MMismeasuring TFP and the myth of productivity shocks

> Gabriel Mathy American University

ASSA/AEA Meetings, Chicago/Virtual

January 2021

Debates over Procyclical Productivity

- Well known that measured productivity is procyclical
- Productivity
 - Iow in recession
 - high in recoveries
- Debate over whether this is due to:
 - Productivity varying over business cycle
 - Procyclical measurement errors
- If it is measurement error, then
 - Productivity growth at something like a "trend"

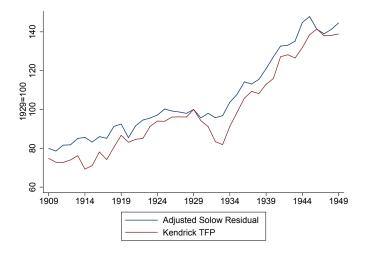
Solow Residual

- Solow Residual (Solow 1957)
 - Used to measure Total Factor Productivity (TFP)
 - Growth in GDP not explained by growth in factor inputs
 - Measure of our ignorance -Abramovitz

$$Y = AL^{(1-\alpha)}K^{\alpha}$$

$$\frac{dA}{A} = \frac{dY}{Y} - (1 - \alpha)\frac{dL}{L} - \alpha\frac{dK}{K}$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

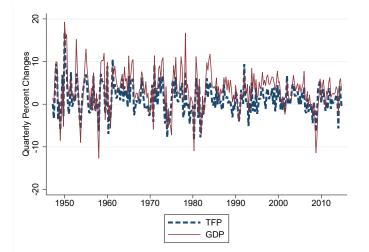

Cyclicality of Solow Residual

Solow Residual is Procyclical

Little debate about this for postwar (through at least 1980)

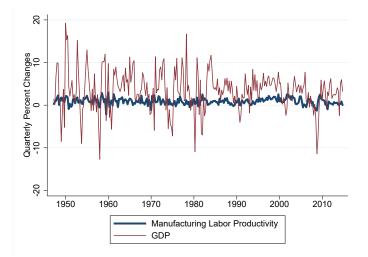
- Debate is whether this is due to:
 - Exogeneous Changes in TFP
 - \blacktriangleright Changes in TFP \rightarrow changes in output
 - Measurement Error (Cyclical)
 - \blacktriangleright Changes in output \rightarrow changes in TFP

Historical Solow-Adjusted and Unadusted Solow Residual



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Real Business Cycle Theory

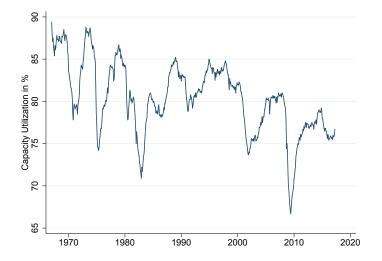

- Real Business Cycle Theory
 - Often based on productivity shocks
 - Long and Plosser 1983, *inter alia*
- Productivity falls in recessions
- 1. Marginal Product of Labor falls
 - Wages fall
 - Workers choose to work less
 - Move along labor supply curve
- 2. Marginal Product of Capital falls
 - Interest rates fall
 - Firms choose to invest less
 - Move along investment supply curve

Quarterly Percent Change in Solow Residual and Real GDP

・ロト・西ト・モト・モー シック

Quarterly Percent Change in Production Labor Productivity and Real GDP

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト の Q (2)


Factor Hoarding

- Labor Hoarding
 - Don't fire workers when sales fall
 - Ready to ramp up production once sales recover
- Capital Hoarding/Irreversible Investment
 - Don't scrap factory when sales fall
 - Ready to ramp up production once sales recover
 - Ramey and Shapiro (2001), Dixit and Pindyck (1994)

Cyclical Factor Utilization

- Labor Utilization
 - Workers work harder (less hard) when sales are high (low)
 - Accountants, Consultants, etc.
 - Christmas (Braun and Evans, 1998)
- Capital Utilization
 - Run fewer shifts to save on labor costs
 - Idle capital for maintenance / reduce depreciation

Capacity Utilization (in industry): varies a lot!

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Overhead Factors

- Overhead Capital
 - Easier to adjust equipment investment
 - Investment in structures is "overhead" and slow to adjust
- Overhead Labor
 - Easy to adjust blue collar/production workers
 - White collar/salaried workers more inflexible
 - Costly to break up teams of engineers, restructure management, etc.

Deviations from Standard Production Function/Competition

- Market Power
 - Market power likely procylical
 - Market power makes firms look more productive
 - Increases value of output without more inputs
- Increasing Returns to Scale
 - Many industries have increasing returns to scale (in short-run)
 - \blacktriangleright As sales $\uparrow,$ measured productivity rises with returns to scale

Literature on Mismeasurement

Authors	Hoarding	Utilization	IRS/MP
Solow (1957)/Okun(1962)	Х	Х	
Jorgenson and Griliches (1967)			Х
Hall (1988, 1990)			Х
Rotemberg and Summers (1990)	Х		
Bernanke and Parkinson (1991)			Х
Eichenbaum (1991)	Х		
Caballero and Lyons (1992)			Х
Burnside, Eichenbaum, Rebelo (1993)	Х		
Basu(1997)			Х
Basu and Kimball (1997)		Х	Х
Braun and Evans (1998)	Х		Х
Basu and Fernald (2001)		Х	Х
Inklaar et al. (2011)	Х		
Fernald (2012)		Х	

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What this paper does

To deal with issue of mismeasurement

- Use alternative measure of productivity
- Productivity of Production & Nonsupervisory Workers in Manufacturing
 - Make index of production worker manhours in manufacturing
 - Hours worked per week * total employment
 - Divide manufacturing output by production worker manhours

- Labor productivity has been used many times before
 - Manufacturing labor productivity behaves differently

Benefits to using this measure

Eliminates mismeasurement problems from TFP

- Long historical dataset
 - Annual 1899-1926
 - Monthly 1919-present

Allows us to look at productivity in Great Depression

Manufacturing pros and cons

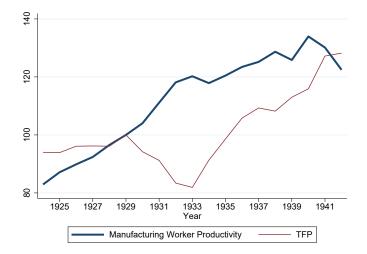
- Using manufacturing data has pros and cons
- Pros:
 - 1. Most productivity growth in manufacturing vs. services \rightarrow good sector to identify cyclicality of productivity
 - 2. Manufacturing is most cyclical sector vs. services/agriculture \rightarrow good sector to identify cyclicality of productivity
 - 3. Manufacturing relatively easy to quantity
- Cons:
 - 1. Manufacturing is never more than 30% of GDP, about 10% now
 - 2. Could be there is cyclicality of productivity in the non-manufacturing sector
 - 3. Imported inputs become increasingly important in manufacturing \rightarrow imported labor hours not measured
 - 4. Wage Earners/Production Workers/Production & Nonsupervisory categories slightly different

Capital Deepening

 Difference between TFP and labor productivity is capital deepening

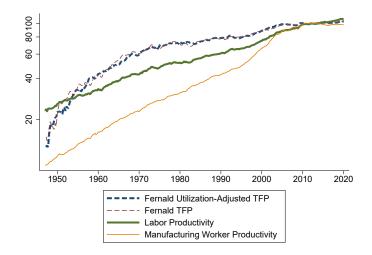
$$Y = AL^{(1-\alpha)}K^{\alpha}$$
$$\frac{Y}{L} = A\left(\frac{K}{L}\right)^{\alpha}$$
$$g\left(\frac{Y}{L}\right) - g(A) = \alpha \ g\left(\frac{K}{L}\right)$$
(2)

 As we will see, two measures behave differently over the business cycle


- Must be from the capital deepening term (mechanically)
- But capital deepening in practice has little cyclicality
 - Suggestive of mismeasurement issues instead

Solow Residual versus Production Labor Productivity

- Why else might the two productivity measures diverge?
 - Change in share of manufacturing in GDP
 - Change in share of labor in manufacturing
- But this doesn't vary much, especially over business cycle
 Even Great Depression
- ▶ Field (2003) finds TFP growth from 1929-1941 is 2.6%
 - \blacktriangleright I find 2.51% over same period for production labor productivity


 Graphs show close correspondence between trends of two measures of productivity

Solow Residual and Production Labor Productivity 1924-1942

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Solow Residual, Production Labor Productivity, and Utilization Adjusted TFP

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

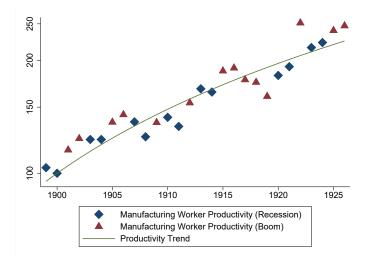
Preview of Results

- This paper finds that:
 - Cyclicality of productivity is due primarily to measurement issues with Solow Residual
 - Correcting for these measurement issues yields largely smooth series for productivity

- Changes in GDP \Rightarrow changes in measured Productivity
- Changes in actual productivity \Rightarrow changes in GDP
- Changes in productivity can not matter much for business cycles

Solow Residual versus Production Labor Productivity Productivity

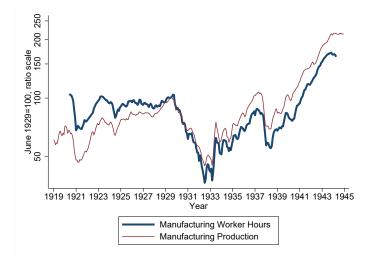
Avoids Mismeasurement	Solow Residual	Production Labor Productivity
Labor Hoarding	-	-
Capital Hoarding	-	\checkmark
Labor Utilization	-	-
Capital Utilization	-	\checkmark
Overhead Labor	-	\checkmark
Overhead Capital	-	\checkmark
Market Power	-	-
Increasing Returns to Scale	-	-

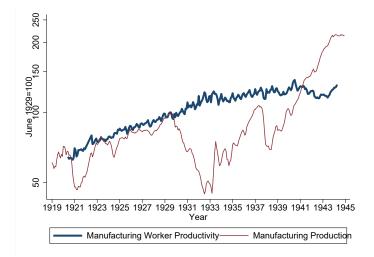

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fabricant Data

 Employment in Manufacturing, 1899-1939: An Analysis of Its Relation to the Volume of Production (Fabricant, 1942)

- Annual Data
- 1899-1926 for the series I consider
- Derived from Census of Manufactures
- Wage Earners in Manufacturing
- Average Hours of Work per Week per Wage Earner
- Index of Physical Output (Manufacturing)


Manufacturing Worker Labor Productivity in Recessions and Booms: 1899-1926

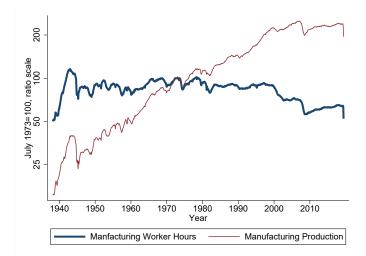

"Historical Data"

- Monthly Data, 1919-1944 with some monthly missing in 1920-1921
- Industrial Production: Manufacturing (SIC), 1919-present (SA) [Fed Board]
- Production Worker Employment, Manufacturing, Total for United States, 1919-1969 (NSA) [BLS]
- Average Hours of Work Per Week Per Wage Earner, All Male, Twenty-Five Manufacturing Industries for United States, 06/1920-12/1921, 07/1922-07/1948 [Conference Board]

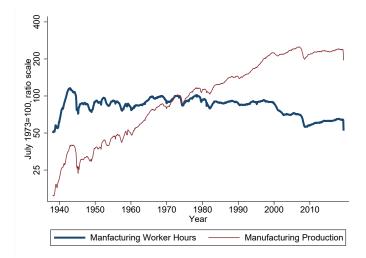
Manufacturing Output and Manufacturing Production Hours Worked: 1920-1944

Manufacturing Output and Manufacturing Production Labor Productivity: 1920-1944

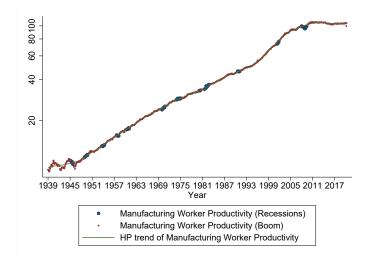
▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)


Production Labor Productivity in Recessions and Booms: 1920-1944

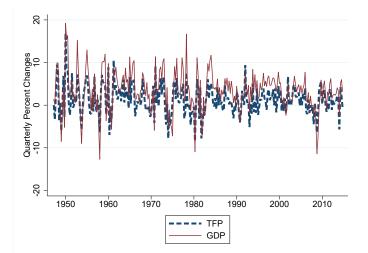
Modern Data


- ▶ 1939-2017, monthly through present
- Industrial Production: Manufacturing (SIC), 1919-present (SA) [Fed Board]
- Production and Nonsupervisory Employees: Manufacturing, 1939-present (SA) [BLS]
- Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing, 1939-present SA [BLS]

Manufacturing Production Labor Hours and Manufacturing Production: 1939-2017

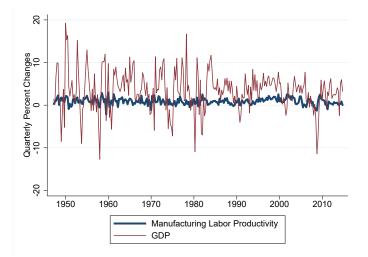

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Production Labor Productivity and Manufacturing Production: 1939-2017



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Production Labor Productivity in Recessions and Booms: 1939-2017



Quarterly Percent Change in Solow Residual and Real GDP: 1947-2017

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

Quarterly Percent Change in Production Labor Productivity and Real GDP: 1947-2017

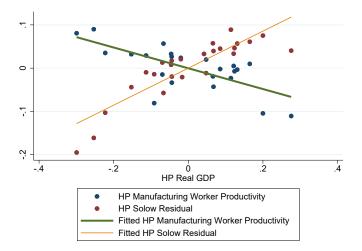
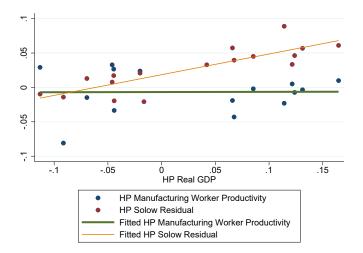

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト の Q (2)

Table: Correlation of HP-filtered Productivity Measure with HP-filtered Real GDP (smoothing parameter 6.25/1600)

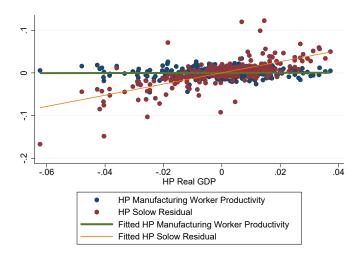
Period	Solow Residual	Production Labor Productivity
1921-1943	0.8797	-0.6965
1921-29,1935-1941	0.8687	0.0079
1947Q2-2013Q1	0.8039	0.0152

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


Scatterplot of Productivity Measures versus Real GDP I

Notes: HP-filtered logged variables with smoothing parameter 6.25, annual data from 1921-1941.

-


Scatterplot of Productivity Measures versus Real GDP II

Notes: HP-filtered logged variables with smoothing parameter 6.25, annual data from 1921-1941 excluding 1930-1934.

(日) (同) (日) (日)

Scatterplot of Productivity Measures versus Real GDP III

Notes: HP-filter to logged variables applied with smoothing parameter 1600, quarterly data from 1947Q2-2013Q1.

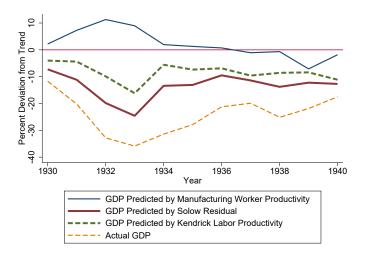
イロト イポト イヨト イヨト

Procyclical Productivity and Great Depression

- Productivity falls \sim 18 % in Depression (Ohanian 2001)
- Solow (1957), Bernanke and Parkinson (1991), Inklaar et al. (2011)

- RBC theorists initial avoid Great Depression
 Prescott (2002): taboo
- Great depressions of the 20th century
 - Kehoe and Prescott (2002)
- Misallocation helps explain drop in productivity
 - Ziebarth (2011)

RBC Model of Great Depression II


- Follows King et al. (1988), p. 215-218
- Based on Long and Plosser (1983)
 - ▶ 100% depreciation
 - Closed-form solution

$$\hat{k}_{t+1} = (1 - \alpha)\hat{k}_t + \hat{A}_t.$$
 (3)

$$\hat{y}_t = (1 - \alpha)\hat{k}_t + \hat{A}_t.$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RBC simulations of Great Depression II

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

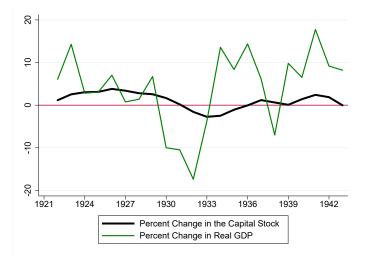
Mismeasurement in Production Worker Productivity

- Capital, once installed, largely irreversible
 - Ramey and Shapiro (2001)
- During Depression, capital stock falls through depreciation
 - Without irreversibility constraint/costs, capital stock would likely fall more

Mismeasurement in Production Worker Productivity

- Capital, once installed, largely irreversible
 - Ramey and Shapiro (2001)
- During Depression, capital stock falls through depreciation
 - Without irreversibility constraint/costs, capital stock would likely fall more
- This increases labor productivity measures like production worker productivity
- Capital utilization falls massively in Great Depression
 - Solow residual falls in Great Depression
 - Production Labor Productivity rises in Great Depression

Great Depression and Production Worker Productivity


- Capital stock falls from 1931 to 1935, but recovery starts in 1933
 - Suggest capital stock still too large during 1933-1935 recovery

- Note this countercyclical capital effect on labor productivity is small elsewhere however
 - Productivity is nearly acyclical

Great Depression and Production Worker Productivity

- Capital stock falls from 1931 to 1935, but recovery starts in 1933
 - Suggest capital stock still too large during 1933-1935 recovery
- Note this countercyclical capital effect on labor productivity is small elsewhere however
 - Productivity is nearly acyclical
- Seems to suggest that some capital is fully idled in normal recessions
 - Does little boost to labor productivity
- In Great Depression, suggestive that:
 - Depreciation not enough to reduce capital stock then
 - Abundant overhead capital increases labor productivity

Annual Percent Change in Capital Stock and Real GDP: 1921-1943

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Conclusion I

- Labor Hoarding, Labor Utilization (Production Workers)
 - Insignificant
- Labor Hoarding, Labor Utilization (Nonproduction Workers/Overhead labor/Management)

Significant

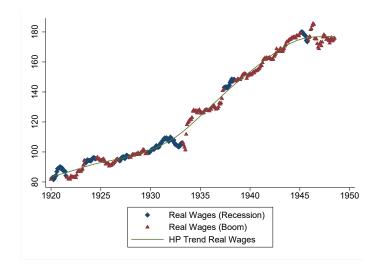
Conclusion I

- Labor Hoarding, Labor Utilization (Production Workers)
 - Insignificant
- Labor Hoarding, Labor Utilization (Nonproduction Workers/Overhead labor/Management)

- Significant
- Capital Hoarding, Capital Utilization
 - Important (especially in Depression)
- Increasing Returns to Scale, Market Power (Production Workers)
 - Insignificant

Conclusion II

- Exogeneous productivity shocks generating business cycles
 - Little supportive evidence here
 - Especially not for Great Depression.....
- Productivity shocks have basically no explanatory power for the American business cycle
- Suggestive that other theories of the business cycle will be more fruitful approaches

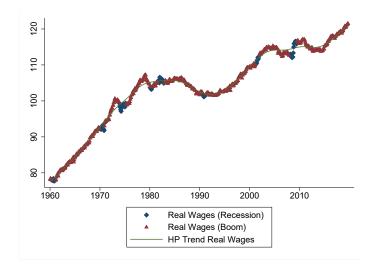

- Nominal shocks
 - Monetary policy shocks
- Other real shocks
- Something else

Real Wage Cyclicality

Another Puzzle:

- Why aren't real wage very cyclical
- This is a puzzle if you think that productivity is cyclical
 However...
- If Labor Productivity is acyclical
 - ► Then, in a neo-classical model...
- Real Wages should also be acyclical
 - So acyclical productivity helps explain weak cyclicality in real wages

Real Wages (CPI): 1919-1947


▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Real Wages (CPI): 1939-2017

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Real Wages (PCE): 1939-2017

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで