Uncovering sparsity and heterogeneity in firm-level return predictability using machine learning

Theodoros Evgeniou Ahmed Guecioueur Rodolfo Prieto

Contributions
Specifications of predictive heterogeneity
To define groupings of firms, we consider two alternatives:

1. Firm industry memberships - based on SIC codes.
2. Inferring (possibly) latent group memberships from observable characteristics - by applying k-means clustering to characteristic means.

Bootstrap-based evidence in favour of incorporating heterogeneity - For each of the 2 specifications of heterogeneity in the cross-section, we estimate pooled and
by-group models and compute the incremental (by-group minus pooled) out-of-sample $R^{2}(\%)$. by-group models and compute the incremental (by-group minus pooled) out-of-sample $R^{2}(\%)$. Repeat for 1000 nonparameteric bootstrap samples
bootstrap confidence intervals for statistical testing.

- The statistically-significant incremental R^{2} values are typically positive:

Stable \& interpretable clusters of firms in the cross-section

The 3 stable clusters are interpretable based on the characteristics of the firms they comprise: 1. Mature firms with lower sfe (scaled analyst earnings forecasts), lower likelihood of securedind (secured debt), and higher operprof (operating profitability) and pchsale_pchinvt (difference between \%ge d inventory)
2. Younger firms. Below average cfp (cashflow to price) and sue (directional earnings surprises) 2. Younger firms. Below average cfp (cashtlow to price) and sue (directional earnings surprises).
3. Younger and recently PO 'ed and with low pchsale_pchinvt \& operprof and high chance of securedind.

Overall predictability, measured by out-of-sample R^{2} (\%)

- Clustering firms to define heterogeneity in predictive relationships, then incorporating this specification - Clustering firms to define heterogeneity in predictive relationships, then incorporating this specification
of heterogeneity when estimating a regularized linear model achieves an out-of-sample $R^{2}=1.05 \%$. - For context, Gu, Kelly, and Xiu (2020) achieved an out-of-sample $R^{2}=0.40 \%$ on their sample using a deep neural network. Rapach and Zhou (2013) argue that an in-sample $R^{2} \approx 1 \%$ is enough to falsify some asset pricing models, and that out-of-sample values are even lower

Table 3: Using industry memberships to define heterogeneity in predictive relationships.

Tobe 4: Clustering firms to define heterogeneity in predictive relationships

Uncovering sparsity \& heterogeneity in characteristic importance

- In the overall predictability results (above), heterogeneous lasso-based linear models performed well. Selection by the lasso is a measure of variable importance. These lasso-selected predictive variables
vary between clusters of firms and are a sparse subset of the 109 total variables employed. vary between clusters of firms, and are a sparse subset of the 109 total variables employed. In contrast to Gu, Kelly, and Xiu (2020), the important predictive variables are mostly a subset of
low-frequency cash and profitability-related coefficients (chpmia, cashpr) and the market-level D/P ratio ($d p _$_sp500), rather than higher-frequency price-based predictors.

Table 5: Frequency of selection (\%) across slices of our database, according to the by-Cluster lasso mode.

References

