

s:fi

Ask BERT: How Regulatory Disclosure of Transition and Physical Climate Risks affects the CDS Term Structure

Julian F. Kölbel¹, Markus Leippold¹, Jordy Rillaerts^{1,2}, Qian Wang¹

¹University of Zurich, Department of Banking and Finance and ²Swiss Finance Institute

Motivation

- Climate-related risks are becoming more and more relevant
 - Transition risks: regulatory reform intended to combat global warming
 - Physical risks: emerge from extreme (weather) events
- Adequate disclosure aids efficient pricing of risks
- Securities and Exchange Commission (SEC) requires firms to report self-identified (climate) risks in their annual 10-K filings (e.g. item 1.A Risk factors)
- We use BERT, a state-of-the-art NLP technique, to develop firm-specific measures of climate risks based on (qualitative) regulatory disclosure
- Analyse effect on term structure of credit default swap (CDS) spreads
 - Climate change affects firms at different horizons \rightarrow various CDS maturities
 - CDS market unlikely to be driven by preferences, focus on risk (hedging)

The effect of (climate) risk disclosure on credit spreads: theory

Methodology – BERT

- Developed at Google (Devlin et al., 2019)
- Contextual neural language model
- Used on Item 1.A in 10-K reports
 - Look for presence of climate-relevant topics (CN task)
 - Assessment transition or physical risk (TP task)
- \rightarrow Sentence level (raw) score
- \rightarrow Aggregated on document level (= firm-year level)
- \Rightarrow Transition and Physical score

Table 1: Model performance

	CN Task		TP Task	
Model	Acc	F1	Acc	F1
Baseline	81.07	82.03	58.60	48.60
BERT-Single	94.17	94.07	90.78	90.27
BERT-Multitask	98.06	98.02	85.44	82.36
BERT-GCE	94.17	94.07	90.29	89.68
BERT-Multi-GCE	99.51	99.50	89.81	88.45

Risk-perception effect

Risk disclosure may increase perception of corporate risk (Kothari et al., 2009)

Transition risk

- Argument based on the classical Merton (1974) model
- Smooth transition to new regulatory regime will reduce firm's asset value

Physical risk

- Increase in the severity and frequency of (extreme) climate events
- Adding jumps to model (Zhou, 2001)

Information uncertainty effect

Baseline model - Panel first-difference model

$\Delta S_{i,t+1}^{m} = \beta_{T} \Delta Transition_{i,t} + \beta_{P} \Delta Physical_{i,t} + \Phi \Delta X_{i,t} + \Theta \Delta Y_{t} + \epsilon_{i,t+1},$

with $S_{i,t+1}^m$ next month's (average) *m*-year spread

Paris agreement, December 2015

- Accelerated the global push for climate regulation
- Especially relevant for transition risk disclosure
- Effect *Transition* should be even stronger after the Paris agreement
- \rightarrow Introduce post-Paris dummy and interact with *Transition* and *Physical*

Main results

General climate material sample

Table 2: Results for subsample of material industries, controlling for the Paris agreement

	ΔS^{1Y}	ΔS^{1Y}	ΔS^{5Y}	ΔS^{5Y}	ΔS^{10Y}	ΔS^{10Y}	ΔS^{30Y}	ΔS^{30Y}
$\Delta Physical$	18.283	29.860	25.538	17.304	23.175	19.490	22.125	20.953
	(16.381)	(40.673)	(19.078)	(14.276)	(17.956)	(13.909)	(17.660)	(13.802)
Δ Transition	10.940	-6.376	33.592**	0.548	35.364*	5.288	32.050*	4.723
	(7.618)	(13.647)	(16.656)	(19.797)	(18.338)	(20.791)	(19.284)	(21.181)
Δ Physical $ imes$ Post		-66.581		12.901		-5.912		-15.442
		(115.552)		(103.051)		(85.884)		(81.507)
Δ Transition $ imes$ Post		74.968*		135.017***		123.703**		112.892*
		(43.759)		(50.174)		(48.843)		(43.981)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ν	9972	9972	9972	9972	9972	9972	9972	9972
R-squared	0.028	0.030	0.068	0.076	0.067	0.074	0.062	0.067

Risk disclosure may reduce information asymmetry between firms and investors

Transition risk

• Disclosure reduces information uncertainty on firm's asset value (Duffie & Lando, 2001)

Physical risk

• Argument follows from implications of imprecise knowledge about rare events under ambiguity aversion (Liu et al., 2005)

Data

• CDS data from Thomson Reuters Datastream

S.e. in parentheses. *, **, and *** denote p-levels below 10%, 5%, and 1%.

220 200 A one-standard-deviation increase in 180 *Transition* leads to an increase of 6.99bps . 160 ص

(4.4%) in the average five-year CDS spread for the post-Paris period.

Focus on physical risk material industries

A one-standard-deviation increase in *Physical* results in a decrease in the average five-year CDS spread of 7.37bps (-4.1%).

Table 3: Results for subsample of physical material industries

	ΔS^{1Y}	ΔS^{5Y}	ΔS^{10Y}	ΔS^{30Y}
$\Delta Physical$	- 379.924**	- 419.190***	- 372.812***	- 342.756**
	(178.394)	(134.813)	(128.073)	(138.702)
Δ <i>Transition</i>	168.027**	198.936***	183.583***	168.935***
	(78.750)	(59.814)	(45.513)	(43.728)
Controls	Yes	Yes	Yes	Yes
Ν	6971	6971	6971	6971
R-squared	0.028	0.030	0.068	0.076

S.e. in parentheses. *, **, and *** denote p-levels below 10%, 5%, and 1%.

(a) Level impact of transition risk

• 10-K filings in SEC's Edgar database

• Period: February 2010 - December 2018

• Firm-specific and macroeconomic controls taken from prior literature (Collin-Dufresne et al., 2001; Ericsson et al., 2009; Han & Zhou, 2015)

Methodology – Industry classification

Sustainability Accounting Standards Board's (SASB) Sustainable Industry Classification System (SICS)

• Emphasizes a company's sustainability profile

• SASB's materiality map

- Industry level climate risk materiality (Matsumura et al., 2018)
- Climate risks (disclosure) only relevant in so-called 'material' industries
- Different materiality subsamples: general and focus on physical risk

Industry level clustering of standard errors

Robustness check – **Substantial advantage new BERT measure?**

• Carbon emissions data as proxy for transition risk

• Comparing with keyword-based NLP algorithms

- CookESG research/CERES climate risk measure based on 10-K reports (Berkman et al., 2019)
- Scores from Sautner et al. (2020), based on textual analysis of earnings conference calls

 \Rightarrow BERT measures provide most consistent results in our CDS context

References

Berkman, H., Jona, J., & Soderstrom, N. S. (2019). Firm-specific climate risk and market valuation (Working paper). Collin-Dufresne, P., Goldstein, R. S., & Spencer, M. J. (2001). The determinants of credit spread changes. The Journal of Finance, 56(6), 2177–2207. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 4171–4186. Duffie, D., & Lando, D. (2001). Term structures of credit spreads with incomplete accounting information. *Econometrica*, 69(3), 633–664. Ericsson, J., Jacobs, K., & Oviedo, R. (2009). The determinants of credit default swap premia. Journal of Financial and Quantitative Analysis, 44(1), 109–132. Han, B., & Zhou, Y. (2015). Understanding the term structure of credit default swap spreads. Journal of Empirical Finance, 31, 18-35. Kothari, S. P., Li, X., & Short, J. E. (2009). The effect of disclosures by management, analysts, and business press on cost of capital, return volatility, and analyst forecasts: A study using content analysis. The Accounting Review, 84(5), 1639–1670 Liu, J., Pan, J., & Wang, T. (2005). An equilibrium model of rare-event premia and its implication for option smirks. *The Review of Financial Studies*, 18(1), 131–164. Matsumura, E. M., Prakash, R., & Vera-Muñoz, S. C. (2018). Capital market expectations of risk materiality and the credibility of managers' risk disclosure decisions (Working paper). Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449-470. Sautner, Z., van Lent, L., Vilkov, G., & Zhang, R. (2020). *Firm-level climate change exposure* (Working paper) Zhou, C. (2001). The term structure of credit spreads with jump risk. Journal of Banking & Finance, 25(11), 2015–2040.