

AMERICAN ECONOMIC ASSOCIATION

Motivation

- Consider a linear regression model $y_i = x_i^T \beta + \epsilon_i$ where i = 1, ..., n and β is a p dimensional vector
- Assuming "one set of parameters fits all observations" can be misleading because the relationship between the predictor and the response variables may differ over time and space.
- A high dimensional (HD) change point (CP) regression model is, N + 1 = T = 0 = 0

$$y_i = \sum_{j=1}^{N+1} x_i^T \beta_{(j-1)}^0 \mathbf{1}[\tau_{j-1}^0 < w_i \le \tau_j^0] + \epsilon_i$$

where, $j = 1, ..., N \ge 0$ are CPs; τ is the location of CP such that $\tau_0 -\infty; \tau_{N+1}^0 = \infty; w$ is the change-inducing variable; and $\mathbf{1}[.]$ is an indic function.

- Studies so far discussed detection of CPs
 - Information based criteria, but not extendable to HD (Wu, 2008)
 - Single change point in HD (Lee et al., 2016, 2018)
 - Multiple change point with fixed regression parameters (Zhang et al., 2015; Leonardi and Buhlmann, 2016)
 - Single change point without grid search in HD (Kaul et al., 2019a)
 - Multiple change points with arbitrary segmentation (Kaul et al., 2019b)

This Study

- Extends the algorithm of Kaul et al. (2019a) to detect multiple change points via sequential binary segmentation based on l_1/l_0 regularization—where a change-inducing variable may switch the regression parameters.
- Which method performs better in HD model: binary versus arbitrary segmentation?

Binary Segmentation (Our Model)

Binary Segmentation Algorithm (Binseg):

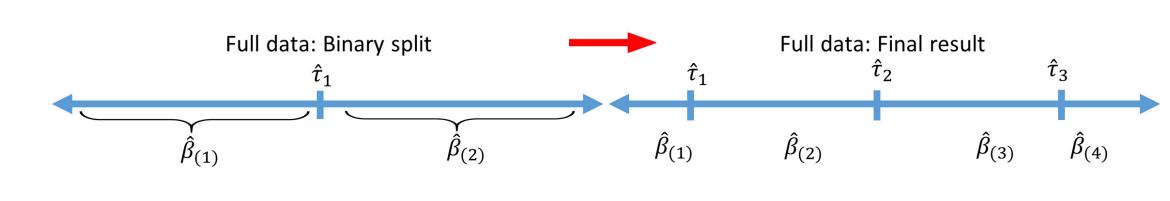
• Step 0: (Initialize) Choose any initial value $\tau^{(0)} \in \mathbb{R}$ and compute the initial regression parameter estimates such that $\lambda_1 > 0$

$$\left(\hat{\beta}_1^0, \hat{\beta}_2^{(0)}\right) = \arg\min_{\beta, \gamma} \left\{ Q(\tau^{(0)}, \beta_1, \beta_2) + \lambda_1 \left\| (\beta_1^T, \beta_2^T)^T \right\|_1 \right\}$$

• Step 1: Update $\tau^{(0)}$ to obtain the CP estimate $\hat{\tau}^{(1)}$ such that $\mu > 0$

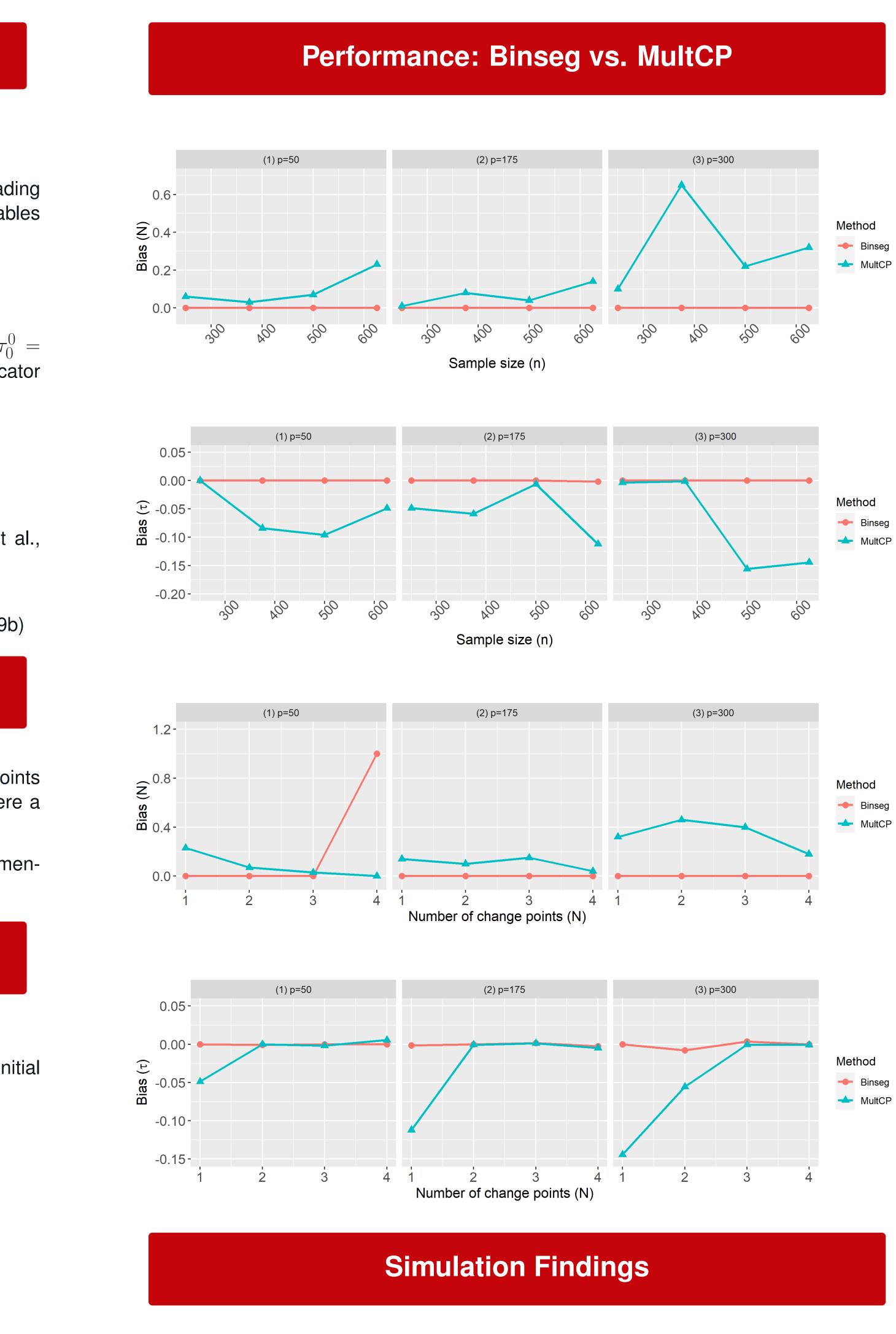
$$\hat{\tau}^{(1)} = \arg\min_{\tau} \left\{ Q\left(\tau, \hat{\beta}_1^{(0)}, \hat{\beta}_2^{(0)}\right) + \mu \|\phi(\tau)\|_0 \right\}$$

- Step 2: Update $(\hat{\beta}_1^{(0)}, \hat{\beta}_2^{(0)})$ to obtain $(\hat{\beta}_1^{(1)}, \hat{\beta}_2^{(1)})$
- Step 3: Repeat in each segment until no further change point is found.



MULTIPLE CHANGE POINTS DETECTION IN HIGH-DIMENSIONAL DATA

Modhurima Dey Amin*, Texas Tech University and Abhishek Kaul, Washington State University AEA ASSA Annual Meetings 2021



- Binseg improves over MultCP in detecting the true number of change points N and their locations τ (=the threshold values of w).
- Binseg tends to produce lower bias in τ and N regardless of the size of n, N, and p.
- The bias in MultCP estimates generally increases with p and n but decreases with N.

Contact Information: Modhurima Dey Amin, Ph.D. Assistant Professor, Texas Tech University Email: Modhurima.Amin@ttu.edu

Arbitrary Segmentation (Benchmark Model)

Arbitrary segmentation algorithm (MultCP):

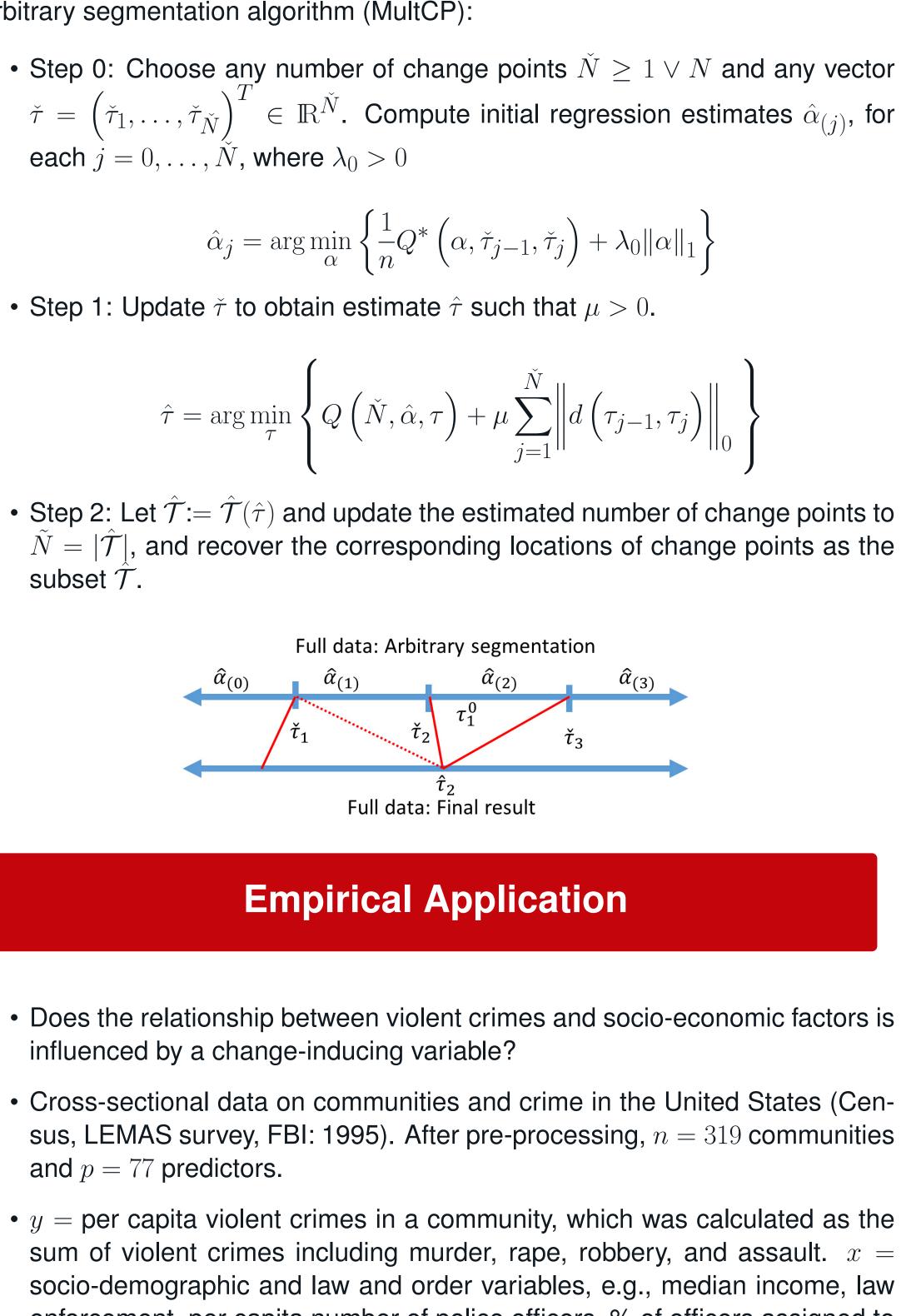
- $\check{\tau} = (\check{\tau}_1, \dots, \check{\tau}_{\check{N}})$
- each $j = 0, \ldots, N$, where $\lambda_0 > 0$

$$\dot{x}_{j} = \arg\min_{\alpha} \left\{ \frac{1}{n} Q^{*} \left(\alpha, \check{\tau}_{j-1}, \check{\tau}_{j} \right) + \lambda_{0} \right\}$$

• Step 1: Update $\check{\tau}$ to obtain estimate $\hat{\tau}$ such that $\mu > 0$.

$$\hat{\tau} = \arg\min_{\tau} \left\{ Q\left(\check{N}, \hat{\alpha}, \tau\right) + \mu \sum_{j=1}^{\check{N}} \left\| d\left(\tau_{j-1}\right) - \mu \sum_{j=1}^{\check{N}} \right\| d\left(\tau_{j-1}\right) \right\} \right\}$$

subset \mathcal{T} .



- influenced by a change-inducing variable?
- and p = 77 predictors.
- enforcement, per capita number of police officers, % of officers assigned to drug units, working population, homeless population.

Table: Summary of empirical estimation		
	Mean	SD
Dependent variable (y)		
Total violent crimes per 100k population	0.238	0.233
Change-inducing variable (w)		
Median household income	0.361	0.209
Population of the community	0.058	0.127
Households with social security income (%)	0.471	0.174
Mean persons per rental household	0.404	0.189
 MultCP does not detect any change point. 		

- Binseg detects one, two and three change points in the parameters induced by population, social security, and rental density respectively.
- Policies aimed at crime reduction should undertake separate measures across communities based on the estimated thresholds.

 $N \hat{ au}_0$

90 NA 7 1 0.23 2 0.47 0.63 3 0.32 0.36 0.41