers

- "Identification of Auction Models Using Order Statistics,"
with Yao Luo, 2020
discrete, nonseparable UH
- use three consecutive OS of bids
"Order Statistics Approaches to Unobserved Heterogeneity in Auctions,"
with Yao Luo and Peijun Sang, 2020
continuous, nonseparable UH
- use three consecutive OS of bids
"Accounting for Unobserved Heterogeneity in Ascending
Auctions,
with Yao Luo, 2020
continuous, separable UH
- ratio of characteristic functions of OS identifies the parent distribution

References
[1] Francesco Decarolis.
Awarding price, contract performance, and bids screening: Evidence from
procurement auctions.

2] Tong Li and Quang Viong.
Nonparametric estimation of the measurement error model using multiple indicators.
Journal of Multivariate Ans
3] Yingyao Hu and Yuya Sasaki.
B) Yingyao Hu and Yuya Sasaki.
Identification of paired nonseparale meat
Econometric Theoory 33(4):955-979, 20
4) Philip A Haile, Han Hong, and Matthew Shum.

Nonparametric tests for common values at first-price sealed-bid auctions.
${ }^{2003 .}$ Working Paper.
[5] Eric Mbakop.
Identification of auctions with incomplete bid data in the presence of unobserved
heterogeneity.
2017.
2017.
Working Paper.
(6] Yingyao Hu, David McAdams, and Matthew Shum.
Identification of frist-price auctions with now-sheparable unobserved heterogeneity.
Journal of Econometrics $171(1) .186$
Jourral of Econometrics, 174(2):186-193, 2013.
7) Kyoo il Kim and Joonsuk Lee.
marametric estirnation and testing of the symmetric ipv framework with unknowir number of bidders.

