

### **1. Motivation**

Consider the following two portfolios of equally-weighted stocks > In particular, same realized portfolio return, but different number of winner and loser stocks

| Portfolio X |    | Port    | Portfolio Y |  |
|-------------|----|---------|-------------|--|
| Stock A     | 4  | Stock K | -2          |  |
| Stock B     | 10 | Stock L | -4          |  |
| Stock C     | -5 | Stock M | -2          |  |
| Stock D     | -7 | Stock N | 8           |  |
| Stock E     | 2  | Stock O | -5          |  |
| Stock F     | 5  | Stock P | 5           |  |
| Stock G     | 2  | Stock Q | -1          |  |
| Stock H     | -9 | Stock R | -2          |  |
| Stock I     | 5  | Stock S | 14          |  |
| Stock J     | 3  | Stock T | -1          |  |
| Total       | 10 | Total   | 10          |  |

- How would you allocate an investment of \$1000 between these two portfolios?
- If investors only care about overall portfolio returns (i.e. form expectations and evaluate risk only from overall portfolio information), then there should be no difference in the willingness to invest.
- However, for *individual assets* it is known that
  - probability of loss drives risk perception (Holzmeister et al. 2020)
  - the way how returns are achieved matters (Zeisberger 2018)
  - people engage in stock-by-stock mental accounting and define gains and losses narrowly rather than broadly (Frydman et al. 2018, Barberis & Huang 2001)

 $\succ$  Do these findings also apply to a portfolio?

# The Portfolio Composition Effect – **Experimental and Field Evidence**

## Jan Müller-Dethard and Martin Weber

## **Executive Summary**

So far, research in finance has primarily focused on how investors buy and sell *individual assets*. However, assets are usually held in a *portfolio*. Much less is known about how investors evaluate entire portfolios and what drives their portfolio investment decisions. • We demonstrate a new stylized fact about how individuals evaluate and allocate funds across portfolios: the portfolio's composition of the number of winner (i.e. realized gain) and loser (i.e. realized loss) assets affects investors' willingness to invest in that portfolio. > Experimental evidence: This portfolio composition effect holds despite (i) identical realized portfolio returns and (ii) identical expected portfolio returns and variance. > Field evidence: We find that leading equity market index fund flows are affected by the lagged composition of winner and loser index members

# **2. Experimental Evidence**

- **Portfolio Composition:** Number of winner stocks relative to number of loser stocks
- General Idea: Two equally-weighted portfolios with the same overall portfolio return, but differences in the portfolio composition (70%/30% versus 30%/70% winner/loser)
- **Procedure:** (1) Observe realized stock and portfolio returns
  - (3) Receive feedback about performance

#### **Experiment 1 Experiment 2** N = 480

- 2 periods
- A lot of freedom
- Goal: same
- realized return

## N = 600

- 2 periods
- Data generating process known
- Goal: same
  - expected return and variance

#### Main Result

- > 26% larger investment in the 70% winner/30% loser relative to the 30% winner/70% loser portfolio (p<0.001)
- Effect persists even for those participants who state same expected returns and variance
- 800 700 300
- 200
- 100

(2) Allocate investment between two portfolios

**Experiment 3** N = 12660 periods Data generating

process known Goal: same expected return and variance



## 3. From the Lab to the Field

#### Are index fund flows affected by the portfolio composition measure?

- from Thomson Reuters and Bloomberg

Finance, 87, 397-410.

| Dependent Variable | Net Flow t                         |                                  |                                                         |
|--------------------|------------------------------------|----------------------------------|---------------------------------------------------------|
| Composition t-1    | 0.000335*<br>(2.67)                | 0.000202 (1.91)                  |                                                         |
| Composition t-2    | 0.000545 <sup>**</sup><br>(4.08)   | 0.000490 <sup>**</sup><br>(3.87) | <ul><li>Main Result</li><li>Larger fraction c</li></ul> |
| Composition t-3    | 0.000300<br>(2.11)                 | 0.000249<br>(1.74)               | winner index<br>members is                              |
| Fund Return t-1    |                                    | 0.00575*<br>(2.79)               | subsequent                                              |
| Fund Return t-2    |                                    | 0.00417 <sup>*</sup><br>(3.10)   | <ul> <li>Robust against<br/>extreme</li> </ul>          |
| Fund Return t-3    |                                    | 0.000848<br>(0.59)               | compositions ar skewness                                |
| Constant           | -0.000481 <sup>**</sup><br>(-3.41) | -0.000360*<br>(-3.12)            |                                                         |
| Observations       | 92026                              | 88057                            |                                                         |
| $R^2$              | 0.041                              | 0.039                            |                                                         |
|                    | $es^* p < 0.10, ** p < 0$          | 0.05, *** p < 0.01               |                                                         |

#### **Comments or Questions?** More than happy to hear from you! E-Mail: mueller-dethard@bank.bwl.unimannheim.de

WSJ reports "Advances" and "Declines" of indices **Data:** We link daily fund flow data of leading equity market indices from Morningstar to return data of the index members

Frydman, C., Hartzmark, S. M., & Solomon, D. H. (2018). Rolling mental accounts. The Review of Financial Studies, 31(1), 362-397. Barberis, N., Huang, M., & Santos, T. (2001). Prospect theory and asset prices. The Quarterly Journal of Economics, 116(1), 1-53