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Abstract

Capital adequacy ratios are a popular way of adding a resiliency buffer to financial firms’ balance sheets,

but every firm active in the lending market may react differently to the tightening of capital constraints. When

applied to financial institutions that are less risk-averse than banks, an increase in capital ratio requirements may

increase the level of risk in the lending system, as some institutions prioritise a search-for-yield at the expense of

risk management. Assuming a mean-variance preference structure on lenders, I calibrate risk-aversion parameters

and funding costs to each lenders in the syndicated loan market and run two counterfactual experiments to

assess policy effectiveness at tackling systemic risk. I show, using a structural model of syndicated lending, that

regulating non-banks leads them to take on more risk, therefore increasing the overall level of risk in the system,

even as the probability of default of the average borrower decreases, the tail risk increases. I also confirm that

simply modifying capital ratio on banks leads to a decrease in systemic risk, as expected and as implemented in

Basel III. This paper serves as a cautionary tale of pursuing blanket macro-prudential policies when the actors in

the market have heterogeneous business models and preferences.

1 Introduction

The organization of the financial system influences the type and level of risk that enters into the market. Different

actors with various incentives participate in the lending market, and these incentives often clash. Regulators fre-

quently change policies and requirements to address rising risks and shifting market conditions. However, it is still

unclear how regulations changes the strategic responses from the financial institutions to risk-taking. Indeed, more

stringent regulation could increase risk-taking behaviour of some institutions and be counterproductive. Similarly, it

could be the case that existing regulation still has the capacity to control the system’s risk by simply adjusting it at

the margin. Given the increasing size of the shadow banking sector, it becomes important to design regulation that

addresses the right problems and does not create more.
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It is with this special attention to the variety of financial institutions participating in the lending market that I

develop a structural model of syndicated lending where each institution allocates its funding resources according to

mean-variance preferences. Each institution endogenously chooses the level of risk it wants to undertake, which in

turn influences the level of risk borne by the lending system. I calibrate each individual’s risk aversion parameter and

cost of funding, which allows me to test the regulatory capital requirement’s effect on risk taking and systemic risk.

I find that a tightening of regulatory requirement at the intensive margin may reduce systemic risk, while increasing

requirements at the extensive margin, i.e., expanding the base of institutions subject to capital requirements, may

increase risk-taking and systemic risk.

I adapt a modelling approach from the portfolio optimization literature to the wholesale banking sector. This model

allows me to understand how different regulatory environments lead institutions with varying degree of risk aversion

to sort into risky or safe loans, and how that affects the lending system’s risk. Though each member of the syndicate

diversifies their portfolio and minimizes their own exposure to risk, the system as a whole has become riskier.

I conduct the study on the syndicated loan market data from Dealscan, that I pair with balance sheet information

from Compustat. I use available linking tables to map the Dealscan borrowers andlLead lenders to their Compustat

data. To link the rest of the syndicate members, I create my own matching algorithm using fuzzy matching.

I develop my analysis in three stages. First, I show results of reduced-form regressions summarizing the informational

content of the data supporting the theory of search for yield and portfolio convergence. Next, I present a basic static

structural model with two actors, a bank and a non-bank, and empirically test its predictions. Then, I extend

the basic model to a full structural model with many heterogeneous agents and obtain an equilibrium solution. I

empirically estimate the model and based on the results run a counterfactual analysis yielding policy predictions.

1.1 Institutional background

In 2010, the Basel Committee on Banking Supervision agreed to restrict the activities of banks with the aim of

reducing financial systemic risk. However, the regulations devised ended up creating incentives for other financial

institutions to fill in the gaps, expanding shadow banking activities. The emergent shadow banking sector has since

more than doubled in size, particularly in the lending market (Sierra, 2019). To fund the loans they underwrite,

banks increasingly rely on loan syndication to attract other financial institutions (Bédard-Pagé, 2019; Federal Reserve

Board, 2019). Loan syndication is a process in which a loan underwriter, when faced with a large borrowing request,

forms a syndicate of lenders, usually comprised of four or five other banks, that will each pledge parts of the loan

amount. The loan is then funded by these four or five institutions, each receiving their share of the returns and

bearing the credit risk proportionally.

The syndicated loan market attracted much attention in the aftermath of the financial crisis because of its use of

Collateralized Loan Obligations (CLOs), and many saw damning similarities with the infamously collapsed Collater-

alized Debt Obligations (CDOs). Though CLOs were found to have performed much better under the stresses that

doomed the CDOs (Ivashina and Scharfstein, 2010a, 2010b; Benmelech et al., 2012), syndicated loans forming the

CLOs have exhibited new forms of risks that current regulations do not fully address (Bruche et al., 2017). There
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is mounting evidence that the structure of the syndicate itself affects the level of risk (Lim et al., 2014; Cai et al.,

2018), but to the best of my knowledge no formal models have been proposed to study the consequences the increased

participation of shadow banks has on the risks in the lending market. Related studies focus on the dampening effect

of the shadow banking sector on monetary policy transmission (Wang et al., 2018), especially in the mortgage market

(Xiao, 2019; Buchak et al., 2020), but none specifically about the adverse effect of regulation on market composition

and risk.

Based on empirical research describing the functioning of the syndicated loan market, the two main reasons banks

engage in loan syndication are capital constraints and diversification concerns (Simons, 1993). This motivates

my model, featuring a mean-variance structure and a regulatory capital constraint in the balance sheet identity.

Moreover, with the advent of the standardized syndication contracts, non-bank participants are taking a particularly

larger role in the lending business (Armstrong, 2003). The benefits to syndication are mainly due to the higher-yield

one can extract from these loans when compared to the bond market, as well as a diversification into industries where

an institution would not have loan-origination capabilities. However, instead of diversification, the lending agents

could double-down on large loans and end up increasing the system’s vulnerability. Moreover, the risk spreading

across the different agents creates more complex linkages which are not guaranteed to reduce systemic risk.

Adrian and Ashcraft (2012) discusses evidence of regulatory arbitrage in which less-regulated non-banks would soak

up the risk that would normally be taken by banks. This can alleviate moral hazard problem since those smaller

agents are less likely to be too big to fail, but can create portfolio convergence and more complex linkages, harder

to disentangle in the event of a crisis. I model the banks as “feeding” the non-banks with loans by allowing them

to partake in syndicated deals with them, as discussed in Bord and Santos (2012). Based on each agent’s capital

space and risk appetite, they take a different portion of the loan, and choose loans that fit their optimal portfolio

allocation.

While corporate finance literature reveals that capital buffers align incentives of participants by giving them more

“skin-in-the-game” (Jensen and Meckling, 1976), similar evidence is mounting within the banking and lending lit-

erature (Admati and Hellwig, 2013). It is also theorized that increased capital regulation goes further and makes

lenders internalize some systemic risk externalities created by the network nature of banking linkages (Acharya,

2009; Poeschl and Zhang, 2018; Shu, 2020). The model I propose in this paper addresses the different possibilities

of increased regulation by differentiating risk-aversion preferences and endogenizing risk-taking behaviours.

The paper is organized as follows. Section 2 motivates the research question by presenting empirical studies pointing

to the need for a structural analysis of risks in lending market. Section 2.1 presents stylized facts and reduced-form

analyses to motivate the model development. Section 3 comprises of a simplified model used to lay out the basis

of the analysis and test a few comparative statics predictions. The main model and contribution of this paper are

presented in section 4 where a multi-agent structural model is presented, calibrated, and in section 5 where I conduct

counterfactuals and propose policy recommendations.
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2 Empirical Foundations

During periods of lower long-term interest rates, non-bank lenders take higher risk, while banks accommodate these

choices by originating riskier loans, as uncovered by an investigation of the risk taking behaviour in the US syndicated

loan market in recent years in Aramonte et al. (2019). This finding supports the view that, in low-interest rate times,

firms are searching for yield.

Much of the risk taking preferences of a lending syndicate is affected by the composition of said syndicate (Lim et al.,

2014). Not only do non-banks take more risks, but they also charge a higher premium for taking such risks. This

premium cannot be entirely explained by risk compensation, since similar bank-only facilities are priced relatively

lower. The price is also much higher when more aggressive hedge funds or private equity funds are members of the

syndicate. This suggests that the non-banks hold enough market power to alter the pricing relationship. Underwriting

banks are incentivized to syndicate with other banks first, as banks usually require lower spreads and can get capital

cheaper. However, when capital is scarce due to tight macroeconomic conditions or regulations or the borrowing

firm is in dire need of financing, the underwriter is forced to raise the spread to attract non-bank investors. The

implication is that non-bank institutions provide capital when banks cannot, i.e., when capital is restricted or when

the borrowing firm is constrained. To avoid unobserved biases, the authors compare pricing within the same loan,

i.e., between the different facilities among the same deal package.

Though the previous two studies show that the composition of the syndicate influences loan supply when capital

is in higher demand conditions, Ivashina and Scharfstein (2010a, 2010b) add the caveat that loan supply is also

affected by negative liquidity shocks and capital shocks to lenders. Syndication allows credit to expand because each

bank holds less of a loan on its balance sheet and is able to diversify and extend more credit to more borrowers.

Moreover, members of the syndicate can be institutional investors, so more funding opportunities are available to

fund the loans, as opposed to only traditional banks activities (such as deposits). However, as a result, over a credit

cycle, three shocks can amplify the magnitude of the cycle: shocks to borrowers’ collateral, to banks’ capital, or to

investors’ sentiment. These shocks force the Lead banks to hold larger shares of the loan, which then are less willing

to expand more loans.

The shadow bank sector can also be thought of as competing for the resources of the investors. A simple structural

model of such competition is presented in Xiao (2019), where operating costs and regulations requirements are lower

for shadow banks, though they do not have access to the customers as easily as banks due to consumer preference

for convenience from the banks’ network and ATMs, for example. His findings point towards a shift of market power

and deposits from commercial banks to shadow banks, especially during times of monetary tightening. Such shift

from the insured to uninsured financial sector leads to amplification of systemic risk.

The model I present in the next sections builds upon the aforementioned empirical findings of search-for-yield and

syndication behaviours, while being inspired by the shadow banking models developed by Wang et al. (2018) and

Buchak et al. (2020). However, particular attention is given to risk management and reaction to regulations as

opposed to monetary policy effects.
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2.1 Data

The main dataset used is the Dealscan data, which contains information on the syndicated loan market. Dealscan

includes data on the issuance of the loan, namely the date of issuance, the borrower’s name, industry (SIC), the

amount of the loan, the maturity, the price, as well as details on the lenders like the name of the Lead arranger, of

the syndicate participants, the type of institutions each lender is classified as, and in some cases the share of the loan

they take on their own balance sheet.

In order to analyse the quality and risks of these loans, I gather balance sheet information on both the borrowers

and the lenders from Compustat. I use existing matching table to match the unique company ID from Dealscan to

the GVKEY identifier from Compustat. I match the borrowers using linking tables from Chava and Roberts (2008),

and I match the Lead arrangers using linking tables from Schwert (2018). However, no tables existed to match the

syndicate members, therefore, I developed my own matching table using a fuzzy matching algorithm that I then

manually verified to ensure data quality.

2.2 Search for yield

Before describing the model to analyse the risk-taking response to regulations, I present empirical stylized facts that

justify the modelling approach taken in section 4. As the main innovation of the model is to expose how financial

institutions with heterogeneous risk aversions use syndication to give themselves exposure to different risk-levels, the

main stylized fact I present is the type of risk-seeking behaviour that differs between banks and non-banks financial

institutions. I show that non-banks exhibit more of a search-for-yield behaviour when their outside options yields

are low, indicative of a smaller risk-aversion preference. When scaled up at the market level, this search-for-yield

behaviour will be the key driver in increasing systemic risk, as portfolios converge and correlations spike.

After merging the Compustat data with the Dealscan data, I analyse which types of firms borrow on the syndicated

loan market. I infer the riskiness of a borrower from a Distance to Default measure based on the Asset to Liability

ratio. After computing the borrower-specific ratio for each of the matched sample, I compute the average A/L for

borrowers who access their loan through a syndicate only containing banks, and those containing a non-bank. I

call the former category Bank Funded, and the latter Market Funded. Figure 1 shows a clear distinction between

borrowers based on who lends to them. Non-banks participate in syndicates that tend to have borrowers with lower

asset to liability ratios.

Figure 1 also reveals certain patterns that have been shown elsewhere in the literature and that I explore later in this

paper. First, Bank-funded and Market-Funded loans differ considerably from 1995 up to 2007, where they start to

move more in lock-step. The Market-funded loans get increasingly “better” quality borrowers while the Bank-funded

ones decrease in quality. This could be due to a learning-by-doing pattern from the non-banks, whose market share

sharply increased in the early 1990s and stabilized in the mid-2000s, as shown in Figure 2. Second, after an increase

in borrower quality from 2007 to 2012, both bank-funded and market-funded lending started to lower the quality

of their borrowers, at the onset of the European debt crisis and the low-yield environment it created. This can be
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Figure 1: Average Distance to Default by funding source

explained by a search-for-yield behaviour from all parties. These two facts serve as guidance for the development of

the model from section 3.

A simple regression can further quantify the qualitative features of Figure 1, corroborating the stylized facts that

have been described elsewhere in the literature, e.g., in Aramonte et al. (2019). In my case, Distance to Default

serves as a proxy for risk. I estimate the following equation:

ln

(
At−1
Lt−1

)
= α+ βT10Y + γType + ε (1)

where A and L are the borrower’s total assets and liabilities1, lagged one quarter from the time of the loan, and T10Y

is the U.S. Treasury 10 year bond quarterly average yield, and Type is a dummy for the lender’s type, indicating

a 1 if the syndicate includes a non-bank and 0 otherwise. Lags are included to avoid simultaneity problems due

to the timing of loan issuance and decision making. Table 1 shows similar results as reported in previous studies.

A decrease in treasury yield leads to a decrease in distance to default, hence an increase in probability of default.

Moreover, Market-Funded loans tend to have a higher probability of default than fully bank-funded ones, as inferred

by the negative coefficient on “Type: Market Funded”. This provides evidence of the search-for-yield stylized fact in

my data.

2.3 Portfolio convergence and risk

To test the hypothesis that converging portfolio structure of banks and non-banks stemming from search-to-yield

behaviour is in turn associated with increased market risk, I measured portfolio distance, inspired by Cai et al. (2018).

Its purpose is to understand how much of the lending by one institution is made to similar borrowers as another

1. Balance sheet data from Compustat is only reported quarterly

6



Figure 2: Market Share of Market-Funded Loans

Table 1: Search-for-Yield and Market-funding

ln
(
At−1

Lt−1

)
T10Yt−2 0.004∗∗∗

(0.001)

Type: Market Funded −0.100∗∗∗

(0.004)

Constant 0.592∗∗∗

(0.007)

Observations 57,767

R2 0.011

Residual Std. Error 0.483 (df = 57764)

F Statistic 315.362∗∗∗ (df = 2; 57764)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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institution. I first create a monthly profile of each lender’s portfolio by its allocation of loans to different industries.

Aggregating the previous 12-month period, we can get a relative measure of which industry is being favoured, and

since most loans are short-term loans, this 12-months period is a good proxy for the industry-weights of a portfolio

as a whole. The distance between each lender is then calculated as the Euclidian distance in the space of industries.

I aggregate a monthly average distance based on funding type and regress this distance on the treasury yield to

obtain Table 2. As the treasury yield decreases, the portfolios of banks tend to diverge from that of the syndicate

Lead underwriters, indicated by the negative coefficient. This divergence means that the banking sector gets more

diversified as each bank reaches for a wider arrays of borrowers. However, the positive coefficient on the treasury

yield with respect to market funded syndicates shows that non-banks increase their reliance on syndicates during

times of low yields. Their portfolio gets more similar to Lead underwriters’ portfolios, causing this decrease in the

distance measure. The different reaction observed between banks and non-banks to low-yield environment indicates a

different solution to their portfolio optimization problem. I therefore hypothesize that the heterogeneity in preferences

indicated by the different reaction to changing financial environment will be exacerbated by prudential regulations.

Table 2: Yield and Portfolio convergence

Dependent variable:

Bank Funded Distance Mkt Funded Distance

T10Y −0.002∗∗∗ 0.008∗∗∗

(0.001) (0.002)

Constant 0.141∗∗∗ 0.125∗∗∗

(0.004) (0.007)

Observations 252 252

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The two empirical facts discussed above, i.e. search for yield and portfolio convergence, drive the model development

of Sections 3 and 4. First, the search for yield behaviour is reflected by financial institutions maximizing their

expected returns. Second, the portfolio convergence results indicates that each financial institution is governed

by heterogeneous preferences, which is modelled by different risk aversion parameters. The structural model with

heterogeneous agents presented in Section 4 allows financial institutions to differ in their risk appetite, while seeking

a mean-variance optimized portfolio. This heterogeneity allows a flexible reaction to capital constraints and models

how financial institutions react to changes in regulations. In Section 5 I test two main types of regulatory changes,

namely at the intensive and extensive margins.

At the intensive margin, I want to verify how banks will react to an increase in the required capital buffer. The

working hypothesis is that as they find capital more expensive and since they are more risk-averse, they will increase

prudence and the system’s risk will decrease. On the other hand, at the extensive margin, I will extend the regulatory

requirement of banks onto non-banks and constrain the non-banks’ balance sheets to respect the same capital ratios

as the banks. This blanket regulation would be justified if banks and non-banks were to react similarly to a higher
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cost of capital. However, as we have seen in this section, non-banks tend to increase their search for yield and might

be more risk takers than banks. This is what the calibration exercise of section 4.2 will reveal, and the results on

systemic risk will show that blanket, uniform regulation is maladapted to reduce risk in the presence of non-banks

in the lending system.

3 Basic Structural Model

The model presented in this section is intended to highlight the distinction that syndication makes to lending

and portfolio allocation decisions when financial institutions differ in their risk tolerance. This basic static model

comprises 2 actors, one Lead underwriter L, and one syndicate member M , coming together to lend to two potential

borrowers to compose their portfolio. Each lender has mean-variance preferences over their allocation, that only

differ in their risk aversion parameter γj , as shown in equation (2).

The Lead underwriter L is seeking to maximize expected returns and minimize the variance of its portfolio by

controlling two variables, namely the price of the loan ri and the weights it keep on its balance sheet wi,L. However,

in doing so, it must respect two conditions. First, each loan must be fully financed, so the sum of weights across

syndicate members j ∈ {L,M} must add up to 1. Second, the amount of loans the Lead owns on its balance

sheet must not exceed regulatory capital constraints. These capital constraints are measured as a fraction e of the

institution’s equity E. Therefore, the sum of loans kept on balance sheet across all borrowers i ∈ {1, 2} must not

exceed El

e , as described in equation (3). The syndicate memberM is solving a similar problem, albeit without control

over ri and without the constraint (4) of ensuring full funding of the loan sizes.

max
ri,wi,L

E

[∑
i

wi,LBir̃i

]
− 1

2
γj Var

[∑
i

wi,LBir̃i

]
(2)

s.t.
∑
i

wi,LBi ≤
EL
e

(3)

∑
j

wi,j = 1, ∀ i (4)

The return on the loan r̃ is a function of the risk of default of the borrower λi, which is itself a parameter of a

Bernoulli random variable. I define r̃i = (1 − θλ̃i)ri, where ri is the rate chosen by the Lead underwriter. The

parameter θ is the recovery rate of the defaulted loan, and λ̃i is the Bernoulli(λi) random variable representing

default, with mean λi and variance λi(1− λi).

The Lead underwriter can also choose the price it charges and therefore has an expanded maximization problem

that I solve in two parts: first, the Lead underwriter chooses the price, then chooses the weights to allocate within

its portfolio. The Lead underwriter must also worry about fulfilling the entirety of the loan size Bi, something that

does not enter the syndicate member’s problem. The syndicate member, labeled by subscript M , therefore solves a

mostly identical problem as the Lead underwriter, except it does not include the choice of price r and the constraint

of fulfilling the entire loan demand Bi.
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Assuming a simple environment of only two lenders, two borrowers problem, I can present more explicitly the problem

as follows. The Lead underwriter is maximising over mean and variance by choosing a price ri and portfolio weights

wi,L

max
ri,wi,M

E[w1,LB1(1− θλ̃1)r1 + w2,LB2(1− θλ̃2)r2]

− 1

2
γM Var[w1,LB1(1− θλ̃1)r1 + w2,LB2(1− θλ̃2)r2] (5)

s.t. w1,LB1 + w2,LB2 ≤
EL
e

(6)

w1,L + w1,M = 1, & w2,L + w2,M = 1 (7)

wi,j ≥ 0 ∀i, j (8)

The other lending financial institution can then choose to participate in the syndicate as a member, and solve the

following maximisation problem

max
wi,M

E[w1,MB1(1− θλ̃1)r1 + w2,MB2(1− θλ̃2)r2]

− 1

2
γM Var[w1,MB1(1− θλ̃1)r1 + w2,MB2(1− θλ̃2)r2] (9)

s.t. w1,MB1 + w2,MB2 ≤
EM
e
, wi,M ≥ 0 ∀i (10)

3.1 Solution Concepts

The previous optimization problems can be solved analytically to yield the financial institutions’ decision functions.

As the Lead’s decisions will depend on the reaction from the member, I start by presenting the solution for the

member’s problem, then the Lead’s portfolio allocation problem, and finally the Lead’s pricing choice.

3.1.1 Member’s Solution Concept

When the member’s capital ratio constraint is binding, i.e., when the member is subject to regulation, its optimization

problem yields the following weight:

w1,M =
(1− θλ1)r1 − (1− θλ2)r2 + EM

e γMλ2(1− λ2)θ2r22

B1γM [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]
(11)

w2,M =
(1− θλ2)r2 − (1− θλ1)r1 + EM

e γMλ1(1− λ1)θ2r21

B2γM [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]
. (12)

The size of funds allocated to one borrower can therefore be interpreted as containing two parts. The first one is the

relative gain, scaled by the risk aversion parameter, in Sharpe ratio by allocating more balance sheet space to one

borrower than to the other. The second component is the effect of the relative variance of the alternative investment
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opportunity, scaled by the potential balance sheet space.

w1,M =
1

B1

 1

γM

E[r̃1 − r̃2]

Var(r̃1 + r̃2)︸ ︷︷ ︸
Rel. Sharpe Ratio

+
EM
e

Var(r̃2)

Var(r̃1 + r̃2)︸ ︷︷ ︸
Relative Variance

 (13)

The solution for w2,M is symmetric. Therefore, the syndicate member solves a relatively standard investment problem,

only with the added balance sheet’s capital ratio constraint.

In case the member is not regulated as tightly as banks, or has extra capital space, the constraint is non-binding,

i.e. ν = 0, and the weight on each asset simply follows that asset’s Sharpe ratio, scaled by the lender’s risk aversion.

w1,M =
1

B1

 1

γM

E[r̃1 − r̃2]

Var(r̃1 + r̃2)︸ ︷︷ ︸
Rel. Sharpe Ratio

 (14)

The solution for w2,M is symmetric.

3.1.2 Lead’s Solution Concept

Now, once the Lead underwriter solves for the allocation strategy for the syndicate’s member, it can solve its own

maximisation problem. In order to make the solution analytically tractable, I assume that the Lead first chooses the

price which would clear the market, then finds its optimal allocation.

Solving the problem backwards, as the Lead’s choice of weights will also solve the asset allocation problem, with the

added constraint of ensuring that the loan is fully funded. The Lagrangian for this problem is expressed as

max
w1,L,w2,L

E[w1,LB1(1− θλ̃1)r1 + w2,LB2(1− θλ̃2)r2]− 1

2
γL Var[w1,LB1(1− θλ̃1)r1 + w2,LB2(1− θλ̃2)r2]

− ν
(
w1,LB1 + w2,LB2 −

EL
e

)
− η1(w1,L + w1,M − 1)− η2(w2,L + w2,M − 1) (15)

In practice, the Lead would never issue a loan in which it cannot fully fulfill the loan amount, and as long as the loans

required by the borrowers do not exceed the total capital space available by both lenders, i.e., B1 +B2 ≤ EL

e + EM

e ,

the two constraints on η1 and η2 are always satisfied, and never as a hard limit. Therefore, the Lead’s allocation can

be interpreted in the same way as the Member’s decision in equation (13) as consisting of a relative Sharpe ratio and

a relative variance. However, the main difference is that the Lead now must take into account the member’s choices

and the difference between the potential investments’ variances.

Finally, the Lead chooses the price of the loan that will Lead the member to participate with the appropriate amount.

Since the Lead’s problem in this two lenders problem is solvable with respect to the member’s choice, one could derive

the FOCs with respect to the price using the weights as functions. However, for the sake of presentation, it is useful

to find the closed form solution for the price conditional on the weights. This will be the closest solution concept to

the multi-agent, large-scale problem of section 4.
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The solution of the optimization problem (15) is thus

ri =
1

γL

E
[
1− θλ̃

]
wi,LBiθ2Var

(
λ̃
) (16)

Recall that wi,LBi is the quantity of funds provided by lender L to borrower i, so the Lead actually chooses the

cashflow of income riwi,LBi that balances the expected recovery rate of the loan with the variance of a potential

default, scaled by the lender’s aversion to that variance.

3.2 Model’s intuition

The main observation to make coming from this simple model is the link between the Lead and the Member’s

decision. While the member takes into account its own portfolio, the Lead must balance the fulfillment of the loans

with the desire of the member to allocate funds to this loan. I include in appendix B the Lead’s allocation weights

when incorporating the Member’s.

A key fact to gather from equations (13) and (14) is that members with lower risk aversion will allocate more funds

into loans yielding a larger return, regardless of the variance difference with the alternative asset. Moreover, when

a lender reaches its capital ratio constraint, which can be cause by a tightening of the ratio or a broadening of the

coverage of regulated institutions, the allocated weight now takes into account the limited capital space. We can see

that due to this limited space and desire for diversification, a lender could go from a null weight in an asset, due to

a negative relative Sharpe ratio, to a positive weight, due to the relative variance and capital space consideration.

This allocation’s constraint will drive the share of risky borrowers that will get loans when regulatory oversight

expands to all lenders. Now that capital is more expensive, those with lower risk aversion will then increase their

participation in risky assets in order to compensate the loss of revenue and diversification they were able to get

when they did not have such restriction. This increase in cost of capital, though encouraging diversification at the

individual lender’s level, will increase the amount of risk borne by the system as a whole. This effect will be even

more exacerbated in the full model as I introduce different funding costs for banks and non-banks, which will eat

much of that revenue generation and encourage non-banks to take even more aggressive stances when constrained.

4 Multi-agent Model

One of the main feature of syndication is the ability of the Lead bank to attract multiple other financial institutions

to participate in the loan. It is therefore an important component to add to the previously presented model more

than one potential syndicate member available. Assume that the Lead bank, upon receiving a loan request from a

borrower, may now call on a smaller bank, or a non-bank financial institution to participate in the loan syndication

process. The following model is inspired by Buchak et al. (2020), Xiao (2019), and Wang et al. (2018).

Syndication offers benefits to each of the participating actors, be it the Lead bank, the member bank, or the

borrower itself. The main drivers of syndication for lenders is diversification and capital constraints (Simons, 1993).

12



Syndication allows the Lead bank to collect extra fees, compete with bond issuance market, and maintain a full

service for a large client, especially when such client is considering taking a large debt and faces the loan or the

bond route (Armstrong, 2003). For borrowers, having a bank syndicate its loan allows to keep a relationship with

a known underwriter and keep administration costs low due to monitoring. A syndicated loan allows to take on a

large debt without going through the lengthy process of a bond issuance. The member banks that would join in a

syndication would benefit from reduced origination costs, since much of the legwork is done by the Lead bank, but

most importantly, syndication may allow member banks to participate in a market segment in which they have a thin

presence, either due to their different geographic footprint or industry penetration than from the Lead bank (Bruche

et al., 2017). Non-bank financial institutions also benefit from joining a lending syndicate as syndication opens up

a different type of asset class that has a different correlation with the rest of the market while offering relatively

high yields. It allows institutional investors to further diversify their portfolio, and many have argued that corporate

syndicated loans exhibit a lower volatility and a better hedge against interest rate risk, while offering higher recovery

rate than bonds in the event of a default since loans are usually senior to bonds (Bédard-Pagé, 2019). Finally, for

all lenders involved, syndication is beneficial due to the increased information taken into account by credit rating

agencies to provide credit risk assessments. These agencies usually take into consideration the probability of default

(PD) as well as the loss given default (LGD) when assessing syndicated credit products, whereas most bonds are

rated by simply considering the probability of default and omitting the loss given default (Król and Williams, 2019).

Therefore, when developing the objective functions of the different participants, I will be modelling separately the

Borrowers, the Lead Agents, and the Syndicate Members. The borrower approaches the Lead of its choice, based on

price, size possible, and relationship. The borrower can chose between taking no loan at no price but no size, issuing

a bond at a high price and high size, or among all the potential Lead banks, each with a differentiated loan product.

Once the Lead Agent is approached to make a loan, it gets fees and the rate on the loan, but must expend some

origination costs for the setup. The Lead can then choose how to make the loan. It can either refuse to give the

loan, lend in a bilateral agreement where it is the sole lender, or syndicate the loan and find members to participate

in the loan. It then chooses how much of the loan will be syndicated and which members to approach, based on

the required rate of return that the members would need to be incentivized to participate, as well as a relationship

component. This relationship preference at the syndicate level is justified by the history of the syndication lending

business, where most loans used to be done as Club Deals, where a select number of large members would syndicate

as lending clubs based heavily on relationship. Though nowadays most syndication follows a transactional system,

there are still anecdotes of traders and structurers contacting a preferred list of potential members first based on past

deals and expected future deals first, then expanding the calls to others if not enough participants have been secured

to fund the loan (B. Nordin, personal communication, August 23, 2019). Though the profession is increasingly

streamlined, finance remains a personal business where contacts matter and relationships are groomed with care.

Finally, the members will be approached by the Lead agents to participate in a syndication. They then make a

decision based on a diversification optimization problem where they can benefit from the diversification that the

syndicated loan might offer to their portfolio. They also consider the expected return of the loan, as well as the PD

and LGD. They therefore choose between a loan and an outside option in High yield bonds with a lower recovery
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rate. They benefit from a reduced origination cost, but must still perform due diligence so face a small origination

cost.

4.1 Model

4.1.1 Borrowers

Borrowers of different risk levels make loan requests of size Bi to banks the entirety of which must be financed for

the loan to be issued. They choose the lender based on the rate offered, but also an unobserved convenience yield

parameter and an idiosyncratic utility shock.

uij = −αiBirj(λi)︸ ︷︷ ︸
loan rate

+ βixij︸ ︷︷ ︸
Relationship

+ ξj︸︷︷︸
Convenience

+ εij︸︷︷︸
Idiosyncratic

(17)

where i is borrower specific, j is Lead bank specific. The parameter βi captures the relationship effect on borrower

i of loans with a Lead j indicated by xij . The error term εij is a mean-zero pair-specific idiosyncratic utility shock

following an extreme value distribution of type one with cumulative distribution F (ε) = exp{exp(−ε)}.

The choice set for the borrowers is {0, 1, . . . , J, J + 1}, where 0 represents cash, and J + 1 is bond financing, and the

other are differentiated lenders. The parameter α represent the sensitivity to the lending rate for borrower of type

i. Each borrower arrives in the market with an exogenously determined probability of default λi. This borrower’s

problem was not considered in the basic model of Section 3, where there was only one Lead and one Member, with

the Lead choosing over two borrowers. In the multi-agents context, the borrowers’ optimization will define the set of

lenders that become Lead agents, described in the next part of the model below. It’s optimization takes the following

form:

u∗i = max
j
uij(Bi, rj , xi,j , ξi) (18)

4.1.2 Lead agents

I assume Lead lenders are risk-averse portfolio optimizers that must choose assets among the borrowers that approach

them, or allocate their capital in either a risk-free bond or a high-yield bond. The lenders must always adhere to

the balance sheet identity of equating their assets with their liabilities plus deposits, and certain lenders will face a

capital ratio regulatory requirement. This capital ratio requirement, denoted ej , is either 0 in the case of non-banks,

or the ratio determined by the Basel Accords, currently set at 8% (Basel Comittee on Banking Supervision, 2019).

The problem follows a classic Markowitz (1952) portfolio optimization problem where the Lead’s universe of assets

that it has access to is the borrowing requests that come its way from the borrowers plus a risk-free bond and a

high-yield bond. The main difference from Markowitz’s Modern Portfolio Theory comes from the constraints put on

the portfolio optimization, namely the balance sheet identity, the capital ratio requirements, and financing costs.

Indeed, financing the loans is costly. Financing can be done by either using the bank’s balance sheet or by syndicating
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the loan. Syndicating the loan “costs” the lender the potential returns it would have earned on a larger-sized loan,

but it doesn’t use balance sheet capital space. Funding the loans using the institution’s own balance sheet is limited

by the regulatory limit ratio e of equity Ej , therefore implying an opportunity cost to each dollar funded by the

lender’s own balance sheet.

In order to fund using syndication, the loan must be attractive enough for outside financial institutions to participate

in the syndicate as members. To make the loan syndicate more attractive, the Lead must offer higher return rates,

which might hamper its demand share in the underwriting phase. This interplay between attractiveness of the loan

on both sides of the market (corporate borrowers and syndicate members) therefore also implies a shadow price of

syndication.

To use its balance sheet, a lender can either use equity funding or liability funding. The two types of liability funding

allowed are either through market liabilities, obtained by non-reservable borrowing, or through deposit liabilities,

obtained by un-modelled demand deposits. Banks that have access to deposits can use deposits to expand the

asset-side of their balance sheet at no cost.

On the other hand, funding the loans using market liabilities in the form of non-reservable borrowing is costly. The

costs consist of the price to pay on the borrowing, as well as market risks and credit risks. Following Kashyap and

Stein (1995), the market funding cost is modeled as an increasing function of the amount raised above r0 the risk-free

rate, which can be proxied by the Federal Funds rate. I incorporate the opportunity costs of capital space mentioned

above into a financing cost function g(·) defined below as part of the Lead lender’s optimization problem.

The lenders receive benefits from the loans from their expected returns and some client relationship benefit. The

total costs they incur consist of origination costs, which will differ between Lead and member agents, and of financing

costs, which will differ between banks and non-banks.

There are I borrowers, and J Lead lenders. Let B be the vector of borrower’s loan requests dollar amount. Let the

vector wj = (w0,j , w1,j , . . . , wI+1,j)
′ the shares of each asset i that the Lead bank j keeps on its balance sheet. Asset

i = 0 represents the risk-free bond, and asset i = I+1 represents the high-yield bond. Define the dollar amount kept

by Lead j on its balance sheet as Lj = wj ·B, the dot product of the vector of weights with the vector of borrowers’

loan requests and other two available assets. Let Aj be the set of i ∈ {1, . . . , I} that lender j lends to. This set will

be determined by the borrowers’ choice of section 4.1.1. Let R̃j = Rj · (1 − θΛ) be the vector of realized return,

which is composed of lending rates Rj set by firm j, a random shock indicating default, Λ, and the loss given default

of the loans θ. The balance sheet’s asset side is composed of the loans and bonds weighted by the lender, and the

liability side is composed of deposits Dj and non-reservable funds Nj , as well as equity Ej .
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The utility of lender j is represented by the following equation with constraints:

πj = E[L′jR̃j ]︸ ︷︷ ︸
Expected Returns

−γj Var[L′jR̃j ]︸ ︷︷ ︸
Risk Aversion

−g(Nj , Dj , Ej ,wj ,B, r0)︸ ︷︷ ︸
Financing Costs

−ζjB′~1{i ∈ Aj}︸ ︷︷ ︸
Origination Costs

+β′j~1{i ∈ Aj}︸ ︷︷ ︸
Relationship Benefits

(19)

s.t. L′j1 = Nj +Dj + Ej ← Balance sheet identity (20)

Ej ≥ ej(L
′
j1− L0)← Capital ratio requirement (21)∑

j

wi,j = 1, ∀i ∈ Aj ← Full Loan Funding (22)

wi,j ≥ 0, ∀i, j ← No Loan Short-Sell (23)

The returns are non-deterministic because even though the Lead sets the lending rate, there is a probability of default

associated with each borrower. So Lead j sets the rates Rj but the realized return R̃j depends on the realization of

the vector of Bernoulli random variables Λ representing the borrowers’ default realization.

I specify a functional form for the cost function g(·), inspired by the forms from Buchak et al. (2020) and Wang

et al. (2018) as follows:

g(Nj , Dj , Ej ,wj ,B, r0) = r0 +

[
Ej

L′j1−Dj
− e

]−φ
×N2

j (24)

where Nj is non-reservable borrowing, and Dj is the level of deposits, taken here as exogenous to the model.

Note that the basic model presented in section 3 is a special case of the above model, with I = 2, J = 2, and where

financing and origination costs, as well as potential relationship benefits, are set to zero. Not that the basic model is

much closer to Markowitz (1952), but still include the significant difference of considering the syndication fulfillment

problem, as well as the capital adequacy ratio.

The Lead lender then solves the above system of equations by maximizing over loan prices Rj and asset allocation

wj .

π∗j = max
Rj ,wj

πj(Rj ,wj , Nj , Dj , Ej ,B) (25)

4.1.3 Members

The members have a similar optimization problem, but are not able to choose the return rate, and do not have access

to the benefits of leading the syndicate. Their origination costs will however be reduced and can be proportional to

the amount invested, since they might want to perform more due diligence if they invest large amounts, but smaller

ones if they have marginal involvement in the loan. They choose the amount of funds they want to allocate to each

loan based on the composite vector of offered return rates R+ =
∑
jRj . Since only one Lead bank would be offering

a positive rate per borrower, this vector R+ should consist of the risk-free rate, and all the offered rates by all the

leads to all the borrowers receiving a loan, and the rate of the high-yield bond.

The syndication member’s problem is stated below. There are K Member lenders active on the market. Note the

notation for the on-balance sheet share of a loan as Sk = wkB to clearly differentiate between assets taken as a

Lead j and those taken as a Member k of a syndicate.
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πk = E[S′kR̃
+]︸ ︷︷ ︸

Expected Returns

−γk Var[S′kR̃
+]︸ ︷︷ ︸

Risk Aversion

−g(Ek,Sk,B, r0)︸ ︷︷ ︸
Financing

−ζkS′k1︸ ︷︷ ︸
Origination

(26)

s.t. S′k1 = Nk + Ek +Dk ← Balance sheet identity (27)

and Ek ≥ e(S′k1− S0)← Capital ratio requirement (28)

wi,k ≥ 0, ∀i, k ← No Loan Short-Sell (29)

Note that both leads and members can be banks or non-banks, the only difference will be in their level of capital

requirement and in their access to deposits on their balance sheet or not.

The Member lender then solves the above system of equations by maximizing over asset allocation wk.

π∗k = max
wk

πk(wk, Nk, Dk, Ek, R̃
+,B) (30)

4.1.4 Equilibrium

In the first step, borrowers maximize utility by choosing the best Lead j for their loan Li.

Borrower problem: max
j
− αiBirj + βixij + ξj + εij (31)

and Lead optimize their portfolio by setting the interest rates for their potential customers, taking costs as given.

Lead problem 1: max
Rj

E[L′jR̃j ]− γj Var[L′jR̃j ]− g(Ej ,Lj ,B, r0)− ζjB′~1{i ∈ Aj}+ β′j~1{i ∈ Aj} (32)

In the second step, leads optimize their portfolio weights to account for the financing costs, taking the interest rates

offered to their customers as given

Lead problem 2: max
Lj

E[L′jR̃j ]− γj Var[L′jR̃j ]− g(Ej ,Lj ,B, r0)− ζjB′~1{i ∈ Aj}+ β′j~1{i ∈ Aj} (33)

and the members optimize their portfolio based on the rate offered by each loan and the leftover loan to be financed.

Whatever is not picked up by members must be financed externally, increasing the costs to the Lead bank.

Finally, the members solve the optimization problem by choosing how much they want to allocate to each asset in

the universe available. This problem is akin to a Markowitz problem since they only choose how to split a predefined

budget.

Member problem: max
Sk

E[S′kR̃
+]− γk Var[S′kR̃

+]− g(Ek,Sk,B, r0)− ζkS′k1 (34)

s.t. S′k1 = Ek +Nk +Dk, and S′k1 ≤
Ek
e

(35)

4.1.5 Solution concept using a quadratic cost function

I assume that the cost of funding increases quadratically with the amount of non-reservable borrowing made, as in

Wang et al. (2018), g(·) = 1
2φNN

2. In the following subsection, I translate the matrix notation in the summation

notation for ease of derivation.
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To solve the model presented above, I start with the Members’ decision strategy, since their strategy will be taken into

consideration by the Lead when it makes its allocation and pricing decision. I then follow with the Lead’s allocation

decision, taken the prices as given, since this decision comes after the price is accepted by the borrower and thus

the pricing function considers the allocation strategy already. The pricing function incorporates the previous two

decision rules. Finally, the borrowers’ solutions are solved last, once I know how each other decision will be impacted

by their choice.

Members

max
Si,k

∑
i

Si,kmi − γk
∑
h

∑
i

Sh,kSi,kσ
r
hσ

r
i ρh,i −

1

2
φN (

∑
i

Si,k − Ek −Dk)2 − ζk
∑
i

Si,k − ν(
∑
i

Si,k −
Ek
e

) (36)

and the Karush-Kuhn-Tucker conditions become

mi − γkSi,kσri
2 − γk

∑
h6=i

Sh,kσ
r
hσ

r
i ρh,i − φN (

∑
h

Sh,k − Ek −Dk)− ζk − ν = 0, ∀i, k (37)

ν(
∑
i

Si,k −
Ek
e

) = 0, ∀k (38)

Now if the condition is slack, this means ν = 0 and the solution is

Si,k =
1

2σri
2γk + φN

mr
i + φN (Ek +Dk −

∑
h 6=k

Sh,k)− γk
∑
h6=i

Sh,kσ
r
hσ

r
i ρh,i − ζk

 (39)

but if the condition is binding, we get

Si,k =
1

2σri
2γk

mr
i − γk

∑
h6=i

Sh,kσ
r
hσ

r
i ρh,i −m0

− 1

2σr2i

[
S0,kσ

2
0 +

∑
h

Sh,kσ
r
hσ0ρh,0

]
(40)

where i = 0 is the risk-free asset. We obtain this form by solving the FOC for ν and equating the solution for any

i ∈ {1, . . . , N} to the risk-free security.

Furthermore, if we assume that the risk free asset is cash and has no returns nor variance, we can get the simplified

form

Si,k =
1

2σri
2γk

mr
i − γk

∑
h 6=i

Sh,kσ
r
hσ

r
i ρh,i

 (41)

Lead Share The Lead share problem will be very similar to the member problem except for the costs associated

with the origination and the relationship benefits. Since the Lead has to bear the costs for the entire underwriting,

no matter what portion of the loan it keeps on its books, the origination cost ζj is not impacted by the size of the

share Lj . Similarly, since the Lead bank gets the relationship benefit not matter how much of the loan it keeps, βj

is not affected by Lj . Therefore, the maximization problem looks similar to the members’. The Lead obtains the

same form of share choice as the member shown above.

If the condition is slack, this means ν = 0 and the solution is

Li,j =
1

2σri
2γj + φN

mr
i + φN (Ej +Dj −

∑
h6=

Lh,j)− γj
∑
h6=i

Lh,jσ
r
hσ

r
i ρh,i − ζj

 (42)
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but if the condition is binding, we get

Li,j =
1

2σri
2γj

mr
i − γj

∑
h6=i

Lh,jσ
r
hσ

r
i ρh,i −m0

− 1

2σr2i

[
L0,jσ

2
0 +

∑
h

Lh,jσ
r
hσ0ρh,0

]
(43)

where i = 0 is the risk-free asset.

Lead Pricing When choosing a price, the Lead will solve the following maximization problem

max
ri

∑
i

Li,jriE(1− θλi)− γj
∑
h

∑
i

Lh,jLi,jrhriθ
2σhσiρh,i −

1

2
φN (

∑
i

Li,j − Ej −Dj)
2

− (ζ + β)− ν(
∑
i

Li,j −
Ej
e

) (44)

with the First-Order-Conditions yielding

ri =
E(1− θλi)− 2γjθ

∑
h Lh,jrhσhσiρh,i

2γjσ2
i θ

2Li,j
(45)

Borrowers The borrowers are solving a discrete choice problem where they observe all the prices that the leads can

offer them and will then choose which Lead to approach in order to maximize their utility. They make decision based

on the price, the size, and a relationship and convenience coefficient that captures unobserved heterogeneity between

lenders’ offers. For the sake of the model’s tractability, I assume that borrower’s loan defaults are independent of

each other.

4.2 Estimation

The solution concepts described in subsection 4.1.5 can then be summarized in three equations, each with a single

parameter to be estimated. First, the Lead’s pricing problem becomes a series of pricing equations with respect to

the borrowers probability of default λi, its default variance σ2
i , the Lead lender’s retained share of the loan Lij , and

the Lead lender’s risk aversion parameter γj .

ri =
1

γj

E[1− θλi]
2σ2

iLij
(46)

Recall that I assume that the default occurrence is a Bernoulli random variable, therefore σ2
i = θ2λi(1− λi).

Once I obtain each Lead lender’s risk aversion parameter γj , I can then use the Lead’s Share Problem that will

identify the cost of funding φN . As I assume all lenders face the same borrowing cost function on the market, I use

the subset of unconstrained Lead lenders to estimate φN

φN =
2r2i σ

2
i γjLi,j − riE[1− θλi]
Ej +Dj − Li,j

(47)

With the cost of borrowing on the market, I can now estimate the risk aversion parameters of all the constrained

leads and members by MLE on the respective solutions exposed in section 4.1.5.
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4.2.1 Probability of Default Estimation

A large portion of the analysis rests upon estimating the probability of default of the borrowers and assessing how

the lenders react to it. I have chosen for the most common approach in the literature, namely estimating the PD

from a Distance to Default measure implied by the Merton model (Black and Scholes, 1973; Merton, 1974; Vasicek,

1997; Crosbie and Bohn, 2002; Vassalou and Xing, 2004; Duffie et al., 2007). I implemet the measure of distance to

default from Duffie et al. (2007) as it is particularly adapted to Compustat data, and define Ai as the firm’s balance

sheet assets, Bi as its liabilities, r0 as the risk-free rate, σi,A as the assets historical volatility, and T as the time to

maturity of the loan.

Distance to Default: DtDi =
ln Ai

Bi
+
(
r0 −

σ2
i,A

2

)
T

σi,A
√
T

(48)

Probability of Default: λi = Φ(−DtDi) (49)

where Φ is the standard Normal cumulative distribution function. I use as recovery rate θ = 0.4 at is commonly the

case for debt products (Bush et al., 2011).

4.2.2 Risk aversion of different types of financial institutions

By estimating equation (46), we can obtain estimates of each Lead lender’s risk aversion parameter. The estimation

methodology yields a different risk aversion parameter for each bank participating in a syndicate. Though each

equation could potentially yield a different parameter for each loan, I aggregate by bank and find the best fit for the

parameter using maximum likelihood estimation. The following regression verifies that banks are more risk-averse

than non-banks.

γj = α+ 1j,Pension + 1j,Insurance + 1j,Hedge Fund + εj (50)

Table 3 shows the resulting difference in average risk aversions of non-bank financial institutions when compared to

banks, as classified in the DealScan dataset. As expected, banks have the highest risk-aversion parameter, pension

plans are not significantly different from them, and hedge funds have a lower risk aversion than banks. Insurance

companies seem to have a lower risk aversion than hedge funds, but it should be noted that the category of Hedge

Funds is quite diverse and vast, so different risk profiles are to be expected and it is possible that, on average, they

appear more risk-averse.

5 Counterfactuals

To measure the effect of the syndicate’s structure on the lending system’s risk, I compare the potential loss distribution

of the syndicated loan market under the current regulatory environment to various counterfactual scenarios with

changing regulations. The potential loss distribution is measured by factoring the probability of default (PD) of

each asset with the loss given default (LGD) of the asset, and the firm’s exposure at default (EAD) to the asset.
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Table 3: Risk Aversion by Institution’s Type

Dependent variable:

Risk Aversion

Constant 0.003∗∗∗

(0.0001)

Pension −0.002

(0.002)

Insurance −0.002∗∗∗

(0.0005)

HedgeFund −0.001∗∗∗

(0.0001)

Observations 1,877

R2 0.064

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The EAD is assumed to be the weighted size of the loan wi,jBi that each firm allocates to its portfolio, as I do not

observe secondary markets or hedging strategies. Moreover, based on previous studies, I assume that the LGD is

60%, since credit instruments often have a recovery mechanism that allows the lender to recover a portion of the

defaulted loan through restructuring. Finally, the PD of each loan is estimated as (49). Thus, the Loss distribution

used to compare counterfactual scenarios takes the following form:

PL =
∑
i,j

PDi × LGDi × EADi,j (51)

=
∑
i,j

λi × θ × wi,jBi (52)

When estimating counterfactual scenarios, the main driver of changes in Potential Loss between scenarios is wi,j , the

allocated weights of each lender to each borrower. Changes in regulation will affect the cost of capital of lenders and

change their portfolio allocation. This weight variable is also affected by the price impact that different regulations

might have on Lead lender’s choice of ri, since Members seek to maximize expected returns. Hence, the two choice

variables of the structural model’s Lead lender have direct impact on the lending market’s Potential Loss distribution.

Both of these choice variables are dependent on the model’s key innovation, which is to model each financial institution

as having a separate risk-aversion parameter γj , estimated through the model calibration of section 4.2.

To assess systematic and systemic risk, I use an array of common risk metrics. The first is the Value-at-Risk (VaR)

of the industry’s loan portfolio, consisting of the aggregate positions and distribution of probability of default of the

loans. The VaR is typically reported at the 95% level, which is simply the dollar value of the ninety-fifth percentile of

the potential loss distribution. VaR is a common risk measure but is not always sufficient, especially when interested

in systemic risk. A complementary measure is expected shortfall (ES), the expected value of the tail end of the loss
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distribution. Its estimation follows the same procedure as the VaR, but goes one step further in that after having

found the ninety-fifth percentile of the loss distribution, I then estimate the mean of the values between the ninety-

fifth and one hundredth percentile. Finally, from the expected shortfall, one can estimate the marginal expected

shortfall (mES) as the derivative with respect to each agent’s individual contribution to the loss distribution to

assess each financial institution’s contribution to aggregate risk, considered an indicator of the institution’s systemic

importance (Rösch and Scheule, 2008).

Using these metrics, I am able to compare the risk distribution across different policy-relevant scenarios. Below, I

present counterfactual results from changing the regulatory capital requirement, e. First I impose the same regulatory

constraint on non-banks as I do to banks. This allows me to gauge how much risk is taken on by the non-bank sector

in corporate lending. Second, I estimate the system’s risk under a range of level of capital requirement, to understand

how constraining Basel III’s requirement actually are. Both of these counterfactual experiments help understand

how the lending market might be affected by its structure, and how fine-tuning regulations can alleviate potential

problems.

5.1 Baseline estimation

Using the methodology of section 4.2, we can estimate the potential loss distribution of our system of banks and

non-banks under the current set of regulations. Figure 3 shows the density function of the potential losses, as well as

the Value-at-Risk and the Expected Shortfall. As expected, this distribution is a long-tailed one, with most of the

losses being of smaller caliber.

Figure 3: Potential Loss using calibrated parameters
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5.2 Regulatory requirements

5.2.1 Extensive margin: Impose capital constraints on all lenders

I run a counterfactual scenario in which all financial institutions, both banks and non-banks, in order to participate

in the lending market, must comply with the same required level of capital to fund their loans. Under this scenario,

I estimate the potential loss function presented in figure 4. There are three notable results we can observe from the

figure. First, the Value-at-Risk is slightly lower than in the baseline case, but by a marginal amount.

Figure 4: Potential Loss when all FIs are constrained

Second, and more importantly, is that the Expected Shortfall is much higher. This suggests that, though 95%

of potential losses might be lower than under the current regulatory requirements, in the 5% of cases where we

experience a severe shock, we can expect the losses to be much higher. This increase in Expected Shortfall is further

evidence of the fat-tailed nature of the loss distribution. So tightening regulation on all financial institutions might

push some actors into taking even greater risks, pushing the ES further out in the tail.

The third observation to make is that the mass to the left of the Value-at-Risk is considerably more concentrated

towards zero. This is because of a credit-rationing effect of increasing the regulatory requirements. The institutions

who would have participated more heavily in a lending syndicate are now constrained by their capital requirement

and can only lend out a smaller portion of the loan, thus reducing the availability of larger sized loans to worthy

borrowers. When plotting this change in potential loss, it becomes clear that the mass moves leftwards, while the

tail moves rightward, as shown on Figure 5.

Figure 6 overlaps the two densities, with the solid lines representing the density and risk measures of the calibrated

baseline model and the dashed lines representing the density and the risk measures of the counterfactual scenario

where all financial institutions are bound by the capital requirement ratio. It is clear from this graph that the density

shifts and the risk increases when the requirement start binding non-banks with greater risk appetite.
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Figure 5: Change in Potential Loss when all FIs are constrained

Figure 6: Comparison when imposing capital constraints on all lenders
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When decomposing the variation of risk between banks and non-banks syndicates, using Montgomery-decomposition

(De Boer, 2008), I observe both types of syndicate increasing the exposure to risk, though non-bank syndicates

increase their potential loss exposure by 2.28 times the increase observed in bank-only syndicates. The change in

marginal Expected Shortfall (mES) can also be indicative that the increase in risk comes from the pull from the

non-bank syndicates. It has been used to measure financial institutions’ contribution to systemic risk (Acharya et al.,

2017) and is useful in my context to understand which parts of the lending market contributes most to risk-taking.

Marginal Expected shortfall is calculated as the partial derivative of the expected shortfall with respect to a specific

individual or type’s share Si, i.e.,

mESi =
∂ESα(PL)

∂Si
= E[PLi|PL ≥ V aRα(PL)] (53)

When computing the marginal expected shortfall under the baseline scenario, banks are 6.7% under the overall ES

while non-banks are 0.89% above. However, under the counterfactual scenario, banks are now only 5.25% under

the aggregated ES, while non-banks are 2.82% above. Therefore I conclude that even though the risk decreases

marginally under a blanket regulation, the non-banks syndicate members significantly increase their participation in

risky investments, contributing to a large extent to the increase in the system’s expected shortfall.

Funding Type PD Facility Size PL mES

Bank funded 5.23% 385.83 8.329 513.34

Market Funded 7.96% 721.44 30.087 769.38

Table 4: Calibrated Model: Average risk summary

Funding Type PD Facility Size PL mES

Bank funded 5.23% 183.98 8.371 235.48

Market Funded 7.96% 746.08 31.901 448.78

Table 5: Counterfactual all constrained: Average risk summary

5.2.2 Intensive margin: Changing regulatory capital requirements on banks

The other main policy of interest is to test whether the capital requirement level is at an appropriate level. I test

this policy by re-estimating the model under 100 different scenarios of increasing level of capital requirement. This

counterfactual takes into consideration the implicit cost of balance sheet funding from equation (24). I start from

a requirement of 0.1%, which basically amounts to no requirement since this level is almost guaranteed to not be

binding, and I increase it up to a level of 35%. The result is shown in Figure 7. Note that I only change the level of

capital requirement on banks and do not impose such constraint on the non-banks.

In Figure 7, the risk levels are shown to be a non-monotonic function of the capital requirement. The risk decreases

up to a ratio of about 40%, and then slowly starts to increase again. It is also interesting to not that the skewness of

the distribution decreases, as the Expected Shortfall shrinks faster than the Value-at-Risk. In the end, the current

capital requirement ratio imposed by Basel III of 8% is definitely contributing to the soundness of the lending market.
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Figure 7: Testing risk levels under different regulatory scenarios

6 Conclusion

I develop a structural model with mean-variance preferences over portfolio allocation. Using this model, I estimate

the impact of capital requirements on systemic risk and risk distribution in the corporate syndicated lending market.

Consistent with empirical literature, I find that banks are more risk averse than hedge funds, and that hedge funds

provide a inflow of funds to expand the lending market. I analyse whether this inflow of unregulated funds increases

risk taking behaviour in the lending market.

Through counterfactual analysis, I estimate that constraining all lenders to the same set of regulatory requirement

would reduce the availability of funds by credit rationing, while increasing significantly the expected shortfall of

the system and having minimal impact on reducing the Value-at-Risk. The main result of the paper suggests that

extending regulatory requirement to non-banks would make the system more prone to extreme shocks while reducing

the quantity of credit in the economy. In the current system, banks use the increase in participation of non-banks in

order to extend credits to more borrowers of adequate risk level while the non-banks absorb much of the risk induced

by the expansion of credit supply.

This analysis provides important insight into the issue of whether the shadow banking system should not be regulated

merely as an extension of banking, but rather as an affiliate but distinct market that complements many of the

functionalities of the traditional banking system by providing funds and reallocating risks.
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A Notation

Borrower i’s loan request size: Bi

Available assets: B =



B0

B1

...

BI

BI+1


Lead j’s deals: ~1{i ∈ Aj}

Lead j’s share of loan kept on balance sheet: wj =



w0j

w1j

...

wIj

wI+1j



Lead j’s amount size: Lj = wj ·B =



w0jB0

w1jB1

...

wIjBI

wI+1,jBI+1



Lead j’s offered interest rate: Rj =



r0

r1j
...

rIj

rI+1



Syndication Share: V =
∑
k

vk =
∑
k



v0,k

v1,k
...

vI,k

vI+1,k


s.t.

∑
k

vk +
∑
j

wj ≤ 1

Syndication Size: S = V ·B

Syndication Size of member k: Sk = vk ·B

Lead j’s required financing: B′~1{i ∈ Aj}

Syndication size of Lead j’s dealsS′~1{i ∈ Aj}

Lead j’s market financing: Nj = ( B︸︷︷︸
Required

− L′j︸︷︷︸
Balance Sheet

− S︸︷︷︸
Syndication

) ~1{i ∈ Aj}︸ ︷︷ ︸
Lead j’s deals
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B Toy Model: Lead’s allocation solution

To match the member’s contribution to the syndicate so that each loan is fully funded, i.e., wi,L = 1 − wi,M , the

Lead’s optimal allocation will yield the following weights

w1,L =
(1− θλ1)r1 − (1− θλ2)r2 + γMB1λ1(1− λ1)θ2r21 −

(
EM

eB2
− B1

B2

)
γMλ2(1− λ2)θ2r22

B1γM [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]
(54)

w2,L =
(1− θλ2)r2 − (1− θλ1)r1 + γMB2λ2(1− λ2)θ2r22 −

(
EM

eB1
− B2

B1

)
γMλ1(1− λ1)θ2r21

B2γM [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]
(55)

We can then reduce the Lead underwriter’s problem to one of maximisation with respect to the price of the loans,

which needs to balance the member’s incentives with the condition of fulfilling the entirety of the loan, while also

managing its own balance sheet regulatory requirements. Assuming independence between the two loans, the maxi-

mization problem of the Lead underwriter becomes:

max
r1,r2

w1,L(r1, r2)r1B1(1− θλ1) + w2,L(r1, r2)r2B2(1− θλ2)

− 1

2
γL

[
(w1,L(r1, r2)B1θr1)

2
λ1(1− λ1) + (w2,L(r1, r2)B2θr2)

2
λ2(1− λ2)

]
(56)

s.t. w1,LB1 + w2,LB2 ≤
EL
e

(57)

with the weights w1,L and w2,L being functions defined in (54) and (55).

Deriving the first order conditions of the above model yields the following solution:

w.r.t. r1 :
(
w
′(r1)
1,L r1 + w1,L

)
B1(1− θλ1) + w

′(r1)
2,L r2B2(1− θλ2)

− 1

2
γL

[
2(w1,Lr1B1θ)

(
w
′(r1)
1,L r1 + w1,L

)
B1θλ1(1− λ1) + 2(w2,Lr2B2θ)

(
w
′(r1)
2,L r2

)
B2θλ2(1− λ2)

]
− ν

(
w
′(r1)
1,L B1 + w

′(r1)
2,L B2

)
= 0 (58)

w.r.t. r2 :
(
w
′(r2)
2,L r1

)
B1(1− θλ1)r1 +

(
w
′(r2)
2,L r2 + w2,L

)
B2(1− θλ2)

− 1

2
γL

[
2(w1,Lr1B1θ)

(
w
′(r2)
1,L r1

)
B1θλ1(1− λ1) + 2(w2,Lr2B2θ)

(
w
′(r2)
2,L r2 + w2,L

)
B2θλ2(1− λ2)

]
− ν

(
w
′(r2)
1,L B1 + w

′(r2)
2,L B2

)
= 0 (59)

w.r.t. ν : w1,LB1 + w2,LB2 −
EL
e

= 0 (60)

These FOCs rely on the derivatives of the Lead’s portfolio weights described in (54) and (55). The conditions (58)
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and (59) can be combined to equate ν = ν to yield{(
w
′(r1)
1,L r1 + w1,L

)
B1(1− θλ1) +

(
w
′(r1)
2,L r2

)
B2(1− θλ2)

−1

2
γL

[
2(w1,Lr1B1θ)

(
w
′(r1)
1,L r1 + w1,L

)
B1θλ1(1− λ1) +

2(w2,Lr2B2θ)
(
w
′(r1)
2,L r2

)
B2θλ2(1− λ2)

]}
×
(
w
′(r2)
1,L B1 + w

′(r2)
2,L B2

)
=

{(
w
′(r2)
2,L r1

)
B1(1− θλ1)r1 +

(
w
′(r2)
2,L r2 + w2,L

)
B2(1− θλ2)

− 1

2
γL

[
2(w1,Lr1B1θ)

(
w
′(r2)
1,L r1

)
B1θλ1(1− λ1)

+2(w2,Lr2B2θ)
(
w
′(r2)
2,L r2 + w2,L

)
B2θλ2(1− λ2)

]}
×
(
w
′(r1)
1,L B1 + w

′(r1)
2,L B2

)
(61)

The derivatives of the portfolio weights (54) and (55) are expressed as:

∂w1,L

∂r1
=

[(1− θλ1) + 2γMB1λ1(1− λ1)θ2r1]×B1γM [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]

γ2MB
2
1 [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]2

−

[
(1− θλ1)r1 − (1− θλ2)r2 + γMB1λ1(1− λ1)θ2r21 −

(
EM

eB2
− B1

B2

)
γMλ2(1− λ2)θ2r22

]
× 2γMB1λ1(1− λ1)θ21r1

γ2MB
2
1 [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]2

(62)

∂w2,L

∂r1
=

[
−(1− θλ1)− 2γM

(
EM

eB1
− B2

B1

)
λ1(1− λ1)θ2r1

]
×B2γM [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]

γ2MB
2
2 [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]2

−

[
(1− θλ2)r2 − (1− θλ1)r1 + γMB2λ2(1− λ2)θ2r22 −

(
EM

eB1
− B2

B1

)
γMλ1(1− λ1)θ2r21

]
× 2γMB2λ1(1− λ1)θ2r1

γ2MB
2
2 [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]2

(63)

∂w1,L

∂r2
=

[
−(1− θλ2)− 2γM

(
EM

eB2
− B1

B2

)
λ2(1− λ2)θ2r2

]
×B1γM [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]

γ2MB
2
1 [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]2

−

[
(1− θλ1)r1 − (1− θλ2)r2 + γMB1λ1(1− λ1)θ2r21 −

(
EM

eB2
− B1

B2

)
γMλ2(1− λ2)θ2r22

]
× 2γMB1λ2(1− λ2)θ2r2

γ2MB
2
1 [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]2

(64)

∂w2,L

∂r2
=

[(1− θλ2) + 2γMB2λ2(1− λ2)θ2r2]×B2γM [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]

γ2MB
2
2 [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]2

−

[
(1− θλ2)r2 − (1− θλ1)r1 + γMB2λ2(1− λ2)θ2r22 −

(
EM

eB1
− B2

B1

)
γMλ1(1− λ1)θ2r21

]
× 2γMB2λ2(1− λ2)θ2r2

γ2MB
2
2 [λ1(1− λ1)θ2r21 + λ2(1− λ2)θ2r22]2

(65)
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