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Abstract

This paper develops the flexible inverse logit model, a structural inverse demand

model which is able to describe the behavior of heterogeneous, utility-maximizing

consumers choosing from a choice set of possibly many products that are differenti-

ated in a way that is both observed and unobserved by the modeller. The FIL model

is easy to estimate by linear instrumental variables regression to deal with the endo-

geneity issues of prices and market shates due to the modelling of unobserved product

differentiation. Furthermore, the FIL model accommodates rich substitution patterns,

including complementarity in demand. In particular, simulations show that it is able

to match the substitution patterns of the random coefficient logit pretty well and to get

quite right predictions of a merger’s price and share effects.

∗First Draft: January, 2019. I would like to thank Steven Berry, Debopam Bhattacharya, Philippe Choné,
Olivier De Groote, André de Palma, Xavier D’Haultfoeuille, Roxana Fernandez, Alfred Galichon, Gautam
Gowrisankaran, Laura Grigolon, Ulrich Kaiser, Laurent Linnemer, Hugo Molina, and Pasquale Schiraldi as
well as participants at the internal seminar in microeconomics at CREST, at the Paris Young Economists
Seminar on the Economics of Digitization (Telecom Paris), at the 2nd Workshop on Platforms, E-commerce
and Digital Economics (CREST- Telecom Paris), at the external ALISS Seminar (INRAE), at the 10th con-
ference on Industrial Organization and the Food Industry (TSE), at the 46th EARIE Annual Conference, 12th
Econometric Society World Congress, at the DSE WINTER SCHOOL 2020. This paper is based on Chapter
2 of my doctoral dissertation at École Normale Supérieure Paris-Saclay.

†CREST, ENS Paris-Saclay, University Paris-Saclay; jmonardo@ens-paris-saclay.fr.

1

jmonardo@ens-paris-saclay.fr


1 Introduction

How consumers substitute across differentiated products plays an important role in eco-
nomics, since substitution patterns (i.e., the own- and cross-price demand elasticities),
when combined with a supply model, serve as key input to many important economic
questions. Prominent examples span a wide range of topics in industrial organization, such
as market power (Berry et al., 1995; Nevo, 2001), mergers (Nevo, 2000) and products’ en-
try (Petrin, 2002; Gentzkow, 2007), as well as regulatory changes in taxes and trade policy
(Goldberg, 1995; Verboven, 1996a; Berry et al., 1999; Griffith et al., 2019).1 Therefore, it
is important to obtain good estimates of substitution patterns, since any error will propagate
into the supply side estimates and potentially lead to wrong conclusions.

The literature following Berry (1994) and Berry et al. (1995) has shown how to flexibly
estimate substitution patterns by incorporating rich heterogeneity in consumer preferences
while handling endogeneity issues due to the modelling of unobserved product differentia-
tion. The state-of-the art is the BLP approach (Berry et al., 1995), which uses the random
coefficient logit model to accommodate rich substitution patterns. However, this flexibility
complicates the (empirical) identification and estimation.2 In contrast, another widely used
approach employs the nested logit models, which are easy to estimate by linear instrumen-
tal variables (IV) regression, but have been criticized for restricting substitution patterns.

Motivated by these observations, this paper proposes the Flexible Inverse Logit (FIL)
model, a novel (inverse) demand model between the random coefficient logit and the nested
logit models that (i) flexibly describes the utility-maximizing behavior of a population of
heterogeneous consumers choosing among products that are differentiated in a way that is
both observed and unobserved by the modeller; and (ii) is easy to estimate by linear IV
regression.

The FIL model can be motivated as a member of Fosgerau et al. (2020)’s nesting-based
class of inverse demand models where there is a nest for each pair of products with its

1See Berry and Haile (2014, Footnote 1) and Berry and Haile (2016, Table 1) for additional examples.
2Flexibility of the RCL model can be difficult to obtain in practice, since, theoretically, it requires many

random coefficients (McFadden and Train, 2000), which are not easily identified in applications (Reynaert
and Verboven, 2014; Gandhi and Houde, 2020). Estimation can be painful and time-consuming because it
requires non-linear, non-convex optimization, simulation and numerical inversion of the demand function.
This also implies dealing with the associated issues of local optima and choice of starting values, accuracy of
the simulation and numerical inversion (see, e.g., Knittel and Metaxoglou, 2014, and references therein). See
Conlon and Gortmaker (2020) for the current best practices in the estimation of structural demand models
using BLP approach. Other approaches to solve BLP’s problem have been proposed (Dubé et al., 2012; Lee
and Seo, 2015; Salanié and Wolak, 2019).
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corresponding nesting parameter.3 Noting that the FIL model boils down to the logit model
when all nesting parameters equal zero, this implies that the FIL model follows the fruitful
approach in demand estimation that deviates from the logit model and its counterintuitive
substitution patterns thanks to its nesting parameters.4 It is also consistent with a spe-
cific instance of the large class of models of heterogeneous, utility-maximizing consumers
studied by Allen and Rehbeck (2019), where its nesting parameters capture consumer het-
erogeneity in preferences.

Furthermore, the FIL model accommodates rich substitution patterns among products
that are governed by its nesting parameters. Theoretically, it is Diewert (1974)’s flexible
in a large class of well-defined inverse demand models, i.e., it can match the matrix of
own- and cross-price elasticities of demand implied by any model of this class. Besides, in
contrast to the random coefficient logit model, the FIL model does not restrict the products
to be substitutes in demand, as defined by a negative cross-price derivative of demand.5

The FIL model is easy to estimate by a nested logit-type linear IV regression of shares
on prices, product characteristics and log-shares of the product into its nests. This linear
IV regression allows to deal with the endogeneity of prices and market shares due to the
modelling of unobserved product differentiation and makes the estimation easy and fast. It
also helps clarifying its identification, which amounts to identify its parameters thanks to
instruments, i.e., variables that generates exogenous variation in each of the endogeneous
variables. Instruments for the FIL model include conventional instruments, which implies
identification does not requires any unconventional source of variation.

Lastly, this paper uses simulations to compare the FIL model to the BLP approach. For
this purpose, using insights from Pinkse et al. (2002), the nesting parameters are projected
into characteristics space to make, as in the BLP approach, the substitution patterns of
the FIL model depend on the similarity of products into that characteristics directly and
a function of a small number of parameters. Simulations demonstrate the ability of the
FIL model, projected into characteristics space, to match the substitution patterns and the
markups implied by the BLP approach as well as to obtain good predictions of the price
and share effects of two counterfactuals, a merger (Nevo, 2000) and product’s entry (Petrin,
2002; Gentzkow, 2007).

This paper is linked to two strands of literature on demand estimation. First, it is in line

3The idea of using such a nesting structure is not new. See Chu (1989); Koppelman and Wen (2000);
Davis and Schiraldi (2014).

4See discussion in Section 2.
5As it is common in the literature, this paper rules out income effects.
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with the structural approach that follows Berry (1994) and Berry et al. (1995)’s method,
which models unobserved product differentiation through the inclusion of structural errors.
These latter terms therefore have an economic interpretation that can be used for identifi-
cation purposes. However, this approach typically leads to inverse demand equations for
which an explicit formula does not exist, which must then be inverted numerically during
estimation. This paper follows this approach by allowing for structural errors but contrasts
with it by just requiring linear regression for estimation. Closest to this paper are Davis and
Schiraldi (2014), Compiani (2020) and Fosgerau et al. (2020). Davis and Schiraldi (2014)
also builds a Diewert (1974)’s flexible structural demand model. However, by contrast to
the FIL model, the FC-MNL restricts the product to be substitutes in demand and requires
the numerical inversion for estimation. Furthermore, like Compiani (2020) and Fosgerau
et al. (2020), this paper estimates closed-form inverse demand functions that allow for un-
observed product differentiation by regression techniques.6

Furthermore, this paper relates to the flexible functional form approach (see Barnett
and Serletis, 2008, and references therein). This line of research builds flexible models in
the sense of Diewert (1974) to derive demand equations that only comprise observables and
require the addition of additive error terms to serve as a basis for estimation. This means
that the error terms have no immediate structural interpretation, which prevents the use of
the standard economic arguments for identification used by the structural approach.

The remainder of the paper is organized as follows. Section 2 introduces the FIL model.
Section 3 develops the methods to estimate the FIL model with data on market shares,
prices and product characteristics and discusses about its identification. Section 4 compares
the FIL model to the BLP approach. Section 5 concludes.

2 A Flexible Demand Model

Consider a population of consumers choosing from a choice set of J + 1 differentiated
products, where products j = 1, . . . , J are the inside products and product j = 0 is the

6Compiani (2020) develops a non-parametric approach to estimate inverse demands in differentiated prod-
ucts markets based on aggregate data. As this paper, his approach does not make any distributional assump-
tions on unobservables and imposes minimal functional form restrictions based on economic theory. How-
ever, by contrast to this paper, he imposes the connected substitutes structure of Berry et al. (2013), which
rules out complementarity defined by negative cross-price derivative of unit demand), and because he uses a
non-parametric estimator, his approach is subject to a curse of dimensionality that may constrain its feasibil-
ity to settings with small choice sets. Note also that he allows for non-unit demand, whereas I assume unit
demand.
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outside good. Each inside product j is defined by (xj, pj, ξj), where xj ∈ RK is a vector of
K observed characteristics, pj ∈ R is its price, and ξj ∈ R is an unobserved characteristics
term. Let x ≡ (x1, . . . , xJ), p ≡ (p1, . . . , pJ) and ξ ≡ (ξ1, . . . , ξJ), and defined ∆+

J ≡{
s ∈ (0,∞)J :

∑J
j=1 sj < 1

}
.

Following Berry and Haile (2014), assume a linear index restriction. That is, partition
the vector of product characteristics as x =

(
x(1), x(2)

)
, with x(1) ∈ RK1 and x(2) ∈ RK2

with a support denoted by X2, and define linear indexes as

δj ≡ x(1)
j β − αpj + ξj, j = 1, . . . , J, (1)

Furthermore, consider the inverse demand function

σ−1 =
(
σ−1
1 , . . . , σ−1

J

)
: ∆+

J ×X2 → RJ ,

which gives the vector δ ≡ (δ1, . . . , δJ) of products indexes as a function of the vector of
nonzero market shares s ≡ (s1, . . . , sJ) ∈ ∆+

J and product characteristics x(2),

σ−1
(
s, x(2);µ

)
= δ (2)

where µ is a parameter vector to be estimated.7 With the linear index restriction, charac-
teristics x(1) and ξ, and prices p enter the inverse demand equations (2) only through the
product indexes δ, whereas x(2) can enter in an unrestrictive way.8 This implies that x(1)

and ξ are perfect substitutes and that consumer behavior is arbitrarily affected by x(2).
Lastly, define the market share of the outside good by the identity s0 = 1 −

∑J
j=1 sj

and normalize the vector δ by setting δ0 = 0.
The remainder of this section introduces the Flexible Inverse Logit model, studies its

microfoundation, its implied patterns of substitution among products. Proofs for this sec-
tion are provided in Appendix A.

7As it is common in the literature, this setting relies on three implicit assumption: the unobserved charac-
teristics terms are scalars, there is no income effect, zero demand is ruled out.

8In the logit model, there is no x(2) and in the random coefficient logit model, x(2) are the characteristics
that have a random coefficient.

5



2.1 The Flexible Inverse Logit (FIL) Model

Let the FIL model be the inverse demand function σ−1 : ∆+
J → RJ defined by

σ−1
j (s;µ) ≡ ln

(
sj

1−
∑J

k=1 sk

)
−
∑
i≠j

µij ln

(
sj

si + sj

)
= δj, j = 1, . . . , J, (3)

where δj is defined by Equation (1) and where µ ≡ (µij)i,j=1,...,J is a parameter vector.
The FIL model reduces to the logit model when all µij equal zero. As is well known, the

logit model leads to counterintuitive substitution patterns whereby the decrease in the price
of product j decreases the demand of any other product k ̸= j by the same percentage.9

This restrictive pattern is a manifestation of the independence from irrelevant alternatives
(IIA) property of the logit model,10 and has led the literature to develop demand models
that allow for deviations from IIA: (i) by introducing unobserved consumer heterogeneity
in preferences through different random coefficients specifications (e.g, Berry et al. (1995)
uses the random coefficient logit model); (ii) by using different nesting structures in the
GEV framework developed by McFadden (1978).11 However, with the exception of the
nested logit model, these richer models complicate the estimation, since they do not have
an explicit inversion formula such as Equation (3) and, in turn, prevent the use of regression
for estimation.12

Recently, Fosgerau et al. (2020) have proposed a class of closed-form inverse demand
functions that generalizes that of the nested logit model by allowing any possible nesting
structure. The FIL model can be viewed, under some restrictions on µ, as a member of this
class, where the nesting structure has a nest for each pair (i, j) of inside products i ≠ j and
a nest for the outside good alone. These restrictions on µ are

9For example, if, following a 2 percent decrease in the price of product 1, the demand the demand of
product 2 drops by 1 percent, then the demand of any other product j > 2 also drops by 1 percent.

10As the FIL model reduces to the logit model when all µij’s equal zero, the IIA property can be tested
using standard Wald tests.

11Prominent examples include the nested logit model (Ben-Akiva, 1973), the ordered logit model (Small,
1987), the PDL model (Bresnahan et al., 1997), the FC-MNL model (Davis and Schiraldi, 2014), the ordered
nested logit model (Grigolon, 2019), etc. See also Chapter 4 in Train (2009).

12Following (Berry, 1994), Equations of the form of (3) can be rearranged to obtain inverse demand equa-
tions in which unobserved characteristics terms ξj , which play the role of structural error terms, are functions
of the data (i.e., s, p and x) and the parameters (i.e., α, β and µ) to be estimated. He then suggests to use them
as a basis for demand estimation. When the inverse demand function σ−1

j has an explicit formula, then one
can use standard regression techniques for estimation. Otherwise, one can implement Berry et al. (1995)’s
estimator using either the nested-fixed point algorithm of Berry et al. (1995) or the mathematical program
with equilibrium constraints algorithm proposed by Dubé et al. (2012).
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(R1)
∑

i ̸=j µij < 1 for all j = 1, . . . , J ,

(R2) µij = µji for all i, j = 1, . . . , J , i ̸= j.

As it will be made clear below, restrictions (R1) and (R2) are key for the FIL model to be
consistent with utility maximization and have implications in terms of substitution patterns.
Furthermore, they also imply that the FIL model is invertible in s, i.e., that the specified
inverse demand (3) defines a demand function (rather than a demand correspondence).13

Proposition 1. Let the FIL model satisfy Restrictions (R1) and (R2). Consider any vector
δ ∈ RJ of product indexes. Then, there exists a unique vector s ∈ ∆+

J of nonzero market
shares such that δ = σ−1 (s;µ).

Proposition 1 implies there exists a demand function σ : RJ → ∆+
J that gives the

vector of market shares as a function of product indexes, s = σ(δ;µ).

Microfoundation. The FIL model can also be derived as specific instance of the large
class of utility models of consumer heterogeneity studied by Allen and Rehbeck (2019).
To see this, observe first that the FIL model is consistent with a (representative) consumer
choosing a vector s ∈ ∆+

J of shares so as to maximize her utility function given by

J∑
j=1

δjsj −

[
J∑

j=1

sj ln

(
sj

1−
∑J

k=1 sk

∏
i ̸=j

(
sj

si + sj

)µij

)
+ ln

(
1−

J∑
k=1

sk

)]
, (4)

where δj is defined by Equation (1), thereby implying that α > 0 is the consumer’ price
sensitivity (i.e., its marginal utility of income) and β captures the consumer’ taste for char-
acteristics x(1).

Furthermore, restrictions (R1) and (R2) imply that the second term of utility (4) is a
strictly concave function of s that do not depend on δ. Then, by Allen and Rehbeck (2019),
utility (4) can be derived, after an aggregation across consumers, from a utility model of

13Berry et al. (2013) show that their "connected substitutes" structure is sufficient for invertibility. The
connected substitutes structure requires that (i) products be weak substitutes, i.e., everything else equal, an
increase in δj weakly decreases demand σi for all other products; and (ii) the “connected strict substitution”
condition hold, i.e., there is sufficient strict substitution between products to treat them in one demand system.
Proposition 1 accommodates some substitution patterns that are not allowed by Berry et al. (2013), including
some form of complementarity. See also Proposition 4 in Appendix A that extends this result to a large class
of inverse demand functions.
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heterogeneous, utility-maximizing consumers. Therefore, the FIL model allows for con-
sumer heterogeneity modelled by the second term of utility (4);14 and the parameter vector
µ has an obvious interpretation: it is a vector of structural parameters as it comprises
key parameters describing consumers’ preferences (it controls for the distribution of pref-
erences in the population of consumers) and is invariant to changes in economic policy,
such as taxes, or in firms’ strategy, such as pricing strategies, product characteristics, new
products (see Hurwicz, 1966).15

Substitution Patterns. The matrix η = [ηij] = [(∂σi/∂pj) (pj/σj)] of own- and cross-
price elasticities captures the patterns of substitution among products: own-price elasticities
express how much a price increase would cause a drop in demand, whereas cross-price elas-
ticities indicate where the lost demand goes following the price increase. Formally, this ma-
trix involves the derivatives of the demand σ with respect to the prices p. However, by the
implicit function theorem, it can also be expressed in terms of the derivatives of the inverse
demand function σ−1 with respect to the shares as η = −α

([(
∂σ−1

i /∂sj
)
(σi/pj)

])−1.
For the FIL model,

∂σ−1
i

∂sj
=



1

1−
∑J

k=1 sk
+

1−
∑

i ̸=j µij

sj
+
∑

i ̸=j

µij

si + sj
if i = j

1

1−
∑J

k=1 sk
+

µij

si + sj
if i ̸= j

(5)

Equation (5) shows that restrictions (R1) and (R2) imply that the FIL model yields a
demand function with a derivative matrix that is negative definite and symmetric.16 This,
in turn, has two implications in terms of substitution patterns: (i) the demand of each
product is strictly in its own price (equivalently, strictly increasing in its own index); (ii) as
explained below, the FIL model does not restrict products to be substitutes in demand, as
defined by a positive cross-price derivative of demand.

14The FIL model, as it stands, does not allow for observed heterogeneity in preferences related to observed
individual characteristics as well as unobserved heterogeneity in preferences through random coefficients

15Following Fosgerau et al. (2020), the FIL model is also consistent with a representative consumer model
choosing a positive quantity of every product while trading-off variety against quantity. With this representa-
tion, the parameters µij measure taste for variety over products i and j, since µij > 0 makes the representative
consumer more willing to choose products i and j (see Verboven, 1996b, for the nested logit model).

16See Monardo (2020) for further details. Also, since symmetry is implied by restriction (R2), symmetry
can be tested, rather than imposed, using standard Wald tests. Note, however, if symmetry is rejected by the
data, any study based on the demand estimates would not rely on an underlying structural utility model.
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Furthermore, it is worth noting, by contrast to the nested logit model, that the nesting
structure of the FIL model does not require the modeller to take a stand on the relevant
dimensions along which nests can be defined, i.e., its implied substitution patterns are
not constrained by a predetermined segmentation of the market.17 Rather, Equation (5)
emphasizes that the nesting structure is a way to fully parametrize the matrix of inverse
demand derivatives (and thus its inverse). By contrast, the logit model fully sparsifies the
off-diagonal entries of this matrix, which just reduce to 1/(1−

∑J
k=1 sk).

Formally, the FIL model can be motivated as being flexible in the sense of Diewert
(1974) in a large class of well-defined inverse demand functions, i.e., it can match the
vector of market shares as well as any matrix of own- and cross-price elasticities implied
by an inverse demand function of this class.18

The proof of the flexibility can be sketched in two steps. The first step uses by Propo-
sition 1 to show that there always exists a vector δ of indexes that equate the vector s of
observed shares to the vector σ of predicted share. The second step shows the ability to
the FIL model to match any own- and cross-price elasticities. Intuitively, one can match
the cross-price elasticity ηij by appropriately choosing the value of the nesting parameter
µij . Once this is done, all own-price elasticity ηjj are automatically matched because, using
that the FIL model exhibits unit demand, they can be expressed as ηjj = −

∑
i ̸=j ηij(si/sj).

The following proposition summarizes this discussion.

Proposition 2. The FIL model is flexible in the sense of Diewert (1974) in the class of
inverse demand functions of the form of σ−1

j (s;µ) = lnGj(s;µ) − ln(s0), where lnG is
homogeneous of degree one and has a matrix of derivatives that is symmetric and positive
definite on ∆+

J .

Closest to the FIL model is the FC-MNL model developed by Davis and Schiraldi
(2014), which (to my knowledge) is the only existing Diewert (1974) flexible demand
model that allows for unobserved product differentiation. This is in contrast to the flexible

17The choice of the nesting structure can be problematic in applications. Consider for example the market
for cars, where cars are assumed to belong to five segments: subcompact, compact, standard, intermediate,
and luxury. Grigolon (2019) suggests a natural ordering of cars from subcompact to luxury, while Brenkers
and Verboven (2006) consider a nested structure without prior ordering. Determining which of the two nesting
structures best describes the market is not obvious.

18A demand system is said to be flexible in the sense of Diewert (1974) if it is able to provide a first-
order approximation to any theoretically grounded demand system at a point in price space. Equivalently,
flexibility can also be viewed as the ability of the (direct or indirect) utility function to provide second-order
approximations to any utility function. This is because the partial derivatives of the demand function can be
uniquely derived from the second partial derivatives of the utility function.
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functional form approach which also develops Diewert (1974) flexible demand models, but
does not model unobserved product differentiation.

The sketch of the proof of the flexibility of the FIL model has highlighted the role of
the nesting parameters in driving the substitution patterns. To get further intuition, consider
the following two stylized examples.

Example 1. Let J = 3 and assume that s1 = s2 = s3 = s < 1/3 and p1 = p2 = p3 = 1.
Then, the cross-price demand elasticity for product i with respect to product j is given by

εij = α

[
s− µ12µ13 + µ12µ23 + µ13µ23 − 2µij

D

]
, (6)

where D ≡ 4(1− µ12 − µ13 − µ23) + 3(µ12µ13 + µ12µ23 + µ13µ23) > 0,19 so that

ε12 − ε13 =
α(µ12 − µ13)

D
≷ 0 ⇔ µ12 ≷ µ13, (7)

i.e., higher cross-price derivatives are associated with higher values for the associated nest-
ing parameters.

Example 2. Let J = 3 and assume that s1 = 0.15, s2 = 0.25 and s3 = 0.20 and p1 =

p2 = p3 = 1. Furthermore, set µ23 = 0.2 and let µ12 and µ13 vary. The scatter plot below
shows that higher value for µ12 implies higher value for the elasticity between products 1
and 2. By varying the value of µ13, it also shows that the relationship (in terms of elasticity)
between products 1 and 2 is affected by product 3.

19D is positive as it can be shown to be proportional to the determinant of a positive definite matrix.
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The scatter plot shows the cross-price demand elasticity of product 1 with respect to product 2 as a function
of µ12 for different values of µ13. The red line correspond to the threshold between complementarity and
substitutability.

Examples 1 and 2 show how the nesting parameter µij governs the substitution patterns
between products i and j. First, the higher the value for µij , the higher the cross-price
elasticity ηij . Then, the FIL model allows for complementarity in demand, i.e., ηij < 0.
Lastly, whether products i and j are complements or substitutes does not uniquely depend
on µij but also on µik, k ̸= j, k ̸= i. This is consistent with theoretical result whereby
whether two products are complements or substitutes depends on the relation of the two
products to the other products (Samuelson, 1974; Ogaki, 1990).20

2.2 Projection into Characteristics Space

As it stands, the FIL model is defined into product space, rather than into product charac-
teristics space. This implies, by contrast to the RCL model, that many parameters need to
be estimated and that substitution patterns do not depend on product characteristics directly
(they depend on product characteristics only through the indexes).

To deal with these issues, I apply the distance-metric approach of Pinkse et al. (2002):
based on the intuitive idea that similarities (or distances) between products into characteris-
tics space should drive substitutions, that is, that closer products into characteristics space

20A future version of this paper will discuss how the nesting parameters µij relate to different definitions
of complementarity used in the empirical literature.
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are likely to be more substitutable, I suggest to project the nesting parameters muij into
characteristics space x(2).21

The projection is as follows

µij = µ
(

d(2)
ij ;γ

)
, (8)

where d(2)
ij ≡ (d

(2)
ij1, . . . , d

(2)
ijK2

) is a measure of similarity between products i and j into the

characteristics space formed by x(2) =
(
x
(2)
1 , . . . , x

(2)
K2

)
and γ is a parameter vector to be

estimated.
The projection (8) maps the FIL model from product space into the characteristics space

formed by x(2) by writing each parameter µij as a function of a measure of similarity
between products i and j.

Furthermore, a question is whether the parameter vector µ is structural after the pro-
jection. Clearly, it is no longer structural, since it is not invariant to changes in product
characteristics by firms. However, the parameter vector γ, which parametrizes the function
µ, is structural and has a clear interpretation. As the random coefficients in a RCL model,
it controls for the distribution of valuation for product characteristics x(2) in the population
of consumers.

Lastly, with the projection, the FIL model (3) can be rewritten as

σ−1
j

(
yj, y−j;γ

)
= ln

(
sj

1−
∑J

k=1 sk

)
−

J∑
i=1

µ
(

d(2)
ij ;γ

)
ln

(
sj

si + sj

)
+ C, (9)

where C ∈ R is a market-specific constant.
Examining Equation (9) shows the implications of the projection.

Proposition 3. Let yj ≡ (sj, x(2)
j ) and y−j ≡ (y1, . . . , yj−1, yj+1, . . . , yJ). The FIL model

projected into characteristics space (9) is

(i) symmetric: σ−1
j

(
yj, y−j;γ

)
= σ−1

k

(
yj, y−j;γ

)
= σ−1

(
yj, y−j;γ

)
for any j ̸= k,

21This strategy has been successfully applied by Pinkse and Slade (2004), Slade (2004) and Rojas (2008)
for demand estimation purposes. See also Pinkse and Slade (1998). Note that I do not implement the semi-
parametric estimator of Pinkse et al. (2002). In my model, their method would use a series expansion to
approximate µ, and in turn, this would introduce an additional source of endogeneity. Indeed, in addition
to the structural error ξ, their method adds an approximation error, due neglected expansion errors, that is a
function of characteristics x(2).
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(ii) anonymous: σ−1
(
yj, y−j;γ

)
= σ−1

(
yj, yρ(−j);γ

)
, where ρ(−j) is any permuta-

tion of the product indexes −j,

(iii) invariant to translation in x(2): σ−1
(
yj + (0, c), y−j + (0, c1);γ

)
= σ−1

(
yj, y−j;γ

)
for all c ∈ R.

Overall this implies that the identity of products does not matter and that only differ-
ences in characteristics x(2) do. Then, the FIL model, projected into product characteristics,
places the same restrictions as the RCL model on its inverse demand function (Gandhi and
Houde, 2020). The projection therefore relates to Compiani (2020) who uses anonymity to
reduce the number of parameters of the inverse demand to be estimated in a nonparametric
setting and on Gandhi and Houde (2020) who use anonymity and symmetry of any inverse
demand function consistent with an additive random utility linear in x(2) to construct new
approximations of the optimal instruments.

3 Estimation and Identification of the FIL Model

3.1 Estimation

Consider having data on market shares sjt, prices pjt and product characteristics xjt for T
markets, indexed by t, and J products per market (see, e.g., Berry et al., 1995; Nevo, 2001).

Rearranging Equations (3) shows that the FIL model is estimated by the following
nested logit-like regression of market shares on product characteristics, prices and log-
shares terms related to its nesting structure

ln

(
sjt
s0t

)
= x(1)

jt β − αpjt +
∑
i ̸=j

µij ln

(
sjt

sit + sjt

)
+ ξjt, (10)

where s0t = 1−
∑J

j=1 sjt for all t = 1, . . . , T , and, with the projection, µij = µ
(

d(2)
ijt ;γ

)
.

Following the literature, the unobserved product/market characteristic terms ξjt are the
structural error terms. They summarize all the product/market characteristics that observed
by consumers and firms but not by the modeller. Furthermore, product characteristics x are
assumed to be exogenous (i.e., to be uncorrelated with the structural error terms ξ), whereas
prices and the log-share terms in the right-hand side of Equation (10) are considered as en-
dogenous. Prices are endogenous because, as it is typically assumed in price competition
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models with differentiated products, firms consider both observed and unobserved charac-
teristics when they set their prices. Market shares are endogenous since they are determined
a full system of demand equations involving the entire vectors of endogenous prices and
of unobserved characteristics, and because consumers choose products while potentially
considering the unobserved characteristics.

Therefore, the FIL model boils down to a linear instrumental variable (IV) regression.
The IV regression allows to deal with the endogeneity of prices and market shares due to
the modelling of unobserved product differentiation through the inclusion of structural error
terms ξjt. Furthermore, the linear structure helps clarifying the empirical identification (in
terms of instruments needed and tests for weak identification) and also eases and accelerates
the estimation (e.g., by application of the two-stage least squares estimator).

Consider now the case where the nesting parameters are projected into characteristics
space. Each nesting parameter µij is therefore an unknown function of a measure of similar-
ity d(2)

ij between products i and j into the characteristic space formed by the characteristics
x(2). In practice, the modeller will face several choices regarding the characteristics space
to consider (i.e., which x(2) to choose), the measure of similarity or distance to use (e.g.,
d(2)
ij is an absolute value, an Euclidian distance, etc.) and the functional form, known up to

some parameters γ to be estimated, to give to µ (e.g., µ a polynomial of degree 6 in d(2)
ij ).

The following example consider the set of choices that are made in the simulations of the
next section.

Example 3 (Projection into a One-dimensional Space). Consider the case of K2 = 1 prod-
uct characteristic x(2) taking values on the interval [0, 1]. Then, d(2)ijt = 1− |xit−xjt| is one
measure of similarity ranging from 0 (minimal similarity) to 1 (maximimal similarity).

The function µ can be specified as a polynomial function in d
(2)
ijt for it to be a flexible

function

µ
(
d
(2)
ijt ;γ

)
=

M∑
k=0

γk

(
d
(2)
ijt

)k
, (11)

where M is the degree of the polynomial function to be chosen by the modeller, and where
γ ≡ (γ0, . . . , γM) is the vector of parameters to be estimated.

3.2 Identification

Identification of the FIL model amounts to identifying its parameters. The FIL model boils
down to the linear IV regression (10), where prices and log-share terms are endogenous.
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Therefore, the main identification assumption is the existence of instruments z , that is, the
existence of variables that induce enough independent exogenous variation in each of these
endogenous variables. The discussion about identification thus reduces to the discussion
about what sources of empirical variation will help identifying demand parameters.

Consider first the vector of utility indexes δ. It is easy to identify, since higher market
shares implies higher utility indexes. Formally, as shown in Proposition 1, given µ, there
is a one-to-one mapping between the vector of utility indexes δ and the vector of market
shares s.

Regarding the parameters α and β parametrizing the utility indexes, their identification
is fairly simple. As is well known in the literature (see e.g., Berry, 1994; Berry et al., 1995;
Berry and Haile, 2014, etc.), this requires dealing with price endogeneity. This is done by
finding valid supply-side instruments, i.e., cost shifters and/or markup shifters. The first set
of instruments includes the Hausman instruments (Hausman et al., 1994; Nevo, 2001); the
second set involves the BLP instruments (Berry et al., 1995; Gandhi and Houde, 2020) as
well as market shocks such mergers Miller and Weinberg (2017).22

Turn now to the nesting parameters µij , which, as mentioned above (cf. Example 2),
govern the substitution between products i and j. Their identification is more tricky since it
requires exogenous variation in the relative popularity of product j with respect to product
i. In other words, one needs instruments that reveal about the substitution patterns among
products. Variables that generate exogenous variation in the choice set (including changes
in prices, product characteristics and number of products) are therefore good candidates as
instruments.

To get further insights on the identification of µ, consider the following two sets of
instruments that help learning about the substitution patterns: the first set comprises cost
shifters of own and competing products and the second set is a merger. For concreteness,
consider a stylized J = 3 case (similar to Example 2), where the demand model is a FIL
model and the supply model is a price competition model with three single-product firms.
Let again s1 = 0.15, s2 = 0.25, s3 = 0.20 and p1 = p2 = p3 = 1, but µ13 = µ23 = 0.2.

Consider two sets of simulations that shows how the two sources of data variation help
identifying µ. First, assume that product 1s cost c1 increase by 10%. The following scatter
plots show how the prices (left panel) and the relative shares of the products (right panel)
are affected depending on the level of µ12.

22Hausman instruments are prices in other markets. BLP instruments are functions of the characteristics
of competing products).
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Second, let firms 1 and 2 merge. The following scatter plots show how prices and
relative shares are affected depending on the level of µ12.

In both sets of simulations, one observes monotonic relationships between the between
the variation in prices and µ12 on one hand, and between the variation in relative shares and
µ12 on other hand. This shows that the way prices and relative shares change with product
1s cost increase or with the marger drives the estimates of the µs.

Lastly, consider the case of the projection. Identification of the parameters γ parametriz-
ing the projection µ requires finding a unique vector of parameters γ such that µij =

µ
(

d(2)
ij

)
for all i ̸= j. In the one-dimensional projection case of Example 3, γ can be

viewed as the OLS estimates of a regression of µij on {d(2)ij
k}k=0,...,M . The identification

assumptions are therefore the same as in the OLS setting. This result easily extends to the
multi-dimensional case.
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4 Comparison to the BLP Approach

This sections uses simulations to compare the FIL model to the BLP approach in terms
of post-estimation outputs (namely, price elasticities of demand and markups) and two
counterfactuals (namely, merger simulation and new product).

4.1 Simulations

Setting. I simulate a fully structural model of demand and supply. The demand side is
a standard static RCL model with a single normally distributed random coefficient on an
exogenous continuous characteristics. In the RCL model, the conditional indirect utility of
a consumer n in market t from choosing an inside product j is given by

unjt = β0 + βnxjt − αpjt + ξjt + εnjt, (12)

where the utility from choosing the outside good j = 0 is normalized to un0t = εn0t, for all
markets t = 1, . . . , T , where the εnjt’s are assumed to be distributed i.i.d. type I extreme
value. Each consumer n chooses one unit of the product that provides her the highest utility.
Then, the market share of product j in market t is computed as the probability that product
j provides the highest utility across all products in market t.

The supply side is a static oligopolistic price competition model with multiproduct
firms,23 where the marginal cost cjt is parametrized as follows

cjt = γ0 + γxxjt + γwwjt + ωjt,

where xjt is the product characteristic, which affects utility and cost, wjt is a variable which
only affects cost, and ωjt is an unobserved cost component.

Simulations. The simulations, which are strongly based on those of Armstrong (2016),
consider three data generating processes (DGP) by varying J and T . Simulations and
estimations of the RCL model make use of the Python package PyBLP by Conlon and

23In a static oligopolistic price competition model between F firms, each firm f =, 1, . . . , F producing
the set of products Jf , with ∪F

f=1Jf = J0 and ∩F
f=1Jf = ∅, chooses the prices pj of its products j ∈ Jf to

maximize its profit function given by Πf =
∑

j∈Jf
(pj − cj)σj(δ, x(2);µ), where cj is the marginal cost of

product j. Furthermore, assuming that a pure-strategy Nash equilibrium exists, prices p and market shares s
are therefore determined by the associated first-order conditions.
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Gortmaker (2020), which implements the best practices for estimating RCL models using
the BLP method, and use the approximate method to compute (an approximation of the)
optimal instruments.

For each DGP, 100 Monte Carlo datasets are constructed, and for each of them, T
markets are simulated, where each one consists of J products and F = 5 firms produc-
ing each one J/5 products. Each product j in market t is characterized by the vector
(sjt, pjt, xjt, ξjt, wjt, ωjt), where xjt and wjt are drawn from two independent standard uni-
form distributions, and where the vector of structural error terms, (ξjt, ωjt) ∼ N (0,Σ),

with Σ =

[
0.50 0.25

0.25 0.50

]
. Lastly, set βn ∼ N (6, 3), α = 1, γ0 = 2 and γx = γw = 1.

4.2 Results

Elasticities and Markups (Berry et al., 1995; Nevo, 2001). The following table shows,
for all the DGPs, that the FIL model fits pretty well the true substitution patterns and the
true markups. In comparison with the BLP approach, the FIL model does a good job. The
best fits are obtained for the second DGP which has a higher number of markets.

Table 1: Post-Estimation Outputs

Own-Elasticities Cross-Elasticities Markups

DGP with J = 25 and T = 100

True -4.065 0.161 0.335
[-4.095 ; -4.035] [ 0.160 ; 0.163] [ 0.329 ; 0.341]

FIL -3.869 0.159 0.363
[-4.437 ; -3.300] [ 0.136 ; 0.182] [ 0.303 ; 0.424]

BLP -4.076 0.162 0.335
[-4.471 ; -3.681] [ 0.146 ; 0.178] [ 0.302 ; 0.368]

DGP with J = 50 and T = 200

True -4.157 0.081 0.329
[-4.173 ; -4.141] [ 0.080 ; 0.082] [ 0.325 ; 0.332]

FIL -4.009 0.080 0.341
[-4.287 ; -3.731] [ 0.074 ; 0.085] [ 0.318 ; 0.365]

BLP -4.138 0.080 0.330
[-4.333 ; -3.942] [ 0.076 ; 0.084] [ 0.314 ; 0.347]

DGP with J = 100 and T = 20

True -4.207 0.0401 0.325
[-4.242 ; -4.173] [ 0.040 ; 0.042] [ 0.318 ; 0.333]

FIL -4.3410 0.042 0.356
[-4.889 ; -3.794] [ 0.037 ; 0.048] [ 0.308 ; 0.403]

BLP -4.242 0.040 0.324
[-4.705 ; -3.779] [ 0.036 ; 0.045] [ 0.288 ; 0.360]

Notes: Summary statistics across 100 Monte Carlo replications. For each repli-
cation, I compute the average. The middle number is the average over replica-
tions; lower numbers in brackets are the bounds of the 95% confidence interval.
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Merger (Nevo, 2000). Consider now a merger between 2 firms and observe the effects
on prices and market shares. The following table shows the results. It appears, for all the
DGPs, that the FIL model is able to obtain good predictions of the change in prices and in
market shares, even when merged firms are distinguished from the firms not concerned by
the merger.

Table 2: Counterfactual Results – Merger Simulation

Price Effect ∆p% Share Effect ∆s

All Firms Merging Firms Others All Firms Merging Firms Others

DGP with J = 25 and T = 100

True 3.349 7.170 0.775 -0.149 -12.447 8.135
[ 3.300 ; 3.400] [ 7.082 ; 7.258] [ 0.766 ; 0.784] [-0.150 ; -0.147] [-12.531 ;-12.363] [ 8.008 ; 8.263]

FIL 3.611 7.680 0.872 -0.152 -12.425 8.114
[ 3.531 ; 3.691] [ 7.528 ; 7.831] [ 0.848 ; 0.896] [-0.155 ; -0.150] [-12.501 ;-12.348] [ 7.991 ; 8.236]

BLP 3.310 7.126 0.739 -0.147 -12.446 8.138
[ 3.241 ; 3.377] [ 7.009 ; 7.243] [ 0.708 ; 0.770] [-0.150 ; -0.145] [-12.531 ;-12.362] [ 8.010 ; 8.265]

DGP with J = 50 and T = 200

True 3.266 7.009 0.777 -0.072 -13.026 8.543
[ 3.246 ; 3.286] [ 6.976 ; 7.042] [ 0.773 ; 0.780] [-0.072 ; -0.071] [-13.062 ; -12.990] [ 8.488 ; 8.597]

FIL 3.389 7.277 0.804 -0.074 -13.077 8.574
[ 3.361 ; 3.417] [ 7.222 ; 7.331] [ 0.797 ; 0.810] [-0.074 ; -0.073] [-13.109 ; -13.045] [ 8.520 ; 8.628]

BLP 3.284 7.046 0.782 -0.072 -13.026 8.543
[ 3.258 ; 3.309] [ 6.999 ; 7.093] [ 0.775 ; 0.789] [-0.072 ; -0.071] [-13.062 ; -12.990] [ 8.488 ; 8.598]

DGP with J = 100 and T = 20

True 3.207 6.890 0.774 -0.035 -13.367 8.774
[3.151 ; 3.263] [ 6.806 ; 6.973] [0.764 ; 0.785] [-0.036 ; -0.035] [-13.458 ; -13.275] [8.606 ; 8.942]

FIL 3.531 7.410 0.968 -0.032 -13.099 8.602
[3.454 ; 3.607] [ 7.278 ; 7.543] [0.949 ; 0.987] [-0.033 ; -0.031] [-13.185 ; -13.014] [8.439 ; 8.764]

BLP 3.182 6.846 0.762 -0.035 -13.368 8.774
[3.116 ; 3.248] [ 6.733 ; 6.958] [0.744 ; 0.779] [-0.036 ; -0.035] [-13.459 ; -13.277] [8.606 ; 8.942]

Notes: Summary statistics across 100 Monte Carlo replications. For each replication, I compute the average. The middle number is the
average over replications; lower numbers in brackets are the bounds of the 95% confidence interval.

New product (Petrin, 2002). Lastly, consider the exit of one firm and again observe the
effects on prices and market shares. The following table shows the results. For all the
DGPs, the FIL model is capable of obtaining good predictions of the change in prices and
in market shares. It is also interesting to note that for all DGPs, except the last one, the FIL
model does better than the BLP method.
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Table 3: Counterfactual Results – New Product

Price Effect ∆p% Share Effect ∆s

DGP with J = 25 and T = 100

True 3.253 24.954
[3.200 ; 3.305] [24.664 ; 25.244]

FIL 3.158 24.421
[3.042 ; 3.274] [24.138 ; 24.704]

BLP 2.602 24.852
[2.542 ; 2.662] [24.561 ; 25.142]

DGP with J = 50 and T = 200

True 2.883 24.996
[2.860 ; 2.905] [24.844 ; 25.147]

FIL 2.584 24.688
[2.563 ; 2.605] [24.538 ; 24.838]

BLP 2.430 24.934
[2.404 ; 2.457] [24.782 ; 25.086]

DGP with J = 100 and T = 20

True 2.602 24.690
[2.548 ; 2.656] [24.323 ; 25.057]

FIL 3.342 24.535
[3.272 ; 3.412] [24.170 ; 24.901]

BLP 2.251 24.657
[2.189 ; 2.312] [24.289 ; 25.025]

Notes: Summary statistics across 100 Monte Carlo
replications. For each replication, I compute the av-
erage. The middle number is the average over repli-
cations; lower numbers in brackets are the bounds of
the 95% confidence interval.

5 Conclusion

This paper has developed the FIL model, a structural inverse demand model for differen-
tiated products that accommodates rich substitution patterns thanks to a simple linear IV
regression with data on market shares, prices and product characteristics.

The FIL model uses a flexible nesting structure with a nest for each pair of products.
By contrast with the nested logit model, nesting in the FIL model is just a way to fully
parametrize the matrix of price elasticities of demand and does not require the modeller
to choose the nesting structure before estimation. This means that the implied cross-price
elasticities of demand are not constrained by the model, but instead are driven by the data.

The FIL model is then mapped into characteristics space to make the price elasticities
depending on product characteristics directly, as it is the case of the RCL model. Besides,
simulation results show that the FIL model is able to mimic the substitution patterns from
the RCL model pretty well and to get quite right prediction of a merger’s price effects.
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Throughout, this paper has considered a mapping into continuous characteristics space.
The projection into discrete characteristics (e.g., exploiting product segmentation), into
market-level variables (e.g., demographics) and into price spaces is left for future research.

The FIL model can be applied to various topics in industrial organization, international
trade, public economics, etc. It can be used to answer relevant policy questions, such as
the effect of mergers, products’ entry, and changes in regulation. Due to its simplicity of
estimation, the likely audience of the FIL model involves researchers as well as antitrust
practitioners in consultancies and competition authorities who wish to avoid complex pro-
cedures of estimation and/or who are under time pressure.24

Appendix A Proofs of Section 2

A.1 Proof of Proposition 1

Let ∆J ≡
{

s ∈ [0,∞)J+1 :
∑J

j=1 sj < 1
}

. Then, Proposition 1 can be extended as fol-
lows.

Proposition 4. Consider the function G = (G1, . . . , GJ) : [0,∞)J → [0,∞)J . Assume
that G is continuously differentiable and homogeneous of degree one on int (∆J) and has
a matrix of derivatives that is positive definite and symmetric on int (∆J). Further assume
that the 1-norm | lnG (s) | approaches infinity as s approaches bd (∆J). Let f : [0,∞)J →
RJ be defined by f = (f1, . . . , fJ) where fj(s) = lnGj(s)− ln

(
1−

∑J
k=1 sk

)
. It follows

that f is invertible on int (∆J).

Proof. The proof is an application of Theorem 26.5 in Rockafellar (1970) to the pair
(int(∆J),Ω), where Ω is defined by

Ω (s) =


∑J

j=1 sjfj (s) + ln
(
1−

∑J
k=1 sk

)
if s ∈ ∆J ,

+∞ otherwise.

24The nested logit models are commonly used by antitrust practitioners and competition authorities (e.g.,
the European Commission estimated nested logit models to simulate mergers for the Lagardère/Natexis/VUP
(2004), TomTom/Tele Atlas (2008), Unilever/Sara Lee (2010) cases; see CCR - Competition Competence
Report Autumn 2013/1) and by academics (see e.g., Björnerstedt and Verboven, 2016; Berry et al., 2016,
for recent papers that estimate nested logit models with aggregate data). The FIL model possesses the main
features that make it appealing for merger evaluation purposes, as highlighted by Pinkse and Slade (2004). It
imposes no specific restriction on the price elasticities; it is easily and fastly estimated by linear IV regression
using standard computer softwares; and it can handle very large choice sets.
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Note that ∇Ω(s) = f(s). The proof thus consists in showing that the pair (int(∆J),Ω) is a
convex function of Legendre type.

Ω is strictly convex on int(∆J), since its Hessian is equal to Js
lnG(s) + 1JJ/s0 for any

s ∈ int(∆J). Ω is essentially smooth, since it is differentiable through the open convex
set int(∆J) with limi→∞ |∇Ω (si) | = +∞ whenever s1, s2, . . . is a sequence in int(∆J)

converging to a point s ∈ bd(∆J). This latter feature is shown by first noting that ∇Ω(s) =
f(s) for s ∈ int(∆J) and then using that lims→bd(∆J ) | lnG(s)| = +∞.

Proof of Proposition 4. The proof amounts to show that the FIL model satisfies the as-
sumptions of Proposition 4. Let Gj(s) = (sj)

1−
∑

i ̸=j µij
∏

i ̸=j (si + sj)
µij , then note that fj

corresponds to the FIL model (3). The matrix of derivatives of lnG has entries ij given by[
1−

∑
i ̸=j µij

sj
+
∑
i ̸=j

µij

si + sj

]
1{i = j}+

[
µij

si + sj

]
1{i ̸= j}.

It is easy to show that the 1-norm | lnG (s) | that approaches infinity as s approaches
bd (∆J). It then remains to show that the function G is homogeneous of degree one and
that its derivative matrix is positive definite and symmetric.

It is homogeneous of degree one, since for λ > 0 and j = 1, . . . , J ,

Gj (λs) = (λsj)
1−

∑
i ̸=j µij

∏
i ̸=j

[λ(si + sj)]
µij

=

[
λ1−

∑
i ̸=j µij

∏
i ̸=j

λµij

][
(sj)

µj
∏
i ̸=j

(si + sj)
µij

]
,

=
[
λ1−

∑
i̸=j µij+

∑
i̸=j µij

]
Gj (s) = λGj (s) .

Furthermore, the derivative matrix of lnG is symmetric since Restriction (R2) implies
that its entry ij, µij/(si + sj), equals its entry ji, µji/(sj + si).

Lastly, the derivative matrix of lnG is positive definite. Let Ii,j be a (J × J) matrix
where Iij[i, i] = Iij[j, j] = Iij[i, j] = Iij[j, i] = 1 and zero otherwise. Let Ii,−j be a (J×J)

matrix where Iij[i, i] = Iij[j, j] = 1, Iij[i, j] = Iij[j, i] = −1 and zero otherwise. Let I[i]
be a (J × J) matrix where Iij[i, i] = 1 and zero otherwise. Then, using Restriction (R2),
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derivative matrix of lnG can be written as

J∑
i=1

(
1−

∑
i ̸=j µij

)
Ii

si
+

∑
0<i<j,µij>0

|µij|Ii,j
si + sj

+
∑

0<i<j,µij<0

|µij|Ii,−j

si + sj
,

which is positive definite since its first term is, by Restriction (R1), a positive definite
matrix, and its second and third terms are two sums of positive semi-definite matrices.

A.2 Proof of Proposition 2

Assume that one observes the vectors of prices and market shares, p and s. The proof
consists in showing that the FIL model can match that vector of market shares as well as
the true matrix of own- and cross-price demand elasticities.

Market Shares. Proposition 1 implies that there exists a unique vector of δ such that
σ(δ;µ) = s, which shows the first requirement for the FIL model to be Diewert (1974)
flexible. In particular, given µ to match the vector of market shares s, one can choose δ

such that
δj = ln

(
sj
s0

)
−
∑
i ̸=j

µij ln

(
sj

si + sj

)
.

Price Derivatives. Observing prices and market shares, matching price elasticities amounts
to matching price derivatives. Since the matrix of price elasticities is positive definite, this
is equivalent to matching the inverse of the matrix of price derivatives that has entries ij

given by (1/α)(∂σ−1
i /∂sj), where ∂σ−1

i /∂sj is given by Equation (5).
Consider matching the off-diagonal entries λij of the inverse of the true matrix of price

derivatives. Then, given α, one can choose µij such that

λij =
1

α

(
1

1−
∑J

k=1 sk
+

µij

si + sj

)
, (13)

⇔ µij =

(
αλij −

1

1−
∑J

k=1 sk

)
(si + sj) . (14)

Consider now matching the diagonal entries λjj . Differentiating
∑J

k=1 σk(δ)+σ0(δ) =

1 implies, for all j = 1, . . . , J , that
∑J

k=1
∂σk(δ)
∂pj

+ ∂σ0(δ)
∂pj

= 0, which can be rearranged as
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∑J
k=1

∂σk(δ)
∂pj

= αs0sj . This rearrangement uses that the relationship between the outside
good and any inside product is of the logit form (and justifies the definition of the class
in which the FIL model is flexible) and that market shares are matched. Stacking these
equations and inverting, one obtains

1JJ

α
(
1−

∑J
k=1 σk

) = λs, (15)

which implies that all λjj’s are matched.
Lastly, one can choose a value for α so that restriction (R1) is satisfied.

A.3 Proof of Proposition 3

Set µij = µ
(

d(2)
ij

(
x(2)
i , x(2)

j

))
. Then, the FIL model (3) can be rewritten as

σ−1
j

(
s, x(2)

)
= σ−1

j

(
s,d(2)

(
x(2)
))

= ln

(
sj

1−
∑J

k=1 sk

)
−
∑
i ̸=j

µ
(

d(2)
ij

(
x(2)
i , x(2)

j

))
ln

(
sj

si + sj

)
, (16)

= ln

(
sj

1−
∑J

k=1 sk

)
−

J∑
i=1

µ
(

d(2)
ij

(
x(2)
i , x(2)

j

))
ln

(
sj

si + sj

)
+ C, (17)

where C = µ (0) ln (1/2) ∈ R.
Observe in Equation (17) that the sum is over all products i = 1, . . . , J , including

product j itself, and that the constant C is product-invariant. This shows that the FIL
model projected into characteristics space is symmetric and anomynous.

Lastly, using Equation (16) shows that σ−1
j is invariant to translation in x(2) since, for

all c ∈ R,

σ−1
j

(
s, x(2) + c1

)
= σ−1

j

(
s,d(2)

(
x(2) + c1

))
= σ−1

j

(
s,d(2)

(
x(2)
))

= σ−1
j

(
s, x(2)

)
.
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