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Abstract

We study the optimal selling mechanism and information disclosure policy for a

house seller. The seller can select any selling mechanism, including an auction, and

release additional information about the house to buyers. Release of information

adjusts the buyers’ values and bids. We find that the optimal mechanism is a

combination of the optimal auction and full information disclosure. But if the seller

uses a second-price auction instead, concealing additional information about the

house may be optimal for her. Moreover, the seller can extract buyers’ private

value adjustments by selling them contracts similar to European call options.
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Introduction

Selling a home is a major financial decision. However, most home sellers participate in

the housing market infrequently1 and, hence, have limited experience and knowledge in

the home selling process. Real estate agents help home sellers to market and get the best

price for the house, but they may be inexperienced (Gilbukh and Goldsmith-Pinkham

(2020)) or have biased incentives (Rutherford, Springer, and Yavas (2005), Levitt and

Syverson (2008)). The key question for home sellers is what is the best way to sell the

house to maximize the expected revenue.

This paper sets up the optimal mechanism problem of the home seller who deals with

one or multiple interested buyers. The main focus of the paper is whether or not the seller

should share additional information that the seller possesses about the house. However,

we allow the seller to also select any feasible selling mechanism at the same time.

We find that the optimal mechanism is a combination of full information disclosure

and an optimal auction. In our setting, the release of information increases the dispersion

of the buyers’ estimates of house value. An optimal auction selects the buyer with the

maximum marginal revenue. Because maximum is a convex function, higher dispersion of

values increases expected revenue, so full information disclosure is optimal. Additionally,

if the seller runs the optimal auction without being able to choose the mechanism, the full

information disclosure is still optimal. In the baseline model, we assume that the seller

can observe new information, released to buyers. But this is without loss of generality

because the seller can use the handicap auction, proposed by Eso and Szentes (2007), to

elicit the buyer’s values and earn the same expected revenue. We show how to implement

the handicap auction in our setting, which includes offering buyers to purchase contacts

similar to European call options, and then running a modified second-price auction.

Even though the seller’s optimal mechanism is a combination of full information dis-

closure and an optimal auction, it is challenging to implement the optimal auction. In

practice, housing auctions, or bidding wars, are conducted using ascending auctions. For

example, in the US, auctions are informal. Typically, real estate agents facilitate bid-

ding by submitting sealed-bid offers when multiple interested buyers are involved. In this

case, buyers often compete by submitting their best and final offers or offers that include

a separate agreement, called an escalation clause2. The escalation clause is usually an

addendum to a purchase offer for a home. In this clause, the buyer specifies that if the

1Most homeowners stay in their home for nine years on average, see Ngai and Tenreyro (2014).
2The name of the clause may vary across states. For example, in Wisconsin, it is called the acceleration

clause instead of the escalation clause.
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seller can serve the buyer another offer with a higher purchase price, the buyer is will-

ing to increase his offer by a certain amount until a ceiling cap3. The escalation clause

allows to implement an English ascending bid auction4. An ascending auction is weakly

strategically equivalent to a sealed-bid second-price auction because it means that only

one buyer is willing to continue at the current price, which represents the second-highest

bid.

In addition to our analysis of the optimal mechanism, we study the second-price auc-

tion because it similar to the auction process often employed in reality, does not require

the seller to know the distribution of house values to conduct the auction, and is easy

to model. If the seller runs the second-price auction and there are two bidders, the ex-

pected revenue is a minimum of two bids. Since minimum is a concave function in new

information, we know from Board (2009) that the seller should not reveal information.

When there are more than two bidders, the expected revenue can be either concave or

convex depending on whether new information changes the winning buyer. If the allo-

cation changes the winning buyer, the expected revenue is locally concave, so the seller

should release new information, and vice versa if not.

We get that the seller should use a full information disclosure policy in the optimal

mechanism and the optimal auction, and could conceal information in the second-price

auctions. What explains these differences in the results? First, new information could

asymmetrically shift the buyer’s value distributions, so the revenue equivalence theorem

does not necessarily hold and predictions from different auction formats can vary. Second,

new information can change which bidder buys the houses, that is, change the allocation.

When the allocation changes, the revenue is convex in new information in the optimal

auction and is locally concave in new information in the second-price auction. When the

revenue is convex, the seller should release the information, and vice versa when it is

concave, explaining differences in predictions. This last point is also the key difference

3An example of the escalation/acceleration clause attached to the buyer’s purchase offer is “If seller
received any bona fide offer on the property before May 10th, 2020, with a net purchase price equal to or
higher than $350,000 buyer agrees to pay $1,000 more than said offer, up to a maximum purchase price
of $370,000, provided seller delivers a copy of the offer within 2 days of actual receipt of said offer.”

4The home sale process is similar in Australia, Norway, New Zealand, UK and Singapore, where
homes are also auctioned off to potential buyers, with some variation in the institutional details. See
Lusht (1994), Lusht (1996), Genesove and Hansen (2019) for Australia, Anundsen and Larsen (2018)
for Norway, Dotzour, Moorhead, and Winkler (1998) for New Zealand, Merlo and Ortalo-Magné (2004)
and Haurin, McGreal, Adair, Brown, and Webb (2013) for UK, Chow, Hafalir, and Yavas (2015) for
Singapore, Han and Strange (2015) for Canada, Hungria-Gunnelin (2018) for Sweden, Stevenson and
Young (2015) for Ireland. Usually, the bidding process stops when one of the buyers places the highest
bid and none of the other buyers are interested in continuing, which is an English ascending auction.
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from Milgrom and Weber (1982)’s linkage principle. In their setting new information does

not change the allocation.

The paper contributes to several strands of literature. First, we add to the discus-

sion of the optimal home selling strategies. Most of the prior literature5 discussed the

seller’s choice of the asking price that allows to maximize the revenue except for Arnold

and Lippman (1995), Quan (2002), Gan (2013) who consider the seller’s choice between

two mechanisms: sequential search and an auction. We add to this literature by allow-

ing the seller to optimize over any individually rational and incentive-compatible selling

mechanisms and information disclosure policy. We find that the optimal mechanism is

the combination of the optimal auction and full information disclosure. This is consis-

tent with the note in Adams, Kluger, and Wyatt (1992) that sellers should auction the

property when facing several multiple buyers at once, although they do not consider the

joint problem of selecting the mechanism and the information disclosure policy. If the

distribution of buyers’ values is symmetric, the optimal mechanism can be implemented

by first releasing all available information about the house, for example, by allowing pre-

bidding home inspections, and then running the second-price auction with an optimally

set reserve price. We also allow asymmetric distributions of house values, in this sense

being closest to Emmerling, Yavas, and Yildirim (2020).

Second, we contribute to the literature on information disclosure in real estate markets.

Myers, Puller, and West (2020) study the mandate to disclose the home’s energy efficiency,

introduced in the City of Austin, Texas, in 2009, and provide empirical evidence that

information disclosure policies helps to capitalize the home energy efficiency into house

prices. They also find puzzling evidence that not all sellers comply with the disclosure

policy. They use the bargaining model, which explains this puzzle through the existence

of the information disclosure costs and the seller’s ignorance about the energy efficiency

costs.

We contribute to this discussion by allowing the seller to jointly choose the mechanism

and information disclosure policy. The information disclosure could include any informa-

tion that affects buyers’ house valuations additively, for example, energy efficiency costs,

potential future repair costs, past home improvements, and hidden home features. Within

a general framework, we find that full information disclosure policy is part of the optimal

mechanism. However, if the seller conducts a commonly used second-price auction, then

5Arnold (1999), Haurin, Haurin, Nadauld, and Sanders (2010), Merlo, Ortalo-Magné, and Rust (2015),
Han and Strange (2016), Albrecht, Gautier, and Vroman (2016), Guren (2018) and further references in
Han and Strange (2015).
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the seller may find it optimal to conceal additional information. This could be an alterna-

tive explanation of the puzzling partial information disclosure in Myers, Puller, and West

(2020).

Third, the paper contributes to the literature on bidding wars and auctions in housing

markets6 by allowing the seller to optimize over the selling mechanism and information

disclosure. This provides theoretical grounds for analyzing the joint determination of

prices, sales, probability of sale (inverse of the time on the market) using the bidding data

across different countries and institutions settings.

1 The Model

A risk-neutral seller decides how to sell to one of N ≥ 1 risk-neutral bidders. The seller’s

valuation of the house is normalized to zero. Denote the buyer i’s true house value

as Vi. When bidder i tours the house, he independently draws his signal of the value

vi ∼ Fi[vi, vi]. The signal distributions Fi could be asymmetric. We assume that Fi has

full support, and that vi − 1−Fi(vi)
fi(vi)

is non-decreasing as in the standard auction models7.

The seller has additional private information εi about the value of the house that

she could reveal to the bidders. Revealing information reduces bidder i’s house value to

Vi = vi−εi, where E[εi|v1, . . . , vN ] = 0 for all v. One of the interpretations of this additive

adjustment εi is the estimate of the future repair costs of bidder i. The εi’s could be

correlated with each other, but they are independent of v.

We analyze the optimal selling mechanism and information disclosure policy for the

seller who commits to this mechanism and policy, as in standard auction models8.

2 The Optimal Mechanism

We start by setting up the optimal mechanism problem of the seller. Generally, we could

consider all possible mechanisms, including the indirect mechanisms in which a buyer

6Quan (1994), Mayer (1998), Haurin, McGreal, Adair, Brown, and Webb (2013), Han and Strange
(2014), Stacey (2016), Smith (2019), Arefeva (2019).

7The requirement vi− 1−Fi(vi)
fi(vi)

makes the marginal revenue function of the seller weakly decreasing in

the probability of sale (“quantity”).
8The assumption about the seller’s commitment to the mechanism allows us to rely on the revelation

principle, see the next section. It is a standard assumption is in the auction models because, if the seller
cannot commit to the mechanism, we cannot use the revelation principle, significantly complicating the
analysis, see Skreta (2015).
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is asked to report some function of his signal such as a bid or a message. However, we

concentrate on the truthful equilibria of direct mechanisms in which buyers directly report

their signals. It is because of the revelation principle. The revelation principle guarantees

that the outcome of any equilibrium of any mechanism can be implemented by a truthful

equilibrium of some direct mechanism. Hence, we analyze a direct mechanism in which a

buyer is asked to report his signal and the mechanism determines which buyer gets the

house and how much each bidder pays.

Bidder i privately observes the signal vi. Then bidder i submits report ṽi about his

signal vi. The seller can then release additional information ε. If the bidder did not

make a report before the release of information, he must make a report after the release

of information. In equilibrium, all bidders will report their signals right away, before

the release of information, so this requirement is not binding. We require the bidder to

make a report when the seller releases information. If the seller reveals additional private

information ε, then it becomes common knowledge. We will relax this assumption in

Section 5.

The seller can allocate the house and make transfers both before and after release of

information. Suppose that bidders i1, ..., ik report their signals before the information rev-

elation. A mechanism consists of four functions (X1i, T1i, X2i, T2i) for each bidder i, where

X1i(ṽi1 , ..., ṽik), T1i(ṽ1i , ..., ṽik) are the allocation and the transfer before releasing of infor-

mation based on reported values ṽ andX2i(ṽ1, ..., ṽN ; ε1, ..., εN), T2i(ṽ1, ..., ṽN ; ε1, ..., εN) are

the allocation and transfer after the release of information based on the bidders’ reports

and repair costs.

The individual rationality (IR) constraints must be satisfied before and after the seller

reveals additional information. Specifically, the mechanism must guarantee bidder i ex-

pected utility is non-negative if he makes a report before release of information, and at

least εi after the release of information. The interpretation is that the buyer must be

interested in following through with the house purchase both before and after the results

of the inspection report are released.

The mechanism must also satisfy the incentive compatibility (IC) constraint. In partic-

ular, if the bidder makes a report before the release of information, then his IC constraint

must take into account his payoffs before and after the release of information.

Theorem 2.1. The optimal mechanism is to release the information and then run the

optimal auction.

Proof. We require that the optimal mechanism satisfies the individual rationality con-

6



straints, that is the expected utility of a bidder from participating in the mechanism is

non-negative. Hence, each bidder i is willing to report his signal vi in equilibrium. This

allows us to simplify the notation below.

Let v = (v1, ..., vN) and ε = (ε1, ..., εN). A mechanism consists of four functions for

each bidder i: (X1i(v), T1i(v), X2i(v; ε), T2i(v; ε)), where X1i(v), T1i(v) are the allocation

and the transfer for bidder i before the release of information based on reported values

v and X2i(v; ε), T2i(v; ε) are the allocation and transfer after the release of information

based on the bidders’ reports v and repair costs ε.

Since there is only one house, the allocation rule must satisfy

N!

i=1

X1i(v) +
N!

i=1

X2i(v; ε) ≤ 1, ∀ε, v. (2.1)

Let T1i(vi) =
"
v−i

T1i(vi, v−i)dv−i and P1i(vi) =
"
v−i

X1i(vi, v−i)dv−i denote bidder’s i

expected transfer and chance of receiving the house if the seller does not release the infor-

mation. Similarly, T2i(vi, ε) =
"
v−i

T2i(vi, v−i; ε)dv−i and P2i(vi, ε) =
"
v−i

X2i(vi, v−i; ε)dv−i

denote bidder’s i expected transfer and chance of receiving the house if the seller releases

the information.

The mechanism must satisfy the individual rationality (IR) constraints for each bidder

if the seller does not release the information

P1i(vi)vi − T1i(vi) ≥ 0,

and if the seller releases the information

P2i(vi, ε)(vi − εi)− T2i(vi, εi) ≥ 0.

The bidder decides whether to report the signal v′i, and then the seller decides whether

to disclosure the information. Because the individual rationality constraints are satisfied,

all bidders report the signal independently of the information disclosure policy of the

seller. The mechanism must satisfy the incentive compatibility (IC) constraint which

ensures that bidder i is motivated to report the true signal v′i = vi:

Si(vi) = max
v′i

{P1i(v
′
i)vi − T1i(v

′
i) + E![P2i(v

′
i, ε)(vi − εi)− T2i(v

′
i, ε)+

+ (1− P1i(v
′
i)− P2i(v

′
i, ε))× 0]},
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where Si(vi) is bidder’s i expected utility from participating in the mechanism.

The envelope theorem implies that

Si(vi) = Si(vi) +

# vi

vi

P1i(x)dx+ E!

# vi

vi

P2i(x, ε)dx, (2.2)

where Si(vi) = 0.

Given that we require the mechanism to be incentive-compatible, the bidders report

the signals truthfully, v′i = vi, and the expected utility from the IC constraint is

Si(vi) = P1i(vi)vi − T1i(vi) + E![P2i(vi, ε)(vi − εi)− T2i(vi, εi)]. (2.3)

The seller’s profit from type vi is

πi(vi) = Ti(vi) + E!T2i(vi, εi).

Rearranging (2.3) and using (2.2) gives

πi(vi) = Ti(vi) + E!T2i(vi, εi) =

= P1i(vi)vi + E!P2i(vi, ε)(vi − εi)−
# vi

vi

P1i(x)dx− E!

# vi

vi

P2i(x, ε)dx.

Then the expected profit from bidder i is

# v̄i

vi

πi(vi)fi(vi)dvi =

# v̄i

vi

[P1i(vi)vi −
# vi

vi

P1i(x)dx+

+ E!P2i(vi, ε)(vi − εi)− E!

# vi

vi

P2i(x, ε)dx]fi(vi)dvi.

Denote u(vi) =
" vi
vi

P1i(x)dx and apply integration by parts to terms of type
" v̄i
vi

" vi
vi

P1i(x)dxfi(vi)dvi =" v̄i
vi

u(vi)fi(vi)dvi:

# v̄i

vi

u(vi)fi(vi)dvi = −
# v̄i

vi

u(vi)d(1− Fi(vi)) =

= −[u(vi)(1− Fi(vi))|v̄ivi −
# v̄i

vi

(1− Fi(vi))du(vi)] =

# v̄i

vi

(1− Fi(vi))P1i(vi)dvi
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The seller’s expected profit from bidder i can be rewritten as

# v̄i

vi

πi(vi)fi(vi)dvi =

# v̄i

vi

[P1i(vi)(vi −
(1− Fi(vi))

fi(vi)
) + E!P2i(vi, ε)(vi − εi)−

(1− Fi(vi))

fi(vi)
]fi(vi)dvi.

Now we use Bulow and Roberts (1989)’s analogy between the problem of the monop-

olist and the problem of the seller in the auction. Let G(V ), g(V ) denote the pdf and

cdf of house value V . Then we can think about the probability of sale, q = 1−G(V ), as

the quantity, the bid V = G−1(1− q) as the price, the profit, or revenue, as their product

q × V . Then the marginal revenue is

MR =
dqG−1(1− q)

dq
= G−1(1− q) + q

dG−1(1− q)

dq
=

= G−1(1− q)− q

f(G−1(1− q))
= V − 1−G(V )

g(V )

This expression for the marginal is often called the virtual value, where the term (1 −
G(V ))/g(V ) is referred to as the information rent. The information rent represents the

surplus that a buyer gets because he has private information on how suitable is the seller’s

house for his needs.

If the seller conceals the information, then the best estimate of buyer i’s house value

is Vi = vi, and, if the seller releases information, Vi = vi − εi. Our simplifying assumption

is that the additive adjustments ε become common knowledge when the seller releases

information. Because of this assumption, the distributions of the true value and signal

coincide, e.g. G(V ) = F (v), and the information rent can be rewritten using the distri-

bution of signals as (1 − F (v))/f(v). We show in Section 5 that the seller can achieve

the same expected revenue if additive adjustments ε are private information of buyers so

deviating from this simplifying assumption is without loss of generality.

If the seller does not reveal information, the marginal revenue from bidder i is

MR1i(vi) = vi −
1− Fi(vi)

fi(vi)
.

If the seller reveals information, the marginal revenue from bidder i is

MR2i(vi, εi) = vi − εi −
1− Fi(vi)

fi(vi)
= MR1i(vi)− εi

We can use the marginal revenue functions to rewrite the expected seller’s profit from
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bidder i as

# v̄i

vi

πi(vi)fi(vi)dvi =

# v̄i

vi

[P1i(vi)MR1i(vi) + E!P2i(vi, ε)MR2i(vi, ε)]fi(vi)dvi.

For each vector of types v, the seller chooses the allocation probabilities P1i(vi) and

P2i(vi, ε) to maximize the expected profit from all bidders:

N!

i=1

P1i(vi)MR1i(vi) + E!

N!

i=1

P2i(vi, ε)MR2i(vi, ε).

From the feasibility constraint (2.1), we know that

N!

i=1

(P1i(vi) + P2i(vi, ε)) ≤ 1.

Notice that if maxi MR1i(vi) ≤ 0 for all bidders, then the seller should release the

information. So if maxi MR1i(vi) > 0 for some bidder i, then without loss of generality

assume that bidder 1 has the highest marginal revenue MR, and let P1 denote the prob-

ability of distributing the house to this bidder under no-disclosure policy, e.g. P11(v1).

Then under the policy of full information disclosure, the seller should allocate the object

to the bidder with the highest marginal revenue with probability 1−P1. Then the seller’s

expected profit is equal to

Ev[P1 ·max{MR11(v1), . . . ,MR1N(vN), 0}+

+ (1− P1) · E! max{MR21(v1, ε1), . . . ,MR2N(vN , εN), 0}].

Since E[ε|v] = 0 and max is convex, then by the Jensen’s inequality

max{MR11(v1), . . . ,MR1N(vN), 0} ≤ E! max{MR21(v1, ε1), . . . ,MR2N(vN , εN), 0}.

Hence, the seller should set P1 = 0. We also use this argument to prove theorem 3.1. So in

the optimal mechanism the seller discloses the information and allocates the house to the

bidder with the highestMR if the highestMR is positive. This describes Myerson (1981)’s

optimal auction after seller’s release of information. Hence, the optimal mechanism is then

a combination of the full information disclosure policy and the optimal auction.

According to the mechanism, the bidders have to report their values after the infor-
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mation is disclosed, but not before. But the same argument can be made only if a subset

of bidders report their values before information disclosure because

max{MR11(v1), . . . ,MR1k(vk), 0} ≤ maxE!{MR11(v1), . . . ,MR1N(vN), 0}.

Therefore, the optimal mechanism includes two rounds: first, the seller discloses informa-

tion and then runs an optimal auction.

3 Information Disclosure in the Optimal Auction

We have shown that the optimal mechanism for the seller is releasing information and

running an optimal auction. However, this requires optimizing over both the mechanism

and the information disclosure policy. What if the seller selected a mechanism beforehand,

and then decides on the optimal information disclosure policy? In this and next sections

we consider the problem of choosing the optimal information disclosure policy, conditional

on the format of the auction. We start with the optimal auction as it is part of the optimal

mechanism. Then in the next section, we consider the second-price auction because it is

often used in real estate auctions.

In analyzing the optimal auction, we write it down as the direct mechanism as in

the previous section, so that buyers report their signals v and the seller decides which

buyer gets the house and how much the buyer pays. When house values are symmetri-

cally distributed, this mechanism can be implemented as the second-price auction with an

optimally selected reserve price9. Because we allow asymmetric distributions, the imple-

mentation of the optimal auction in our setting can be the second-price auction with the

optimally selected buyer-specific reserve prices. But asymmetric, non-anonymous treat-

ment of different buyers is often prohibited or undesirable, see Deb and Pai (2017) for

discussion.

In the optimal auction, the buyer submits their reports vi, then the seller calculates

the marginal revenue from each bidder MRi. If the marginal revenue of every bidder

is negative, then the seller retains the house. Otherwise, she allocates the house to the

bidder with the highest marginal revenue.

9Bidding starts at the reserve price, and the buyer who bids the most gets the house and pays the
second-highest price.
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The seller’s expected revenue under no disclosure policy is

R1 = Ev max{MR11(v1), . . . ,MR1N(vN), 0}, (3.1)

where zero represents the marginal revenue that the seller gets if she keeps the house.

If the seller discloses information, then her revenue is

R2 = E!Ev max{MR21(v1, ε1), . . . ,MR2N(vN , εN), 0} (3.2)

= E!Ev max{MR11(v1)− ε1, . . . ,MR1N(vN)− εN , 0}.

Since E[ε|v] = 0 and max is convex, the Jensen’s inequality implies that R2 ≥ R1.

Hence, the seller should reveal information. Bulow and Klemperer (1996) used the con-

vexity argument to show that a second-price auction with N + 1 bidders generates more

revenue than an optimal auction with N bidders. We summarize our result as Theorem

3.1:

Theorem 3.1. If the seller runs an optimal auction, it is optimal for the seller to disclose

all available information.

We have thus far demonstrated that the expected revenue increases if the seller reveals

information in an optimal auction. Could we obtain similar results for the expected

efficiency gains and information rent? Unfortunately, we cannot derive an analog of

Theorem 3.1 because the efficiency and information rent are neither convex nor concave,

see Appendix A.

The conclusion of Theorem 3.1 is similar to the Milgrom and Weber (1982)’s linkage

principle that states that revealing information increases the seller’s revenue. To under-

stand this, decompose the efficiency gains from allocation of the house to the bidder as

the sum of the seller’s revenue and the winning bidder’s information rent. In Milgrom and

Weber (1982), new information is correlated with bidders’ value estimates. So the release

of new information increases the bidders’ estimates without changing the winning bidder,

i.e. without changing the allocation. However, making the information public reduces the

information rent that the winning bidder earns. Because the revenue is the efficiency net

of the information rent, the revenue increases.

How is our result different from the linkage principle? In our setting revealing infor-

mation could change the allocation of the house and the information rent might go up, in

which case the efficiency increases even more.
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Our result on the optimality of the full information disclosure in the optimal auction

is consistent with the result on the optimal mechanism. Within the optimal mechanism

problem, the seller can optimize over the mechanism and information disclosure policy at

the same time, the seller chooses to fully disclose the information and run the optimal

auction. So if the seller first selects the optimal auction as the selling mechanism, and

then optimizes over the information disclosure policy, the seller should release additional

information.

4 The Second-price Auction

We turn to the second-price auction with no reserve price. In this auction, the buyer with

the highest bid wins and pays the second-highest bid. The dominant strategy for a buyer

is to bid10 his estimate of the house value Vi.

We start our discussion of the information disclosure in the second-price with a special

case of two bidders, then move on to three bidders and then summarize results for any

number of bidders.

4.1 Two Bidders

Board (2009) discovered that in the case of two bidders the seller should not reveal infor-

mation.

Proposition 4.1. (From Board (2009)) In a second-price auction with two bidders the

seller should not reveal any information.

Proof. The buyer’s dominant strategy in the second-price auction is to bid his estimate of

the house value. If the seller does not reveal information the value of ε, bidder i’s estimate

of the house value is given by i’s signal Vi = vi − Eiεi = vi. The winning buyer pays the

second highest price, which is min{v1, v2} in the case of two bidders. Hence, if the seller

does not reveal information, her expected revenue is

R1 = Ev min{v1, v2}.
10We allow the bidders to place negative bids. Since we normalized the house value of the seller to

zero, we interpret negative bids as values below the seller’s assessment of the house value.
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If the seller reveals additional information ε, her revenue equals

R2 = E!Ev min{v1 − ε1, v2 − ε2}.

Since minimum is a concave function, Jensen’s inequality implies that R1 ≥ R2, so the

seller should never reveal information.

At first glance, Proposition 4.1 seems to contradict Proposition 3.1. Indeed, if the

value distributions are symmetric, and the seller is committed to sell, then the optimal

auction is equivalent to the second-price auction. To highlight this apparent contradiction

consider the symmetric case, i.e. F1 = F2. We have

Ev min{v1, v2} = Ev max{MR11(v1),MR12(v2)}.

Hence, the seller’s revenue from not revealing information is the same in Proposition 3.1

and Proposition 4.1. Why then should the seller reveal information in the optimal auction

and not reveal information in the second-price auction? The difference occurs after the

seller reveals information.

Revealing information makes the bidders’ value distributions asymmetric because ε1

and ε2 could be different. Because the bidders’ value distributions become asymmetric,

the revenue equivalence theorem may not hold, as argued by Maskin and Riley (2000).

Specifically, when the bidders’ values are asymmetrically distributed, the seller may not

allocate the good to the bidder with the highest marginal revenue in the second-price auc-

tion. As a result, the second-price auction yields less expected revenue than the optimal

auction after the seller reveals information, which explains why the optimal information

disclosure strategies differ for these two auctions.

4.2 More than Two Bidders

We next analyze the seller’s expected revenue when there are more than two bidders. The

key to determining the optimal information disclosure strategy is the functional form of

the expected revenue with respect to new information ε. As discussed in the previous two

sections, the seller’s expected revenue is convex in ε in the optimal auction and concave

in ε in the second-price auction with two bidders. When the seller’s revenue is convex,

the full information disclosure is optimal, and vice versa for the second-price auction with

two bidders. In this section, we show that, when there are more than two bidders in

the second-price auction, the expected revenue is neither convex nor concave in general.
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Hence, the seller the optimal information disclosure may depend on the parameters of the

environment.

We use an example to argue that if the seller releases information, the expected revenue

is neither convex or concave. Consider a example with three bidders in which v1 > v2 >

v3 > ... > vN and εi = 0 for all i ∕= 3. Now we show that, as we vary ε3, the expected

revenue is neither convex nor concave.

The buyers’ dominant strategies is to place bids b1 = v1, b2 = v2 and b3 = v3 − ε3.

When ε3 > v3−v2, the ranking of the bids is v1 > v2 > v3−ε3, so the first bidder wins and

pays the second-highest bid v2. When v3 − v2 > ε3 > v3 − v1, the ranking of the bids is

v1 > v3− ε3 > v2, so the first bidder wins and pays the second highest-bid v3− ε3. Finally,

when ε3 < v3 − v2, we know that v3 − ε3 > v1 > v2, so the third bidder gets the house

and pays v1. Figure 1 plots the seller’s expected revenue as the function of the additive

innovation for the third bidder ε3. As can be seen from the graph, the seller’s revenue is

neither convex nor concave in ε3. Hence, the seller’s optimal information disclosure policy

depends on realization of ε3 and ambiguous in general.

ε3

Revenue

v1

v3 − ε3

v2

v3 − v1 v3 − v2

Figure 1: The revenue is concave when the allocation changes.

We can generalize this observation to the case of N bidders. Notice that in Figure 1

the revenue is concave at v3 − v1 and convex at v3 − v2. When ε3 is close to v3 − v1, the

allocation of the house changes between buyer 1 and buyer 3, so the second-price is the

minimum of the bids of buyers 1 and 3, which is concave. When ε3 is close to v3 − v2,

bidder 1 always gets the house, so the second-price is the maximum of the bids of buyers

2 and 3, which is convex.
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The next proposition formalizes the above observation that the non-convexity of the

revenue is due to the change in allocation. To generalize this, we return to considering any

ranking of v1, v2, . . . , vN and any ε ∈ RN . Let SP (ε) denote the second largest element

of {vi − εi}Ni=1. We say that SP (ε) is locally convex (or concave) if there exists a δ > 0

such that the SP (ε) function is convex (or concave) when we restrict its domain to points

within a Euclidean distance of δ from ε.

Proposition 4.2. Let M = max{v1 − ε1, . . . , vN − εN}.

• If there is exactly one i such that vi − εi = M , then SP (ε) is locally convex.

• If there are exactly two i’s such that vi − εi = M , then SP (ε) is locally concave.

• If there are at least three i’s such that vi − εi = M , then SP (ε) is neither locally

convex nor locally concave.

Proof. Renumber buyers so that the buyer with the highest bid vi − εi is the first, the

second-highest bid as the second, and so forth. ThenM = v1−ε1 ≥ v2−ε2 ≥ · · · ≥ vN−εN .

If v1 − ε1 > v2 − ε2, then, for small enough perturbations of ε, bidder 1 is still the

highest bidder, so the second-price is the maximum of the bids from bidders 2, 3, . . . , N ,

which is convex.

If v1 − ε1 = v2 − ε2 > v3 − ε3, then, for small enough perturbations of ε, either bidder

1 or bidder 2 is the highest bidder, and the second price is the minimum of the bids from

bidder 1 and bidder 2, which is concave.

If v1−ε1 = v2−ε2 = · · · = vk−εk for some k ≥ 3, then, for small enough perturbations

of ε, the second-price is the second order statistics of the k bidders’ bids, which is neither

convex nor concave.

The logic of Proposition 4.2 is that if the highest bidder remains the same, then the

second-price is the maximum of the remaining bidders’ bids, which is convex. But if the

highest bidder changes due to ε, the revenue is non-convex. Hence, the non-convexity of

the revenue for the second-price auction comes from the change in allocation of the house

from the highest bidder before the release of information to the new highest bidder after

the release of information.

In the optimal auction, the change in allocation makes the revenue function convex.

Specifically, when the allocation changes from bidder i to bidder j, the revenue is the

convex function max{MRi,MRj}. In the second-price auction, however, the change

in allocation breaks the convexity of the revenue function. The non-convexity occurs

precisely at the points when the allocation changes as Proposition 4.2 shows.
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5 The Seller Cannot Observe Information !

Thus far we have assumed that the seller could observe additional information ε, e.g.

repair costs of buyers. Buyers may reveal this additional information during the house

selling process, for example, by asking the seller to reduce the price by the estimated

repair costs after the home inspection. However, it is also possible that buyers do not

reveal this additional information. Hence, an immediate concern is that, if the seller

cannot observe ε, then the bidders could extract more information rent, so the seller may

not want to reveal information in the optimal auction. We show that this concern can be

resolved by using a handicap auction, suggested by Eso and Szentes (2007), which gives

her the same expected revenue as in the case when ε is observable. To illustrate how the

handicap auction works, we start with an example.

Example 5.1. There is one bidder. Suppose ε ∼ U [−1
2
, 1
2
] and the distribution of v is

degenerate with v = 0 with probability one. The seller can use any selling mechanism

and choose between disclosing or not additional value adjustments ε. We want to compare

the expected revenue from the optimal behavior of the seller when we observe ε and when

he does not.

First, consider the case when the seller observes ε. If she does not reveal information,

the expected revenue is zero, the buyer values the house at zero, so R1 = 0. If the seller

reveals information, she could use the optimal auction. In this setting with one buyer,

the optimal auction is equivalent to charging a posted price of −ε whenever it is negative.

So the seller’s expected revenue is then R2 = Emax{−ε, 0} =
" 0

− 1
2
(−ε)dε = 1/8.

Now consider the case when the seller does not observe ε. The seller still decides

whether or not to release the information about ε. For example, the seller can allow

buyers to conduct a home inspection to determine the repair costs. The buyers’ estimate

of the repair costs may not be observable to the seller, but she can still decide whether or

not to allow the buyer to conduct the inspection.

In this case, the seller could use the following mechanism: the buyer must pay 1/8 for

information on ε, and then the buyer could purchase the house for a zero price. Zero is

only a normalization of the buyer’s value in this example, we do not mean that the seller

is giving out the house for free. The buyer is willing to pay for this information because

the buyer’s expected payoff after information disclosure is exactly
" 0

−1/2
(−ε) · dε = 1/8.

Hence, when ε is unobservable, the seller extracts the same revenue as in the case when

ε is observable.

The key insight from Example 5.1 is that the seller could take advantage of the bidders’
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uncertainty about additional information ε and ask them to pay for this information before

it is revealed. In general, the handicap auction is conducted in two rounds:

1. Bidder i reports v′i and pays ci(v
′
i) to receive the information about εi and an option

to purchase the house in the second round. Then the seller reveals the information

ε to buyers.

2. The seller runs a modified second-price auction with zero reserve price: the highest

bidder has the option to purchase the house at the price, equal to the sum of the

second-highest price and an additional premium of (1−Fi(v
′
i))/fi(v

′
i). The winning

buyer decides whether to buy the house or not.

The contracts offered in the first round are similar to European call options because

the buyer buys the right to purchase the house in the second round at a specific premium.

This mechanism produces the same expected revenue as the optimal mechanism when

ε is unobservable if the price for information ci(v
′
i) is selected to incentivize truth-telling

v′i = vi. To see this, first, notice that the handicap auction allocates the house to the

bidder with the highest marginal revenue. Indeed, bidder i’s house value is vi − εi, but

he has to pay an additional premium (1 − Fi(vi))/fi(vi) if he wins the auction. So the

bidder’s strategy is to bid vi − εi − (1 − Fi(vi))/fi(vi), which is precisely his marginal

revenue MRi(vi, εi). Hence, the bidder with the highest marginal revenue gets the house.

Second, consider the behavior of the bidder in the second round given his report v′i.

The buyer submits his bid and decides if he wants to exercise his option to purchase the

house at the second-highest price. Since the option price c(v′i) is sunk, he ignores it when

deciding whether to move forward with the house purchase at the end of the auction. His

second-round utility is

Ui(vi, v
′
i) = Ev−i

E! max{vi − εi −
1− Fi(v

′
i)

fi(v′i)
− b(2), 0} = (5.1)

= Ev−i
E!(vi − εi −

1− Fi(v
′
i)

fi(v′i)
− b(2))1

$
vi − εi −

1− Fi(v
′
i)

fi(v′i)
− b(2) ≥ 0

%
, (5.2)

where b(2) = maxj ∕=i{vj − εj − (1−Fj(vj))/fj(vj), 0} is the second-price that accounts for

zero reserve price and ∂Ui(vi, v
′
i)/∂vi = Ev−i

E!1
&
vi − εi − 1−Fi(v

′
i)

fi(v′i)
− b(2) ≥ 0

'
.

Finally, the bidder reports truthfully v′i = vi in the first round if the incentive com-

patibility constraint holds:

Si(vi) = max
v′i

(Ui(vi, v
′
i)− ci(v

′
i)) (5.3)
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We can set the price for the option to buy the house, ci(v
′
i), in (5.3) as

ci(v
′
i) = Ui(vi, v

′
i)− Si(v

′
i) (5.4)

to incentivize the bidder to report truthfully. That is, in the right-hand side of (5.3),

vi = v′i solves

max
v′i

(Ui(vi, v
′
i)− Ui(vi, v

′
i) + Si(v

′
i)) = max

v′i

Si(v
′
i) = Si(vi)

Since the second-highest price does not depend on vi or v′i, we can apply the Enve-

lope Theorem to (5.3) so that dS(vi)/dvi = dU(vi, v
′
i)/dvi = ∂Ui(vi, v

′
i)/∂vi at v′i = vi.

Integrating dS(vi)/dvi = ∂Ui(vi, vi)/∂vi and using the Fubini’s theorem to exchange the

expectation and integration gives us the bidder’s expected payoff from the mechanism:

Si(vi) = Ev−i
E!

# vi

vi

1

$
x− εi −

1− Fi(x)

fi(x)
− b(2) ≥ 0

%
dx (5.5)

Hence, the combination of correctly set price for information ci(vi) allows the seller

to maximize revenue by eliciting the true signals of buyers vi without observing them

directly.

6 Conclusion

In this paper, we analyze the optimal mechanism and information disclosure policy for a

homeowner who maximizes the expected revenue from the sale when one or more buyers

are interested in the house. We find that the optimal mechanism is a combination of

the optimal auction and full information disclosure. We then show that if the seller

first selects the optimal auction as the selling mechanism and then optimizes over the

information disclosure policy, full information disclosure is still optimal.

We also investigate the optimal information disclosure for the home seller who uses the

second-price auction for three reasons. First, the implementation of the optimal auction

is challenging, while the second-price auction is easier to conduct and detail-free. Second,

we allow for asymmetric distributions of home values, so the revenue equivalence theorem

does not necessarily hold, and different auction types may not produce the same revenue.

Third, the second-price auction is often used in practice in real estate auctions. For the

second-price auctions, we show that the result of the full information disclosure breaks
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down, so the seller may find it optimal to conceal information to maximize expected

revenue.

We explain that the key to understanding the optimal mechanism and information

disclosure policy is how the information disclosure affects the allocation of the house.

In the optimal mechanism and optimal auction, the revenue is a convex function in new

information. Then revealing information maximizes expected revenue. In the second-price

auction, the revenue can be either convex or concave in new information. In this case, the

seller’s optimal information disclosure depends on the specific circumstances, potentially

explaining partial information disclosure policies in practice.

This study shows that there is potential for improving the selling mechanism for real

estate assets, including implementation of the full information disclosure policies by the

sellers and use of optimal auctions when one or multiple buyers are involved.

The model is highly stylized, focuses on the selling mechanisms while abstracting from

other institutional details of real estate markets. For example, we do not consider the

common house values or market dynamics among other realistic features of real estate

markets. We hope to spur future research in these directions. The model can be applied

to other markets, in which the seller is dealing directly with the buyers and there is a

significant component of the idiosyncratic buyer’s taste in the value of the good and the

seller can release additional information that adjusts this value.
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A Disclosure and Efficiency and Information Rent

The Optimal Auction In Theorem 3.1 we used a convexity argument to prove that

revenue increases after the seller discloses information. Can we apply the same argu-

ment to study the effect of information disclosure on the efficiency and information rent?

Unfortunately, the efficiency and information rent are neither convex nor concave, so we

cannot conclude whether they increase or decrease after the seller reveals information.

ε1

ε2

v2 − 1−F2(v2)
f2(v2)

v1 − 1−F1(v1)
f1(v1)

E = 0
I = 0
R = 0

E = v2 − ε2
I = 1−F2(v2)

f2(v2)

R = v2 − ε2 − 1−F2(v2)
f2(v2)

E = v1 − ε1
I = 1−F1(v1)

f1(v1)

R = v1 − ε1
−1−F1(v1)

f1(v1)

v1 − 1−F1(v1)
f1(v1)

− v2 +
1−F2(v2)
f2(v2)

Figure 2: The efficiency and information rent are neither convex nor concave.

Figure 2 illustrates the efficiency, E, information rent, I, and revenue, R, in an optimal

auction with two bidders for all possible realizations of ε1 and ε2 given the signals of the

buyers v1 and v2. The solid lines divide the space (ε1, ε2) into three regions based on three

possible allocations of the house. The top right corner represents the case when the seller

keeps the house, which means the efficiency, information rent, and revenue all equal to

0. The bottom right region represents bidder 2 getting the house, and the region to the

left represents bidder 1 getting the house. When bidder i gets the good, the efficiency is

vi − εi, the information rent is 1−Fi(vi)
fi(vi)

, and the revenue is vi − εi − 1−Fi(vi)
fi(vi)

.

The efficiency and the information rent are neither convex nor concave in terms of

(ε1, ε2). For example, consider the case when ε2 > v2 − 1−F2(v2)
f2(v2)

. Figure 2 shows that
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bidder 1 gets the good if ε1 < v1 − 1−F1(v1)
f1(v1)

, and the seller keeps the good otherwise. As

we vary ε1, neither the efficiency nor the information rent is continuous in ε1. Indeed,

neither v1 − ε1 nor 1−F1(v1)
f1(v1)

approaches 0 as ε1 approaches the boundary point where the

allocation changes. Hence, the efficiency and information rent, as functions of ε1, contain

jumps, and they are neither convex nor concave.

The Second-price Auction In the second-price auction the highest bidder gets the

house, so the efficiency after revealing information is

max{v1 − ε1, v2 − ε2, . . . , vN − εN},

which is convex in ε. Hence, information disclosure increases the efficiency.

In the case with two bidders, the information rent also increases after the seller discloses

information. For two bidders the information rent is max{(v1−ε1)−(v2−ε2), (v2−ε2)−(v1−
ε1)}, which is convex in ε. Moreover, Proposition 4.1 shows that information disclosure

decreases the revenue. Since efficiency increases, the information rent must increase by

an amount exceeding the increase in efficiency.

With more than two bidders, the information rent is neither concave nor convex. For

example, consider v1 > v2 > v3 > · · · > vN and εi = 0 for all i ∕= 3. As we vary ε3,

the information rent is neither concave nor convex. Indeed, if ε3 < v3 − v1, then bidder

3 gets the house, and the second-price is v1, so the information rent is (v3 − ε3) − v1. If

v3 − v1 < ε3 < v3 − v2, then agent 1 gets the house, and the second-price is v3 − ε3, so the

information rent is v1 − (v3 − ε3). If ε3 > v3 − v2, then bidder 1 gets the house, and the

second-price is v2, so the information rent is v1 − v2. As Figure 3 shows, the information

rent is neither convex nor concave.

ε3

Information Rent

v3 − v1 v3 − v2

Figure 3: The information rent is neither convex nor concave.

25



We summarize the effect of information disclosure on the efficiency, the information

rent, and the revenue as follows. In Milgrom and Weber (1982) the efficiency remains

constant, but the information rent decreases, so the revenue increases. In our setting

information disclosure could change the allocation of the good, so the efficiency also

changes. In particular, for the second-price auction the efficiency increases; for two bidders

the information rent increases even more, and the revenue decreases, but for more than

two bidders the information rent and the revenue could either increase or decrease. For

the optimal auction both the efficiency and the information rent could either increase or

decrease, but the revenue always increases.
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