

# Unearthed: An Exploration of Shale Development on House and Income Inequality

Shahrzad Ghourchian Siena College

## Motivation and Contribution

- Recent advances in shale development have produced both positive and negative outcomes for local communities, with higher employment and income known to be the most significant effects.
- Despite the stated importance of the distribution of economic gains among local populations in previous literature, adequate research on the shale boom's impact on inequality and affordability does not exist.
- I employ the difference-in-difference (DiD) method to study the unintended social consequences of the hydraulic fracturing boom in Oklahoma, the second-largest producer of oil and gas in the country, over the period of 2004-2017.

# Methodology

Number of Observations

• The difference-in-difference (DiD) method: identifying a specific intervention or treatment and then comparing the difference in outcomes after and before the

#### intervention for groups affected by it to the same difference for unaffected groups.

- I define the treatment group to be counties that experienced shale extraction and the treatment to be the shale development boom that happened in 2008.
- To avoid endogeneity, shale counties were selected based on their geographic location, as it is common in the literature.
- To avoid spillover effect, I construct and report results for a second sample that excludes non-shale counties that share a border with a shale county.
- Moreover, I apply same estimation to a third data set with all the counties except the only two metropolitan counties, Oklahoma county and Tulsa county, to avoid their excessive influence on the regression results.
- The DiD estimator is based on a strong identifying assumption: the availability of a treatment and a control group that would have had a similar trend without the treatment. To address this issue, I include a set of covariates; these covariates are used to describe how the average effect of the treatment varies with changes in observed characteristics. I also follow the literature (e.g., Linden and Rockoff, 2008; Caselli and Michaels, 2013) to examine preexisting differences in counties' characteristics using a cross-sectional estimator.
- Given the similarity of pre-treatment trends in shale and non-shale counties, I then use a linear DiD model to estimate shale boom effect on local communities:

 $ln(Outcome_{c}t) = \beta_{0} + \beta_{1}Shale_{c} + \beta_{2}Post2008_{t} + \beta_{3}Shale_{c} * Post2008_{t} + \mu_{c} + \nu_{t} + \epsilon_{ct}$ 

The dependent variable,  $ln(Outcome_c t)$ , represents outcomes of interest: housing price index, Gini coefficient, and housing affordability index.  $\beta_3$  is the coefficient of interest which measures the average shale development effect on shale counties by differencing the changes in outcomes in shale counties after 2008 with non-shale counties.

• I included income per capita, housing density and population density using the Census 2010 data as a set of control variables that allows counties with different characteristics to have different outcome. To make the specification even more robust, I follow the literature to include control variables for neighboring counties as well:

 $ln(Outcome_{ct}) = \beta_0 + \beta_1 Shale_c + \beta_2 Post2008_t + \beta_3 Shale_c * Post2008_t + \delta_1 X_c + \delta_2 C_c + v_t + \epsilon_{ct}$ 

| esults                                                                                              |                                                      |                                                      |                                                      |                          |                                                  |                          |                             |                          |                           |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------|--------------------------------------------------|--------------------------|-----------------------------|--------------------------|---------------------------|--|
|                                                                                                     |                                                      |                                                      |                                                      |                          |                                                  |                          |                             |                          |                           |  |
|                                                                                                     | Dependent Variable                                   |                                                      |                                                      |                          |                                                  |                          |                             |                          |                           |  |
|                                                                                                     | Housing Price Index                                  |                                                      |                                                      | Gini Coefficient         |                                                  |                          | Housing Affordability Index |                          |                           |  |
|                                                                                                     | (1)                                                  | (2)                                                  | (3)                                                  | (4)                      | (5)                                              | (6)                      | (7)                         | (8)                      | (9)                       |  |
| Post 2008                                                                                           | $0.00329 \\ (0.01)$                                  | 0.00479<br>(0.01)                                    | 0.00291<br>(0.01)                                    | $0.382^{***}$<br>(0.05)  | $0.382^{***}$<br>(0.05)                          | $0.313^{***}$<br>(0.04)  | $0.158^{***}$<br>(0.02)     | $0.157^{***}$<br>(0.02)  | $0.160^{***}$<br>(0.02)   |  |
| Shale County                                                                                        | $0.103^{***}$<br>(0.01)                              | $\begin{array}{c} 0.0243 \\ (0.02) \end{array}$      | 0.0340<br>(0.02)                                     | $0.363^{***}$<br>(0.04)  | $\begin{array}{c} 0.00889 \\ (0.06) \end{array}$ | $0.00652 \\ (0.06)$      | -0.0248<br>(0.02)           | -0.0139<br>(0.02)        | -0.0257<br>(0.02)         |  |
| Shale x Post 2008                                                                                   | $0.0554^{***}$<br>(0.01)                             | $0.0553^{***}$<br>(0.01)                             | $0.0580^{***}$<br>(0.01)                             | $0.0549 \\ (0.05)$       | $\begin{array}{c} 0.0549 \\ (0.05) \end{array}$  | $0.0481 \\ (0.05)$       | $-0.0546^{**}$<br>(0.02)    | $-0.0547^{**}$<br>(0.02) | $-0.0633^{***}$<br>(0.02) |  |
| Constant                                                                                            | $\begin{array}{c} 4.178^{***} \\ (0.01) \end{array}$ | $\begin{array}{c} 4.126^{***} \\ (0.02) \end{array}$ | $\begin{array}{c} 4.211^{***} \\ (0.13) \end{array}$ | $-2.627^{***}$<br>(0.04) | $-2.184^{***}$<br>(0.05)                         | $-2.460^{***}$<br>(0.36) | $6.636^{***}$<br>(0.01)     | $6.673^{***}$<br>(0.02)  | $6.390^{***}$<br>(0.17)   |  |
| County Fixed Effect                                                                                 | Yes                                                  | Yes                                                  | Yes                                                  | Yes                      | Yes                                              | Yes                      | Yes                         | Yes                      | Yes                       |  |
| Year Fixed Effect<br>County Set of Control Variables<br>Neighboring County Set of Control Variables | Yes<br>No                                            | Yes<br>Yes                                           | Yes<br>Yes<br>Ves                                    | Yes<br>No                | Yes<br>Yes                                       | Yes<br>Yes<br>Ves        | Yes<br>No                   | Yes<br>Yes               | Yes<br>Yes<br>Ves         |  |

### Data

- For housing values: county-level annual housing price index (HPI) from the Federal Housing Finance Agency (FHFA)
- For inequality: Internal Revenue Service (IRS) data for the Gini index
- For affordability: the median household income from the IRS data and the real housing price index from FHFA for the frequently used housing affordability index, the incometo-housing price ratio
- For counties' characteristics: Census 2010 data (income per capita, population density, and housing density)

### Conclusion

• The results suggest that the shale boom was

| Adj. $R^2$                                     | 0.834 | 0.323 | 0.352 | 0.682 | 0.562 | 0.575 | 0.392 | $0.84 \\ 0.434$ | 0.28<br>0.477 |  |
|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------|---------------|--|
| Standard errors are in parentheses             |       |       |       |       |       |       |       |                 |               |  |
| $^{***}p < 0.001,  ^{**}p < 0.01,  ^*p < 0.05$ |       |       |       |       |       |       |       |                 |               |  |
|                                                |       |       |       |       |       |       |       |                 |               |  |
|                                                |       |       |       |       |       |       |       |                 |               |  |
| References                                     |       |       |       |       |       |       |       |                 |               |  |

- Francesco Caselli and Guy Michaels. "oil windfalls improve living standards? Evidence from Brazil". In: American Economic Journal: Applied Economics 5.1 (2013), pp. 208-38.
- Leigh Linden and Jonah E Rockoff. "Estimates of the impact of crime risk on property values from Megan's laws". In: American Economic Review 98.3 (2008), pp. 1103-27.

associated with appreciation in housing values for 5.5% and a decrease of %6 in affordability in the state of Oklahoma for shale counties compared to non-shale counties.

- Although previous literature provides evidence for higher employment and income in shale counties due to the boom, the estimation fails to find any statistically significant effect on inequality.
- The results are consistent across three different samples, with or without covariates for shale counties or their neighbors.