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In this paper, we study characteristic-based return predictability over horizons up

to five years. Although existing literature on cross-sectional predictability almost exclu-

sively focuses on the short-term returns to characteristic-based investing, studying longer

horizon returns is interesting for various reasons. First, the horizon of most investors

is considerably longer than a single month. Similarly, capital budgeting decisions of

firms usually rely on discounting long-term cash flows. Furthermore, characteristics that

predict returns more persistently are relatively important for the real economy (Van Bins-

bergen and Opp, 2019). Finally, and the main focus in this paper, longer horizon returns

provide a new set of useful moments to evaluate asset pricing models.

We present a novel, but simple, approach to derive these moments from the relative

performance of new and old characteristic-sorted portfolios. In particular, we show how

standard asset pricing tests based on the intercepts from time-series regressions can be

used to analyze pricing errors across horizons. We follow Freyberger et al. (2020) and

start from a large set of 56 characteristics that previous literature finds to predict stock

returns in the cross-section. For each characteristic X, we construct value-weighted

decile portfolios and track the buy-and-hold return of the high-minus-low strategy from

one month up to five years after portfolio formation. This approach provides us with a

three-dimensional panel of returns denoted RX,(t−s),t+1, where (t− s) refers to the sorting

date and s = 0, ...,60. A pricing error across horizons is then defined as the intercept

or alpha in a regression of the return to an older sort, RX,(t−s),t+1 for s > 0, on the

contemporaneous return of the newest sort, RX,(t),t+1. A significant alpha indicates that

the maximum Sharpe ratio increases when an investment in the newest sort is combined

with an investment in the older sort.

Our null hypothesis is that these alphas are equal to zero. We show that this null holds

when expected returns decay after sorting at the same speed as the characteristic spread

between the high and low portfolio. Equivalently, this null holds when the compensation

for a portfolio’s loading on a characteristic at a given point in time is independent of how
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long ago the portfolio was formed, an assumption which is implicit in previous literature.1

This null is strongly rejected in the data. Old sorts provide a significant alpha rela-

tive to the newest sort for more than half of the characteristics we study over the sample

from 1974 to 2017. For instance, three years after portfolio formation, a high-minus-low

book-to-market strategy provides an alpha of 43 basis points per month (t-stat=2.95)

relative to the newest book-to-market strategy. We show that such pricing errors across

horizons are not due to the fact that the persistence of return predictability varies across

characteristics.2 Rather, these pricing errors are due to the fact that the persistence of

characteristic-based return predictability does not match the persistence of the charac-

teristic. For over one-third of the 56 characteristics we study, the older sorts provide a

significantly negative alpha, indicating that average returns decay too fast after portfolio

formation relative to the decay in the characteristic spread. For over one-sixth of the

characteristics, the older sorts provide a significantly positive alpha, indicating that av-

erage returns decay too slow. We perform a simulation study under the null to show that

these results are unlikely due to chance. A variety of robustness checks confirm that our

conclusions extend in subsamples and when estimating conditional alphas.

Existing asset pricing models fail to capture the alphas between old and new sorts;

said differently, existing models do not capture the horizon-dynamics of characteristic-

sorted portfolio returns. To understand this failure, note that correlations between new

and old characteristic-sorted portfolios are generally high and decrease slowly as time

passes after portfolio formation. For the median characteristic, the correlation between

the return of the newest sort and the return of older sorts that were performed one and five

years ago, respectively, equals 0.85 and 0.64. While there is variation in this correlation

across characteristics – consistent with variation in persistence in the ranking of firms –

we find that this variation is unrelated to the alphas between old and new sorts. When

1A unit book-to-market spread may capture a different compensation today than it did three years
ago, because characteristic premia vary over time. Our null only states that if a portfolio formed three
years ago presents a 0.5 book-to-market spread today, this spread should capture half the expected return
compensation of a unit book-to-market spread on a portfolio formed today.

2For instance, while book-to-market and size predict returns up to five years out, the predictability
from profitability and momentum is relatively short-lived.
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old and new sorts are highly correlated, but there is a large alpha separating these two

returns, models that do a good job explaining returns of older sorts will have a hard time

explaining returns of newer sorts and vice versa.

There is an important trade-off in the number of factors, however. Small models, like

the CAPM, do relatively well pricing the older sorts (consistent with Kothari et al. (1995)

and Cohen et al. (2009), among others), but are firmly rejected using the returns of newer

sorts. In contrast, big models, like the five-factor model of Fama and French (2015), do

relatively well pricing the newer sorts, but are firmly rejected using the returns of older

sorts. A large literature adds factors to the CAPM to improve the model’s explanatory

power for cross-sections of returns at short horizons after portfolio formation (i.e., new

sorts). We show that these additional factors do not help to eliminate pricing errors across

horizons. As argued in Harvey and Liu (2019), some of the improved fit for short-term

returns is likely due to overfitting, which harms the performance of these models in tests

that use our new moments.

The tension between new and old sorts is perhaps clearest when we apply principal

component analysis (PCA) to the returns at each horizon. We treat the principal com-

ponents extracted from the returns of the newest sorts, RX,(t),t+1, as statistical factors

in an asset pricing model (as in Lettau and Pelger (2020), Haddad et al. (2020), and

Kozak et al. (2019)). In GRS tests, we find that these statistical factors do not price

the principal component factors extracted from older sorts. Interestingly, the rejection in

the GRS test is driven almost completely by a pricing error across horizons in the first

principal component of returns. Consistent with this finding, our evidence suggests that

adding a single factor extracted from old sorts to three statistical factors extracted from

the newest sorts goes a long way to capture the pricing errors across horizons. This model

also does a relatively good job capturing variation in average returns in cross-sections of

new and old sorts. In fact, it is the only model for which the cross-sectional R2 is positive

when factor risk premia are forced to match their sample average return.

Our analysis further uncovers a new dimension to the low beta anomaly, as the pricing
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errors across horizons are related to market beta. The low beta anomaly refers to the

result – first documented in Black et al. (1972) – that a sort of stocks on market beta

yields a large spread in beta, but not in average returns. Consequently, a high-minus-

low market beta portfolio obtains a large negative CAPM alpha. Similarly, we sort

characteristic-sorted portfolios on their market beta. We find that it is among low market

beta characteristics that the pricing errors are relatively large and negative, meaning

that average returns decay too fast relative to the characteristic. Existing asset pricing

models do not capture the difference in pricing errors between low and high market beta

characteristics either.

The fact that returns immediately after portfolio formation are different from returns

longer after portfolio formation, suggests that “new” stocks recently entering the extreme

decile portfolio have a different contribution to returns than “old” stocks that entered the

portfolio a long time ago. To see whether this is the case, we decompose RX,(t),t+1 into

the part coming from new and old stocks. These stocks together make up the extreme

high or low characteristic-sorted portfolio today, but it is only the old stocks that were

relatively close to that same characteristic-sorted portfolio in the past.

We find that the old-minus-new return differential lines up well with the pricing errors

across horizons among the 56 characteristics we study. For instance, a book-to-market

strategy that uses only new stocks (that have recently seen a relatively large change in

book-to-market), obtains a return that is 57 bps (t-stat = 2.18) lower than a strategy that

uses only old stocks. This result obtains even though these two sets of stocks generate

the same spread in book-to-market today. In addition, it is among low (high) market

beta characteristics that an old-minus-new stock strategy provides a significant negative

(positive) return that is not captured by existing asset pricing models. This result implies

that characteristic-based investment strategies should take into account the dynamics of

characteristics at the firm level. This practical insight is important, because most stock-

picking applications ignore these dynamics and explicitly reduce the information set to
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the most recent values of firm characteristics.3

In all, we provide evidence for statistically and economically large pricing errors across

horizons. These pricing errors are not explained by existing factor models, which is

perhaps unsurprising given that previous asset pricing tests in the literature have ignored

the moments we derive from old characteristic-sorted portfolios.4 However, since our new

set of moments shed light on the dynamics of return predictability and the performance

of factors at different horizons, our results are relevant not only for academics interested

in evaluating asset pricing models, but also for characteristic-based investment strategies

and for estimating discount rates used in firm’s capital budgeting decisions.

Literature

The literature on characteristics-based return predictability is vast, but almost exclusively

studies the relation between characteristics and short-term future returns in the cross-

section of stocks. In recent machine learning literature, the goal is to find the (potentially

higher-order) functional form of a large set of characteristics that best predicts these

returns (see, e.g., Freyberger et al. (2020), Gu et al. (2019), and Kozak et al. (2019)).

Similarly, empirical tests of asset pricing models typically use both factors and test assets

derived from sorting stocks on recent observations of characteristics (see, e.g., Fama

and French (2015, 2018), Hou, Xue, and Zhang (2015, 2018a)). We instead investigate

whether and how characteristics predict returns over horizons up to five years. We derive

pricing errors across horizons from these returns, which we use as new moments to test

asset pricing models.

3See, among many others, Brandt et al. (2009), Lewellen (2014), Light et al. (2017), and Gu
et al. (2019) as well as the factor models of BARRA (https://www.msci.com/www/research-paper/
the-barra-us-equity-model-use4/014291992) and Bloomberg (Baturin et al., 2010) that are popular
in the industry.

4Our results also present a challenge for the leading theoretical explanations of characteristics-based
return predictability, because the main focus in existing models is to match the relation between one-
period ahead returns and current firm characteristics. To see this by example, we find that there is little
difference between the returns of new and old sorts, as well as between new and old stocks, when we
simulate from the models of Gomes et al. (2003) and Zhang (2005).
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Keloharju et al. (2020) and Cho and Polk (2019) analyze returns to characteristic-

based investing over even longer horizons of ten and fifteen years, respectively. Keloharju

et al. (2020) show that return predictability vanishes quickly as time passes after portfolio

formation for the average characteristic. Cho and Polk (2019) study how long-term

abnormal returns impact current price levels. In contrast to both papers, we study the

relative performance of new and old sorts at the monthly frequency, which allows us

to highlight new implications for characteristic-based investing and return predictability.

Moreover, we are the first to show that existing asset pricing models are unable to explain

the relative performance of new and old sorts. Chernov et al. (2018) show that the

restrictions implied by a stochastic discount factor (SDF) that prices single period returns

of popular factors, like those of Fama and French, do not hold for long-term returns of

the same factors. Our paper is different in important dimensions: (i) our test uses

returns at longer horizons after characteristic-based portfolios are formed, whereas their

test uses multi-period compounded returns of factors that are rebalanced annually; (ii)

our empirical approach is relatively flexible, such that we can apply standard time-series

regression techniques to test asset pricing models; (iii) we study a much larger set of 56

characteristics; and (iv) we document the relative contribution of new versus old stocks

to the returns from characteristic-based investing.

Our new-versus-old decomposition of characteristic-sorted portfolio returns is new to

the literature. In a recent paper, Keloharju et al. (2020) decompose characteristics in

permanent and transitory components. The authors then sort the full cross-section of

stocks on these components and find that it is the transitory component that drives

return predictability for the average characteristic. Instead, our decomposition separates

the stocks within the extreme high and low decile portfolios in a new and old group.

The fact that the old-minus-new return differential varies in sign across characteristics

remains hidden when focusing on the average characteristic. Our results imply that past

values of characteristics (or changes in characteristics) contain information for the cross-

section of stock returns that is not already contained in the most recent value of these
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characteristics. We thus extend Cochrane (2011) and Gerakos and Linnainmaa (2018),

who draw a similar conclusion for book-to-market and size.

Daniel et al. (2020b) (see, also, Daniel and Titman (1997) and Herskovic et al. (2019))

argue that factors can be traded more profitably by combining a factor, like the high-

minus-low book-to-market portfolio (HML), with an offsetting position in a hedge port-

folio that has a zero loading on the characteristic (book-to-market), but a maximum

loading on the factor. We argue that combinations of newer and older sorts are attractive

investments and show that these combinations provide returns that are not captured by

popular factors, among which are the optimally hedged factors of Daniel et al. (2020b).

In fact, our evidence is inconsistent with their assumption that firms’ loadings on the SDF

are a function of recent values of size, book-to-market, profitability and investment. The

reason is that our old-minus-new stock strategy is approximately neutral with respect

to recent values of these characteristics, but has a non-zero average excess return. More

generally, our evidence rejects the assumption that the expected return of a portfolio, in

a given period and holding its loadings on characteristics fixed, is independent of the time

this portfolio was formed. Finally, we uncover a new – across-characteristic – dimension

to the low beta anomaly, which contributes to recent literature that documents low beta

anomalies in a range of asset classes (see, e.g., Asness et al. (2012) and Frazzini and

Pedersen (2014)).

1. Null hypothesis

We are the first to test whether the returns to older sorts are spanned by the newest sort.

This null hypothesis holds under two assumptions. Let XH−L,(t) denote the characteristic

spread – the difference between the average characteristic in the long and short portfolio

– for the sort performed at t; let RX,(t),t+1 denote the returns to the newest sort; and,

let RX,(t−s),t+1 denote the returns to older sorts. First, we assume that the long-short

portfolio for a characteristic X is neutral with respect to other characteristics, at all
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horizons after sorting. Second, consistent with Daniel et al. (2020b, see Eq. (18)) and

many others in the literature, we assume that each characteristic X represents a linear

combination of exposures, denoted βX,(t), to priced fundamental factors with returns Ft+1.

This combination may vary across X.

Under these two assumptions, we can write for the newest sorts:

E(RX,(t),t+1) = β
′

X,(t)µF =XH−L,(t)γX , (1)

where µF is the vector of risk premia for the fundamental factors and γX translates the

characteristic spread to a particular factor mix. For the older sorts, we have that

E(RX,(t−s),t+1) =XH−L,(t−s)γX =

XH−L,(t−s)

XH−L,(t)

E(RX,(t),t+1), (2)

where XH−L,(t−s) denotes the high-minus-low characteristic spread at time t for the old

sort performed at t − s. This equation states our main result, which is that expected

returns decay after sorting at the same speed as the characteristic spread. This result

holds equally if the risk premia µF are time-varying. The result does require that risk

premia are independent of when the portfolio was sorted (i.e., E(RX,(t),t+1)/XH−L,(t) =

E(RX,(t−s),t+1)/XH−L,(t−s) = γX), which assumption is implicit in previous literature.

Realized returns on both the new and old sorts contain factor risk as well as uncorre-

lated residual risk: RX,(t),t+1 = β
′

X,(t)
Ft+1 + e(t),t+1. In the regression

RX,(t−s),t+1 = αs + βsRX,(t),t+1 + εX,(t−s),t+1, (3)

we will then have that αs = 0 (and βs = (XH−L,(t−s)/XH−L,(t))). Thus, under our two as-

sumptions, pricing errors between old and new sorts (or, more generally, across horizons)

are zero.

We acknowledge that the first assumption – the portfolios remain characteristic-

neutral at all horizons after sorting – may be a strong one. However, even if the first

8



assumption is violated, any relative pricing error between old and new sorts is eliminated

by controlling for the fundamental factors in Eq. (3) as long as the second assumption

holds. Given that the true set of fundamental factors is unknown, we control for the

factors in a large set of benchmark models in our empirical analysis. While in theory

the null can also be rejected due to non-linearities in the relation between characteristics,

factor exposures, and thus expected returns, we show in Section 5 that non-linearities are

unlikely to explain our results.

Our empirical investigation of pricing errors across horizons answers at least three im-

portant questions. First, do existing (multi-factor) asset pricing models price RX,(t−s),t+1

and suitable combinations of RX,(t−s),t+1 and RX,(t),t+1? Almost all existing literature has

focused on finding factors that explain return variation shortly after portfolio formation

(i.e., RX,(t),t+1), which has raised concerns of data mining (see, e.g., Harvey and Liu, 2019).

Our method provides a new set of moments to test asset pricing models. Second, if exist-

ing models do price RX,(t−s),t+1, which factors are more important at different horizons?

For instance, Keloharju et al. (2020) show that for the average characteristic, the CAPM

does a great job in pricing characteristic-sorted portfolio returns at longer horizons after

portfolio formation. Whereas their focus is on the average characteristic, we highlight

in this paper the variation across characteristics. Third, how should investors optimally

construct characteristic-based portfolios? The large literature on cross-sectional return

predictability typically only studies the return one month (or a few months) after sort-

ing. However, a significant pricing error implies that the maximum Sharpe ratio from

investing in a combination of the older and the newest sorts is larger than the Sharpe

ratio from an investment in the newest sort alone.

2. Data and Methodology

We test this null hypothesis for a large set of firm characteristics that previous literature

finds to predict stock returns in the cross-section. Our choice of 56 characteristics follows
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Freyberger et al. (2020) and we provide a detailed description in Table IA.I.5 For all US

common stocks traded on the NYSE, AMEX or NASDAQ from July 1964 to December

2017, we collect monthly and daily stock market data from the Center for Research in

Security Prices (CRSP) and annual balance-sheet data from COMPUSTAT. Following

Green et al. (2017) and Gu et al. (2019), we delay monthly variables by one month and

annual variables by six months.6

We construct for each characteristic value-weighted decile portfolios split at NYSE

breakpoints to reduce the influence of microcap stocks on our results (see, also, Fama

and French (2016) and Hou et al. (2018b)). We track the buy-and-hold returns to these

decile portfolios up to five years after sorting. When a stock goes missing, we reallocate

the investment in this stock to the non-missing stocks in the portfolio using value-weights.

The return to a characteristic-sorted portfolio is defined as the return of the zero-cost,

long-short portfolio formed from buying the High portfolio and selling the Low portfolio:7

RX,(t−s),t+1 = R
High
X,(t−s),t+1

−RLow
X,(t−s),t+1.

In this definition, the first subscript refers to the characteristic, X = 1, . . . ,56, the second

subscript refers to the date of portfolio formation or sorting date, (t−s) where s = 0, ...,60,

and the third subscript refers to the return realization date, t+1. For brevity and because

some characteristics are updated only once per year, we focus on s = 0,12,24, ...,60.8

5Freyberger et al. (2020) use 62 characteristics. We exclude characteristics that have missing observa-
tions in the beginning of the sample, because our tests require a common sample start. We also exclude
two characteristics that measure conditional market beta, because we study in detail the link between
market beta and our results in Section 4.3.

6Thus, to predict returns for month t + 1, the characteristics use monthly variables as they were
reported at the end of month t and annual variables as they were reported at the end of month t − 6.
Using the most up-to-date characteristic values helps to differentiate new and old sorts.

7For a characteristic X that predicts returns with a negative sign, like size, we sort on −1×X. Signing
the characteristic-sorted portfolio returns in this way makes our results more comparable to previous
work (e.g., Freyberger et al. (2020) and Haddad et al. (2020)), but leaves our conclusions unchanged.
If some return RX expands the mean-variance frontier, −RX will do so as well; and, if an asset pricing
model does not price RX , it will not price −RX either.

8We focus on returns up to five years after portfolio formation, because it is only for a handful of
characteristics that returns beyond the five-year horizon provide an alpha relative to both the newest sort
(s = 0) and the older sorts with s ≤ 60. For instance, ten years after portfolio formation, RX,(t−120),t+1
provides a significant alpha for 12 (out of 56) characteristics relative to RX,(t),t+1 and for 2 characteristics
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Throughout, we refer to RX,(t),t+1 as the return to the newest sort, and to RX,(t−s),t+1 for

s > 0 as the return to older sorts. Following Jegadeesh and Titman (1993), we combine

six sorts for each horizon s > 0 to reduce noise.9

The novelty of our method is in varying the sorting date, so that one observes contem-

poraneous returns to portfolios sorted on the same characteristic at different lags. In this

way, we can run standard asset pricing tests using monthly returns, like Jensen’s (1968)

alpha and the Gibbons et al. (1989, GRS) test, while studying effectively the return to a

multi-period investment in a characteristic-sorted portfolio.

For an unconditional test of the null hypothesis, we estimate the alpha of older sorts

to the newest sort with the full-sample regression:

RX,(t−s),t+1 = α
u
s + β

u
sRX,(t),t+1 + εX,(t−s),t+1. (4)

Intuitively, αus is the average return to a strategy that invests in RX,(t−s),t+1 and hedges un-

conditionally the exposure to RX,(t),t+1. We denote the return of this strategy Ru−hedge
X,(t−s),t+1

=

RX,(t−s),t+1 − βusRX,(t),t+1. We also consider a conditional test. To this end, we construct

the returns to a strategy that hedges in each month t+1 using only information available

up to t:

Rc−hedge
X,(t−s),t+1

= RX,(t−s),t+1 − β
c
s,tRX,(t),t+1, with βcs,t from: (5)

RX,(τ−s),τ+1 = αs + β
c
s,tRX,(τ),τ+1 + εX,(t−s),τ+1, τ = t − 59 ∶ t. (6)

We denote by αcs the average return to Rc−hedge
X,(t−s),t+1

, which is the return to an investment

in RX,(t−s),t+1 that is hedged with a position in RX,(t),t+1 equal to the beta estimated

over a 60-month historical rolling window.10 These conditional alphas represent an out-

of-sample test of the relative performance of old and new sorts. Because we need to (i)

relative to RX,(t−60),t+1. There is no characteristic for which both these alphas are significant.
9For instance, the monthly return five years after portfolio formation is defined as:

∑3
τ=−2RX,(t−60+τ),t+1/6.
10The pre-estimation of βcs,t leads to errors-in-variables. Since these hedged returns are mostly used

as dependent variables in our paper, the consistency of most of our estimates will be unaffected.
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observe contemporaneous returns RX,(t),t+1 and RX,(t−60),t+1 and (ii) estimate conditionally

hedged returns using only historical data, we lose a total of ten years at the start of our

sample. Hence, we analyze returns to characteristic-sorted portfolios from July 1974 to

December 2017 in the following.

3. Pricing errors across horizons: Do new sorts span

old sorts?

In this section, we test whether the newest sort spans older sorts, as predicted by our

null hypothesis. We first zoom in on a subset of four characteristics that are popular in

the literature and then present the evidence for the full set of 56 characteristics.

3.1 Pricing errors for four popular characteristics

We analyze the four characteristics that feature in the Fama and French (2015) five-

factor model: book-to-market, size, investment, and profitability. In Panel A of Table

I, we present summary statistics for the characteristic-sorted portfolios up to five years

after portfolio formation. We report the average number of firms in the High plus Low

portfolio as a reality check for the method. Five years after portfolio formation, these

portfolios still contain about 55% of the original number of stocks, which suggests that the

portfolios remain sufficiently diversified. Next, we confirm previous literature in that each

of the four characteristic-sorted portfolios obtains a positive average return one month

after portfolio formation, ranging from 31 bps for size to 53 bps for book-to-market.

[Insert Table I about here]

At longer horizons after portfolio formation, the differences across characteristics be-

come larger, however. The book-to-market and size effects are large and (marginally)

significant at all horizons up to five years after portfolio formation. In fact, both effects

are largest one year after portfolio formation (at 61 bps and 50 bps, respectively), after

12



which they slowly decrease (to 38 and 36 bps, respectively, after five years). In con-

trast, the profitability and investment effects are small and insignificant from two years

after portfolio formation onward. Thus, the persistence of return predictability varies

considerably across these popular characteristics.

Characteristic-persistence, that is persistence in the cross-sectional ranking of stocks,

also varies considerably across these characteristics, however. For instance, the time-

series average of the cross-sectional (rank-order) correlation between book-to-market at t

and t−12 equals 0.76, whereas this correlation is only 0.25 for investment. The higher the

persistence of a characteristic, the more likely it is that a stock in the high portfolio at

t− 12 is also in the high portfolio at t, which mechanically generates correlation between

the returns of old and new sorts. For this reason exactly, our main interest is not in a

comparison of average returns between old and new sorts. Rather, we are interested in

pricing errors between old and new sorts – the unconditional and conditional alphas of

Eqs. (4) and (5) – that control for this correlation.

We report these alphas in Panel B of Table I. We find that a large number of alphas

are economically large and significant. In fact, these alphas share many of the patterns we

saw in average returns, suggesting that the variation across characteristics is not merely

driven by variation in exposure of the older sorts to the newest sort. Let us focus on

the conditional αcs from Eq. (5). This alpha is positive and (marginally) significant at

all horizons up to five years out for book-to-market (at about 40 bps) as well as size

(at about 20 bps). In contrast, we see mostly negative alphas for profitability, which

are significant at about -24 bps from three to five years after portfolio formation, as

well as for investment, which are (marginally) significant at about -26 bps four and five

years after portfolio formation. In conclusion, we reject the null hypothesis presented in

Section 1 even for the most popular characteristics: there are significant pricing errors

across horizons, which indicates that returns from the newest sort do not unequivocally

span the returns of older sorts.

To appreciate the practical relevance of this conclusion, we present in Panel C the
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improvement in Sharpe ratio when optimally combining the old sort with the newest

sort in a single portfolio.11 For book-to-market, the Sharpe ratio from investing in the

newest sort, RBM,(t),t+1, equals 0.28. The Sharpe ratio doubles to 0.56 (= 0.28 + 0.28)

when an investment in the older sort, RBM,(t−12),t+1, is added. Similarly, for size, the

optimal combination of RSize,(t−12),t+1 and RSize,(t),t+1 obtains a Sharpe ratio that is more

than double the Sharpe ratio of an investment in RSize,(t),t+1: 0.53 versus 0.23. For both

book-to-market and size, the increase in Sharpe ratio falls gradually as time passes after

portfolio formation, although it remains economically large at over 0.11 for all s. For

profitability and investment, the largest increases in Sharpe ratio are observed when the

return five-years after portfolio formation is combined with the return one-month after

portfolio formation, at 0.14 and 0.10, respectively. In Panel D of Table I, we ask whether

a five-factor model, including the market return as well as the return on the four newest

characteristic-sorted portfolios, captures the alphas we document in Panel B. We find

that the alphas at most horizons remain economically large and (marginally) significant

for book-to-market, size, and profitability. Consequently, the GRS tests presented in the

last column reject the null that the four alphas are equal to zero at all horizons. This

rejection implies that the maximum Sharpe ratio obtained by investing in a portfolio that

combines the older sorts with the newest sorts and the market is significantly larger than

the maximum Sharpe ratio obtained when restricting the position in the older sorts to

zero.

These findings are interesting in light of recent work by Daniel et al. (2020b) (see

also Daniel and Titman (1997) and Herskovic et al. (2019)), who argue that factors can

be traded more profitably by combining a factor, like the newest high-minus-low book-

to-market portfolio (HML), with an offsetting position in a hedge portfolio. We instead

11The unconditional mean-variance optimal portfolio of the old and new sorts invests αus /σ2
ε(t−s) in

RX,(t−s),t+1 and E(RX,(t),t+1)/σ2
(t) − (αus /σ2

ε(t−s))βus in RX,(t),t+1. For instance, for book-to-market, the

optimal portfolio invests 0.83 in RX,(t−36),t+1 and 0.17 in RX,(t),t+1. Although these optimal weights are
extreme for some horizons for some of the 56 characteristics studied below, we find in those cases that
the improvement in Sharpe ratio (relative to investing only in RX,(t),t+1) is only slightly smaller when
we restrict the weights to be in the interval [−2,+2].

14



argue that combining the newest portfolio with an older portfolio improves investment

opportunities.

3.2 Pricing errors for all 56 characteristics

We present in Figure 1 the unconditional αus from Eq. (4) as well as the conditional αcs from

Eq. (5) for all 56 characteristics. To facilitate interpretation, we sort the characteristics

from low to high on the conditional alphas. For the sake of brevity, we focus on the

alpha of a strategy that averages over the returns from one to five years after portfolio

formation, denoted RX,(t−60∶t−12),t+1.

[Insert Figure 1 about here]

In contrast to the null hypothesis of zero alphas, we find that the older sorts provide

an alpha relative to the newest sort for over half of the characteristics (both in the uncon-

ditional and conditional specification).12 For over one-third of the characteristics (22 in

total), the conditional alpha is negative with a t-statistic below −1.65. These (marginally)

significant negative alphas range from -59 to -10 bps. A negative alpha implies that the

decay in average returns is too fast relative to the decay in the characteristic spread.

Among these negative alphas, we find a relatively large number of characteristics related

to profitability (such as PROF , ROA, and profit margin, PM). For over one-sixth of

the characteristics (11 in total), the alpha is positive with a t-statistic above 1.65. These

(marginally) significant positive alphas range from 11 to 37 bps. A positive alpha implies

that the decay in average returns is too slow relative to the decay of the characteristic

spread. Among these positive alphas, we find a relatively large number of characteristics

related to value (such as BM , Q, and sales-to-price, S2P ). Given the fatter left tail of

12Figure IA.1 plots the average returns of the newest and the older characteristic-sorted portfolios.
We see that there is large variation across characteristics in the difference between these average returns
(Panel C). On average the difference is negative, which is consistent with the idea that return predictabil-
ity fades as time passes after portfolio formation (e.g., Keloharju et al., 2020). We further see that the
returns of the older sorts line up quite well with the alphas of Figure 1, which is not the case for the
newest sorts.
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the distribution of alphas, we conclude that average returns decay too fast for the average

characteristic.

A variety of robustness checks confirms that pricing errors across horizons are a per-

vasive phenomenon among the characteristics we study. We present in Appendix A a

simulation study that shows these results are unlikely to be generated under the null

of zero alphas, even when the simulations respect the correlation structure (and other

moments) of the data. Figure IA.2 shows that the alphas between old and new sorts

are similar when we split our sample in two halves. Figure IA.3 and IA.4, respectively,

show that the alphas are not driven by a small set of extreme returns in NBER recessions

nor exclusively by periods of high sentiment. Figure IA.5 shows that alphas between old

and new sorts are virtually identical when we correct for survivorship bias. While the

return of the old sort, RX,(t−s),t+1, conditions on firm survival from t − s to t, the return

of the newest sort, RX,(t),t+1, does not. For these survivorship bias-corrected alphas, we

calculate the return of the newest sort using only those stocks that were already in the

CRSP file at t − s. We plot in Figure IA.6 the increase in Sharpe ratio from optimally

combining the older sort (RX,(t−60∶t−12),t+1) with the newest sort (RX,(t),t+1). Consistent

with the large amount of significant (negative and positive) alphas, we see that large

increases in Sharpe ratio of over 0.10 are common to 31 out of 56 characteristics.13

Our null predicts not only that the alpha of old sorts (αs = 0) is zero, but also

that βs = XH−L,(t−s)/XH−L,(t). This prediction means that the exposure of old sorts to

the newest sort, βs, is equal to the high-minus-low characteristic spread that remains s

months after portfolio formation, XH−L,(t−s), as a fraction of the same spread at portfolio

formation, XH−L,(t). We calculate these spreads using the median value of the charac-

teristic in the high and low portfolio to reduce the impact of outliers. Figure 2 plots

these exposures and characteristic spreads at three horizons s = 12,36,60 in the same

order as the conditional alphas in Figure 1. We see that variation across characteristics

13We find even larger increases in Sharpe ratio when we optimally choose one of the five older sorts to
be included in a portfolio with the newest sort. The horizon s of the older sort for which this maximum
Sharpe ratio is obtained varies across characteristics, which is why we focus on the average of the five
older sorts.
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in the exposure of old to new sorts lines up well with the characteristic spread at all

horizons. At the three-year horizon, for instance, their correlation equals 0.86. This find-

ing suggests that more persistent characteristics, such as size, generate larger correlation

between old and new sorts. Less persistent characteristics, such as momentum and short-

term reversal, generate substantially smaller correlation. Variation in persistence across

characteristics cannot explain the pricing errors we document, however. Our estimates of

these pricing errors explicitly control for the correlation between old and new sorts and

Figure 3 shows that the pricing errors are virtually unchanged when we impose in their

calculation the null-condition on βs.

[Insert Figures 2 and 3 about here]

What drives the rejection of the null hypothesis then? Average returns after portfolio

formation do not decay at the same speed as characteristic spreads. To see this by

example, consider book-to-market. Average returns to this strategy are roughly constant

until five years after portfolio formation (see Table I), even though only 80%, 53%, and

41% of the high-minus-low book-to-market spread remains one, three, and five years after

portfolio formation, respectively. If the expected return compensation for a portfolio’s

loading on book-to-market was independent of the time the portfolio was formed, we

would see an average return, e.g., three years after portfolio formation of 28bps (53% ×

53bps), which is well below the average return of 49bps in the data. This mismatch

between the persistence of the book-to-market characteristic and its returns generates

the positive alpha of the old versus new book-to-market sorts.

Our rejection of the null hypothesis would not be surprising if old and new sorts are

exposed differently to fundamental factors. In the next section, we show that exposure to

the factors in benchmark asset pricing models cannot explain the alphas we document.

To see the intuition for this result, we present the exposures of older sorts (RX,(t−s),t+1, for

s = 12, ...,60) to the newest sort RX,(t),t+1 in Figure 4. We see that these betas are quite

large and persistent for most characteristics. The median beta (across characteristics)
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equals 0.77 one year after portfolio formation (i.e., for RX,(t−12),t+1) and falls only slowly

to 0.55 five years after portfolio formation (i.e., for RX,(t−60),t+1).14 Hence, models that

do a good job explaining the returns to a characteristic-sorted portfolio at one horizon

(e.g., the newest sort) will have a hard time explaining returns at another horizon (e.g.,

the older sorts), when (i) there is a large alpha separating these two returns and (ii) these

returns are highly correlated. This tension is at the root of the asset pricing implications

we derive from old and new sorts.

[Insert Figure 4 about here]

4. Implications for asset pricing models

To analyze the asset pricing implications of our results, we reduce the dimensionality of

the data and extract, at each horizon, principal components from the characteristic-sorted

portfolios. In the spirit of existing literature on the cross-section, we treat the principal

components extracted from the newest sorts – with returns one month after portfolio

formation – as statistical factors in an asset pricing model. We ask if these statistical

factors as well as benchmark factor models from the literature capture the pricing errors

across horizons. The benchmark models are the single-factor CAPM (Sharpe (1964),

Lintner (1965), Mossin (1966)); the three-factor model of Fama and French (1993, FF3M);

the five-factor model of Fama and French (2015, FF5M); and finally, a six-factor model

including the factors in the FF5M and momentum (FF5M+MOM). We focus on these

models to show the important trade off between small and big models. Results for the

models of Hou et al. (2015, HXZ), Frazzini and Pedersen (2014, BAB), Daniel et al.

(2020b, DMRS), Stambaugh and Yuan (2016, SY), and Daniel et al. (2020a, DHS) are

consistent and summarized in Table IA.II of the Internet Appendix. To provide additional

economic intuition, we relate the pricing errors across horizons to market beta.

14Correlations between old and new sorts are slightly larger, because RX,(t),t+1 is typically more volatile
than RX,(t−s),t+1 (the median correlation equals 0.85 for RX,(t−12),t+1 and 0.64 for RX,(t−60),t+1).
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4.1 Principal component analysis (PCA) of new and old sorts

PCA is a popular technique to extract latent factors from a large cross-section of returns.

The motivation is that the SDF can be suitably approximated using only a few dominant

principal component factors, when characteristic-sorted portfolios do not each represent

an independent source of priced risk (Kozak et al., 2019; Haddad et al., 2020). We differ

from existing literature, because we apply PCA not only to the returns of new sorts but

also to the returns of old sorts. To be precise, we extract three principal components from

RX,(t−s),t+1 at horizons s = 0,12, ...,60. At each horizon, the three principal components

explain about 60% of the total variation in returns.15

We perform GRS tests to determine whether (i) the principal components extracted

from RX,(t),t+1 (denoted 3PC(t),t+1), or (ii) benchmark asset pricing models, price the

principal components extracted from RX,(t−s),t+1, s = 12,24, ...,60. This question is inter-

esting, because the test assets in most existing literature are returns to relatively “new”

portfolios that are sorted on recent observations of characteristics. The factors in the

FF5M, for instance, have been added sequentially to the CAPM, because they perform

well for such test assets (Fama and French (1993, 1996, 2015)). We know relatively little

about the performance of these factors for returns over longer horizons after portfolio

formation.

Table II presents the results. In Panel A, we see that the GRS test rejects with

a p-value of 0.0014 that the statistical factor model 3PC(t),t+1 prices the three principal

components extracted from RX,(t−12),t+1. At longer horizons, the rejection is even stronger

at p-values < 0.0001. The fact that three statistical factors that explain most of the

variation in RX,(t),t+1 do not price the dominant components of RX,(t−s),t+1, confirms

that the relative pricing errors we document in Section 3 are statistically large. For the

benchmark models, several results stand out. First, small models do relatively poorly

at pricing the statistical factors extracted from RX,(t),t+1: the GRS test rejects at a p-

15Our conclusions are unchanged when we extract the principal component factors using the approach
of Lettau and Pelger (2020). Also, for reasons that will be clear below, the choice of the number of
principal component factors has little impact on our conclusions.
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value < 0.0001 for the CAPM and FF3M. In contrast, relatively large models do better

at pricing these returns, as the GRS test does not reject at a p-value of 0.23 for the

FF5M and 0.41 for the FF5M+MOM. Second, both small and large benchmark models

fail to price the principal components extracted from returns at most horizons s > 0 after

portfolio formation. However, if anything, the smaller models perform relatively well.

For instance, the GRS test does not reject at the 10%-level for the CAPM and FF3M at

the five-year horizon (s = 60), in contrast to the FF5M(+MOM).

[Insert Table II about here]

In all, these GRS tests confirm that there are large pricing errors across horizons and

that existing asset pricing models fail to jointly price both the newest and older sorts. To

understand which component is driving this result, we present in Table III the alpha for

individual principal components at each horizon after portfolio formation. We estimate

these alphas by running the following regressions:

λ′
(t),zRX,(t−s),t+1 = αs + βsFt+1 + ε(t−s),t+1, (7)

where Ft+1 is one of the five candidate factor models: 3PC(t),t+1, CAPM, FF3M, FF5M,

FF5M+MOM. Note that we apply the same loadings to returns at all horizons s after

sorting, that is, the loadings λ(t),z of the z-th principal component extracted from the

newest sorts with returns RX,(t),t+1. In this way, we abstract from variation in the loadings

of the z-th principal component across horizons, such that our results derive only from

the relative pricing of RX,(t−s),t+1 versus RX,(t),t+1. Having said that, this choice does not

affect our main conclusions, because the characteristic-sorted portfolio returns at different

horizons are highly correlated (see Figure 4 and the related discussion in Section 3.2).

[Insert Table III about here]

In Panel A, we see that the first principal component of returns provides a large and

significant alpha with respect to the statistical factor model 3PC(t),t+1 at longer horizons
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after portfolio formation. The estimated alpha is 68 bps (t-stat = 3.69) for s = 12 and is

larger than 100 bps for s > 12 (t-stat > 5). For the second and third principal components,

returns at longer horizons after portfolio formation are explained well by the 3PC(t),t+1

model. For the benchmark models in Panels B to E, several results stand out. Similar

to the model with three statistical factors, the larger benchmark models do not price

the return to the first principal component at longer horizons after portfolio formation.

The alpha in the FF5M as well as FF5M+MOM are over 100 bps at horizons s > 12

(t-stat > 3). These larger models do price the return of the first principal component at

horizons s = 0,12. In contrast, the smaller benchmark models price the returns to the

first principal component at longer horizons after portfolio formation (s > 12). These

models fail completely at shorter horizons, however. For instance, the alpha at s = 0 is

around -2.2% per month in the CAPM and FF3M. Finally, in contrast to the statistical

factor model 3PC(t),t+1, the benchmark models also perform poorly pricing the second

principal component of returns. The performance of small and big models again differs

importantly. While the alpha of the second principal component is negative in the CAPM

(around -1% and marginally significant at all horizons s > 0), it is positive in the larger

factor models (around 70 bps and significant at most horizons s).

In all, the pricing errors across horizons are for the largest part driven by the first

principal component of characteristic-sorted portfolios. This is easily verified in Figure

5, which plots the loadings of the first principal component on each characteristic.16 We

see that the loadings are almost monotonically increasing from left to right, in line with

a correlation of 0.78 between these loadings and the alphas of old versus new sorts (as

reported in Figure 1). The strength of this relation is surprising, because the principal

component loadings are determined only by the variances and covariances of returns

of the newest sorts. In light of this strong relation, it is unsurprising that a strategy

that uses the principal component loadings as portfolio weights, obtains a return, say,

16These loadings are robust. When we split our sample in two halves around March 1996, the loadings
of the first principal component in the first half of the sample are correlated at 0.81 with the loadings of
the first principal component in the second half of the sample.
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three years after portfolio formation that is hard to explain from the point of view of

returns immediately after portfolio formation. The intuition behind this result is clear

from the summary statistics presented in Panel B of Table II. The correlation between

λ′
(t),1

RX,(t),t+1 and λ′
(t),1

RX,(t−36),t+1 is high at 0.91, whereas the average returns of these

strategies is remarkably different at −60 bps versus 94 bps, respectively.

[Insert Figure 5 about here]

Given the high correlation between these two returns, differential exposure to the

benchmark factors is unlikely to explain the difference in average returns. This suggestion

is confirmed in Panel F of Table III. Here, we ask whether the benchmark models price

a strategy that is long the first principal component of older sorts and short the first

principal component of the newest sorts: λ′
(t),1

(RX,(t−36),t+1 − RX,(t),t+1). For all models

and at all horizons s, this strategy provides a large and significant alpha. The larger

models perform relatively well in this exercise, because the alphas decrease, for instance

for s = 36, from 2.04% (t-stat=5.91) in the CAPM to 1.16% (t-stat = 3.47) in the

FF5M+MOM.

In Panel B of Table IA.II of the Internet Appendix, we find a similarly large alpha for

this strategy relative to three of the five alternative models: HXZ (1.21%, t = 3.49), BAB

(1.38%, t = 3.51), and DMRS (1.64%, t = 5.14). For the remaining models, SY and DHS,

the alpha of this strategy is only marginally significant at about 70 bps. Although these

two models do relatively well at pricing this combination of the older and the newest sorts,

both these models fail to price the first principal component of older sorts in isolation

(see Panel A of Table IA.II). In conclusion, none of the benchmark models we study is

able to price the returns to both new and old sorts. Consequently, a combination of the

newest sort, which is the focus of most existing literature, with an older sort, provides

a risk-return trade-off that is hard-to-explain from the point of view of existing asset

pricing models.
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4.2 What do factor models need to capture pricing errors across

horizons?

Asset pricing models should jointly price newer and older sorts. We have seen that

models with factors that are based on new sorts alone fail this challenge. What about

models with factors based on new and old sorts? To answer this question, we consider a

four-factor model that adds to the three principal components extracted from the newest

sorts, a single factor capturing the return differential between older and newer sorts. In

line with the above setup, we define this factor λ′
(t),1

RX,(t−36),t+1 and denote this model

4PC(t,t−36),t+1.

In Panel A of Table IV we present alphas for the principal components at each horizon

with respect to this four-factor model. We see that the pricing errors across horizons for

the first principal component are quite small, especially compared to alphas of > 1% in

the three-factor model 3PC(t),t+1 (see Panel A of Table III). Having said that, the alpha

is significant in the four-factor model at about 36 bps at the longest horizons (s = 48,60).

Similarly, the GRS test (which considers jointly the alphas of the first three principal

components) does not reject at the 5%-level at shorter horizons, but rejects marginally

at the longest horizons. This result marks a big improvement over the three-factor model

3PC(t),t+1, for which model the GRS test firmly rejects at all horizons with p-values well

below 0.0001 (see Table II).

[Insert Table IV about here]

The improved fit of the four-factor model is not specific to the first three principal

components. In Panel A we also show that the four-factor model is not rejected at the

5%-level at any horizon when we use as test assets the first five principal components of

characteristic-sorted portfolio returns. Moreover, we ask in Panel B whether the models

capture the pricing errors across horizons in the large set of 56 characteristic-sorted

portfolios. To this end, we regress the returns of the unconditionally and conditionally

hedged strategies (see Eqs. (4) and (5)) on the four-factor model as well as the benchmark
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factor models. We report the mean absolute alpha (MAA) and the number of alphas that

are significant (at the 5%-level) at each horizon s.17 We see that our proposed model,

4PC(t,t−36),t+1, performs relatively well. For instance, at the three-year horizon (s = 36),

we find only 7 (8) unconditional (conditional) alphas that are significant. For comparison,

these counts equal 15 (14) for the CAPM and 14 (14) for the FF5M+MOM. Also, the

mean absolute alpha is smallest for the four factor model at 9 bps versus 15 bps for the

CAPM and FF5M+MOM.

The outperformance of 4PC(t,t−36),t+1 is even starker in cross-sectional regressions.

Figure 6 presents cross-sectional R2s when the test assets are 112 characteristic-sorted

portfolios (56 portfolios from (t) and (t − s)) and factor risk premia are forced to match

their sample average returns. At all horizons s, this R2 is negative in all four benchmark

models, marginally above zero for the three-factor model 3PC(t),t+1, but large and positive

(about 0.40) for the 4PC(t,t−36),t+1. Thus, benchmark factors based on the returns of new

sorts provide a poor fit to explain the joint cross-section of old and new sorts. In contrast,

adding a single factor based on old sorts (to a model based on new sorts) goes a long way

to capture relative pricing errors across horizons. This finding is consistent with the fact

that these pricing errors are driven by the first principal component of returns. Let us

now turn to the identity of this first principal component.

[Insert Figure 6 about here]

4.3 Market beta and pricing errors across horizons

When test assets are long-only stock or portfolio returns, the first principal component

typically loads quite similarly on each asset, such that it is close to the market portfolio.

Our first principal component of long-short characteristic-sorted portfolio returns has

loadings that are negative for about half of the characteristics. Nonetheless, it is also

17Note that these alphas are the result of a two-stage test, where in the first stage we regress RX,(t−s),t+1
on RX,(t),t+1 and in the second stage we regress RX,(t−s),t+1 − βsRX,(t),t+1 on the benchmark factors.
Although this has little impact on our conclusions, the results for the unconditional test use GMM
standard errors that correct for this errors-in-variables.
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strongly exposed to the market. To see this, consider the large CAPM alpha of -2.32%

per month for the first principal component of the newest sorts in Panel B of Table III.

This alpha is only for a small part due to a low average return (-60 bps, Panel B of Table

II). For a much larger part, this alpha is due to a large market beta of 2.63.18 Indeed,

there is a strong relation (corr = 0.96) across characteristics between the market exposure

of RX,(t),t+1 and the loading of the first principal component on RX,(t),t+1. Since the first

principal component drives pricing errors across horizons, market beta holds promise to

contain timely information about these pricing errors.19

Each month t, we sort the 56 long-short characteristic portfolios in three groups split

at the terciles of ranked market betas.20 These market betas are estimated for the newest

sort over a 60 month historical rolling window (i.e., using RX,(t−60),t−59 to RX,(t−1),t). Then,

within each market beta group, we take an equal-weighted average over the characteristic-

sorted portfolio returns at each horizon. For instance, we denote the returns in the high

market beta group by RHβ,(t−s),t+1. We will also analyze the alphas of old versus new

sorts across market beta groups. To this end, we take in each group an equal-weighted

average of the unconditionally and conditionally hedged returns (defined in Eqs. (4) and

(5)). We denote these returns, Ru−hedge
Hβ,(t−s),t+1

and Rc−hedge
Hβ,(t−s),t+1

, for instance. To conserve

space, we focus on the horizons s = 0 and s = 36, because these horizons are representative

of the general patterns in the data.

In Panel A of Table V, we first see that average returns among high beta characteristics

decrease relatively slowly after portfolio formation, from an average return of 30 bps for

s = 0 to 25 bps for s = 36. In contrast, among low beta characteristics, average returns

decrease considerably faster and fall from a positive 24 bps for s = 0 to a negative -12 bps

for s = 36. These two facts together imply that the difference in average return between

18As is standard in PCA, the loadings, which we use as portfolio weights, have Euclidean norm =
1, which scales up the return and beta of this portfolio. This scaling has no effect on the statistical
significance of our results, which is why we stick with it.

19Similar to us, Haddad et al. (2020) extract the first principal component of long-short characteristic-
sorted portfolios. In contrast to us, these authors use market-neutral portfolios in the PCA. We do
not clean the portfolios from market exposure to show that the market beta of a characteristic-sorted
portfolio is informative about pricing errors across horizons.

20Our conclusions are not sensitive to the chosen number of groups.
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high and low beta characteristics is increasing from 7 bps (s = 0) to 38 bps (s = 36) as time

passes after portfolio formation. Thus, a first take-away from the sort on market beta is

that the persistence of return predictability is larger for high market beta characteristics.

As mentioned before, average returns are not the most interesting statistic in the context

of old and new sorts that are differentially correlated across characteristics.

[Insert Table V about here]

We therefore turn to the returns of the hedged strategies, which measure the alpha of

older sorts relative to the newest sort. We find that both unconditional and conditional

alphas are increasing from low to high market beta. For instance, among low beta charac-

teristics, the return of a portfolio sorted three years ago provides a significantly negative

conditional alpha relative to the newest sort of −23 bps (t-stat=−4.35). In contrast,

among high beta characteristics, the same portfolio provides a positive conditional alpha

of 10 bps (t-stat=2.86). These effects add up to a large alpha for the high-minus-low mar-

ket beta portfolio of 33 bps (t-stat=4.42). Thus, we conclude that pricing errors across

horizons are also strongly related to market beta. The fact that relatively large, nega-

tive pricing errors are observed for low market beta characteristics implies that average

returns decay too fast after portfolio formation for such characteristics.

In Panel B, we ask if popular asset pricing models capture these patterns. First, we

see that the smaller models, CAPM and FF3M, fail to capture the difference in returns

between high and low market beta characteristics one month after portfolio formation.

The CAPM and FF3M alpha for the high-minus-low market beta portfolio are significant

at -40 and -43 bps, respectively.21 This alpha is mostly driven by a large positive alpha

of over 50 bps in the low market beta group. Thus, among low beta characteristics, the

average return one month after sorting is not only anomalously high relative to returns

longer after portfolio formation, but also relative to the market. These small models

21We already saw in the previous subsection that an unconditional CAPM cannot explain our results.
Because we have now sorted the characteristics on their conditional market betas, the current evidence
suggests that a conditional CAPM cannot explain our results either.
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perform much better pricing returns longer after portfolio formation. For s = 36, returns

fall in line with the CAPM in the low market beta group, such that the alpha of the high-

minus-low market beta portfolio is small and insignificant. The performance of bigger

models is quite the opposite. Both the FF5M and FF5M+MOM capture the difference

in returns between high and low market beta characteristics immediately after portfolio

formation. However, three years after portfolio formation, the high-minus-low market

beta portfolio obtains a large and significant alpha of about 42 bps (t-stat ≈ 3.5).

We thus see the same trade-off between big and small models as in Table III. The

fact that none of the benchmark models prices returns of both older and newer sorts is

driven by two things: returns of the new and old sorts are highly correlated, but the

average return is different.22 Consistent with the evidence in Panel F of Table III, we

next confirm that all models fail to capture the return of the strategies that hedge an

investment in the old sort with a position in the new sort. The alpha of these strategies is

significantly smaller among low market beta characteristics by about 30 bps (t-stat > 3) in

all four benchmark models. In fact, this result holds true equally for the five alternative

models considered in Panel C of Table IA.II of the Internet Appendix. Thus, existing

asset pricing models do not capture the relatively large pricing errors across horizons

among low beta characteristics.

In Panel C, we see that the four-factor model proposed in the previous subsection,

4PC(t,t−36),t+1, does capture the relatively large pricing errors across horizons among low

beta characteristics. As a result, this model eliminates almost completely the difference

between high and low beta characteristics in (conditionally and unconditionally) hedged

returns. Although the performance of 4PC(t,t−36),t+1 generally compares favorably to the

other models studied in Table V, the fit of the model is not perfect. For instance, high

market beta characteristics provide an alpha relative to this four-factor model both one

month and three years after portfolio formation. Pricing both new and old sorts, and

thus combinations between them, is hard and we leave a more thorough investigation of

22The correlation between RH−L,(t),t+1 and RH−L,(t−36),t+1 is high at 0.80, but their average returns
are 7 bps and 38 bps, respectively (see Panel A of Table V).
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this issue for future work.

To conclude, we uncover a new dimension of the low beta anomaly by grouping

characteristic-sorted portfolios on their market beta. We find that pricing errors across

horizons are strongly related to market beta: average returns of the newest sorts are too

high relative to older sorts among low market beta characteristics. This pricing error

across horizons is not captured by market beta and therefore translates to a large alpha

relative to the CAPM, and also relative to larger factor models.

5. The contribution of new and old stocks

Our evidence so far suggests that there is a range of characteristics – that is, those with

low market betas – for which the return immediately after portfolio formation is too high

(given its characteristic spread) relative to the return (and characteristic spread) longer

after portfolio formation. Similarly, there are characteristics for which this return is too

low. To understand which stocks drive these results, we split the stocks that are used

to calculate the return of the newest sort, RX,(t),t+1, into relatively new and old stocks.

To this end, we perform a dependent double sort into ten Xt deciles and within the high

and low decile into two portfolios split at the (within-portfolio) median of Xt−36. This

decomposition is natural and ensures that the new and old portfolios (roughly) contain

the same number of stocks for all characteristics. In particular, ROld
X,(t),t+1

is the return of

a strategy that is long (short) a value-weighted portfolio of the stocks for which, among

all stocks in the highest (lowest) decile portfolio at time t, the characteristic X is above

(below) the median value of that characteristic 36 months ago. The return for new stocks,

RNew
X,(t),t+1

, uses all remaining stocks in the high and low portfolio at time t.23 Intuitively,

the new stocks are those that have seen a relatively large change in the characteristic

23We also allocate stocks that are recently introduced in CRSP to the new portfolio. We have con-
sidered an alternative new-versus-old decomposition that defines as old stocks only those stocks that
are in the high (or low) portfolio today as well as 36 months ago. This decomposition generates large
differences in the number of stocks in the old versus the new portfolio depending on the persistence of
the characteristic considered.
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over the last three years.

This decomposition is new to the literature and different from the transitory-permanent

decomposition of Keloharju et al. (2020). These authors decompose a characteristic at

the firm level in its historical average (the permanent component) and a residual (the

transitory component). Whereas we focus on the intermediate three-year horizon, Kelo-

harju et al. (2020) define the permanent component using a ten-year average. Moreover,

we sort the stocks within the high and low decile portfolio in a new and old group,

whereas Keloharju et al. (2020) sort the whole cross-section of stocks using their two

components. Thus, our decomposition of stocks within the high and low decile portfolio

can uncover new information about how changes in characteristics predict returns. To

see this, consider book-to-market. This characteristic generates a positive old-minus-

new return difference of 57 bps (t-stat = 2.18). This finding implies that past changes in

book-to-market predict returns with a negative sign among stocks that are in the extreme

book-to-market portfolios today.24

We first perform a reality-check of our decomposition. The results above suggest that

the returns of older sorts are highly correlated to the returns of the newest sort for most

characteristics. One would expect this correlation to be driven by old stocks. Figure 7

plots the relative contribution to the R2 in a joint regression of RX,(t−36),t+1 on ROld
X,(t),t+1

and RNew
X,(t),t+1

and confirms this intuition. For the vast majority of characteristics, the R2

is driven by the old stocks that have extreme characteristic values in the past as well as

today. Across characteristics, the median contribution to R2 is about three times larger

for the old stocks than for the new stocks. We also see that these relative contributions

to R2 do not line up in any particular way with the pricing errors we document in Figure

1, which suggests again that persistence of the characteristic is not the main driver of

our results.

[Insert Figure 7 about here]

24In contrast, Gerakos and Linnainmaa (2018) find that changes in book-to-market predict returns
with a positive sign in the full cross-section of stocks, which result we replicate in our data.
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Next, we analyze the difference in average returns and alphas between the characteristic-

sorted portfolios that use either old or new stocks. To increase power, we test these

differences across the three market beta groups of Section 4.3. Our decomposition in new

versus old stocks is coarse, and averaging over different characteristics within each group

will smooth out this noise.25 Table VI presents descriptive statistics for these three groups

and confirms that the new and old stock portfolios are similar in important dimensions.

First, the new and old stock portfolio represent a similar high-minus-low characteristic

spread, which suggests that an old-minus-new strategy is roughly characteristic-neutral.

For instance, on average among low market beta characteristics, the old-minus-new port-

folio provides a characteristic spread that is only 3% (1.02-0.99) of the characteristic

spread in the not-decomposed long-minus-short decile portfolio. Second, the difference

in total market cap allocated to the new and old portfolio is small, which suggests that

the new portfolio is not overpopulated by small (and therefore illiquid) stocks. For in-

stance, among low market beta characteristics, on average 9% of total CRSP market cap

is allocated to the new stocks in the high plus low portfolio, which is relative to 11% for

old stocks. Third, the old and new stock portfolios are balanced in the spread between

the high and low portfolio in size, book-to-market, investment and profitability. For each

of these characteristics, the difference between the old and new portfolio is small. To

see this, we present the characteristic spread that is obtained in a single sort of stocks

on these characteristics, which spreads are larger than the old-minus-new characteristic

spreads by a factor eight or more. Thus, any model that defines expected excess returns

as a linear function of these four characteristics (e.g., Daniel et al., 2020b) predicts that

return differences between old and new stock portfolios are small.

[Insert Tables VI and VII about here]

We present average returns and alphas with respect to existing factor models in Table

25Figure IA.7 presents the return-differences between old and new stocks for all 56 characteristics.
We see that these return differences are roughly increasing from the characteristics on the left (like
idiosyncratic volatility) to the characteristics on the right (like book-to-market), consistent with the idea
that the difference in returns between old and new stocks in the extreme portfolios contributes to the
alpha between old and new sorts.
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VII. We present results for the newest characteristic-sorted portfolios (RX,(t),t+1) as a

benchmark, but our main interest is in the (difference between) the contribution of new

and old stocks (RNew
X,(t),t+1

and ROld
X,(t),t+1

). To start, we see that old stocks underperform

new stocks among low market beta characteristics by a significant -18 bps. This finding

confirms that the negative alphas of old with respect to new sorts among low market

beta characteristics (see Section 4.3) are driven by returns that are relatively too high

immediately after portfolio formation. Indeed, recall that the portfolios of old and new

stocks present roughly the same characteristic spread. Among high beta characteristics,

the old stocks outperform the new stocks by a significant 19 bps, consistent with a positive

alpha between old and new sorts among this set of characteristics. The diff-in-diff between

old and new stock among high versus low beta characteristics is large and significant at

37 bps (t = 3.18).

Neither small (e.g., the CAPM) nor big (e.g., the FF5M+MOM) models fully capture

the relative performance differential between new and old stocks. Indeed, in all models, we

find a large and (marginally) significant spread in the alpha of the old-minus-new strategy

between high and low market beta characteristics. This alpha equals 27 bps in the CAPM

and 43 bps in the FF5M+MOM.26 Consistent with previous evidence, we see the trade-off

between small and big models. Small models, like the CAPM, capture the high-minus-

low market beta spread among old stocks, but do not capture the high-minus-low market

beta spread among new stocks. In contrast, big models, like the FF5M+MOM, capture

the high-minus-low market beta spread among new stocks, but do not capture the high-

minus-low market beta spread among old stocks. Thus, existing asset pricing models do

not jointly price new and old stocks.

This result provides an interesting link with our previous conclusion that existing

models do not jointly price new and old sorts. Intuitively, old stocks capture the long-

term returns to characteristic-based investing, whereas the new stocks capture the short-

26In the five alternative models considered in Panel D of Table IA.II of the Internet Appendix, this
alpha is similarly large and ranges from 35 bps (t = 3.39) in the DMRS model to 45 bps (t = 3.70) in the
DHS model.
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term returns. This evidence marks an important contribution to Keloharju et al. (2020).

These authors find that returns are mostly driven by the transitory (not the permanent)

component of the average characteristic. We instead show that the relative performance

differential between new stocks, which return is likely closer to their transitory component,

and old stocks, which return is likely closer to their permanent component, varies in sign

across characteristics.

More generally, our evidence indicates that return spreads from stocks that have been

in the extreme portfolios for a while are not the same as return spreads from stocks that

are new to the extreme portfolios, even when these old and new stocks have the same

current level of the characteristic. In other words, there are subsets of stocks for which the

same characteristic spread is compensated with a different risk premium. In the context

of our null hypothesis (see Section 1), this finding indicates that the pricing errors we

document are not likely due to a non-linear relation between characteristics and expected

returns. Indeed, non-linearity cannot explain why two sets of stocks with the same

characteristic spread have a different average return. Moreover, this finding contributes

to Daniel and Titman (1997), who show that returns can vary with a characteristic even

holding risk exposure fixed. We show that returns can vary even holding the characteristic

fixed. One may be inclined to conclude that this variation is due to differences in the

loading of new and old stocks on other characteristics. With that prior it is surprising

that the difference between new and old stocks is not captured by any of the factor models

we consider, because the factors in these models are derived from sorts of stocks on these

other characteristics. Consider, for instance, the five-factor models FF5M and DMRS.

As seen in Table VI, there is not much difference between old and new stocks in the

characteristics that define the factors in these models. Consequently, these models fail

to capture the old-minus-new return differences. These findings also imply a rejection of

the assumption in Daniel et al. (2020b) that stock’s loadings on the SDF are a function

of recent values of size, book-to-market, profitability and investment.

What existing models miss is information in past values of, or changes over time in,
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characteristics. The fact that past values contain additional independent information

about expected returns in the cross-section of stocks is interesting in and of itself. The

return differentials we document imply that investors wanting to trade characteristics

should carefully consider the distinction between new and old stocks for their portfolio.

Our new and old stock portfolios are tradable and require a position in much fewer stocks

than the original strategies. Old stock portfolios will require relatively little rebalancing,

thus lowering transaction costs even further.27

6. Theoretical explanations of characteristic-based re-

turn predictability

Many production-based asset pricing theories seek to explain cross-sectional return pat-

terns associated with characteristics. In the model of Gomes et al. (2003), current size

and book-to-market predict returns in the cross-section, because these characteristics are

correlated to the firm’s true conditional market beta. We already saw that the CAPM is

unlikely to fully explain our results. In addition, their model shares an important feature

with alternative theories of characteristic-based return predictability (such as Berk et al.

(1999) and Zhang (2005)): the focus is on relating one-period ahead expected returns to

current characteristics. Since the previous section shows that past values of characteris-

tics contain additional information about the cross-section of returns, our results likely

provide a difficult challenge for these models. To see this, we analyze where our empiri-

cal estimates lie in the simulated distribution generated under the null of the models of

Gomes et al. (2003) and Zhang (2005).28

In Panel A of Table VIII, we report the average return of older and newer portfolios

27Relatedly, combinations of new and old sorts (such as those proposed in Section 3) are likely less
expensive to trade than an investment in RX,(t),t+1 alone. The reason is that positions in selected stocks
for RX,(t),t+1 and RX,(t−s),t+1 are likely to cancel out (see DeMiguel et al., 2019).

28A potential concern is that these models are at a disadvantage because their economies are stationary,
precluding entry and exit of firms. Recall, however, that the alphas between old and new sorts are similar
when we define both returns using only those firms that are in the sample at t and t − 36 (see Figure
IA.5).

33



sorted on simulated book-to-market ratios. Both models generate a high-minus-low book-

to-market spread one month after portfolio formation. This spread is relatively small in

the model of Gomes et al. (2003), consistent with the original study. More important in

the context of our paper, we see that return predictability in both models fades relatively

fast as time passes after portfolio formation. In Panel B, we also see that neither model

generates the relatively large alphas between the older sorts and the newest sort (as

defined in Eq. (4)). The simulated alphas have a median of zero and are generally small

at all horizons. Our estimates of these alphas (about 35 bps per month) are above the 99th

percentile of the simulated distributions. Similarly, in Panel C we see that neither model

generates as large a difference between old and new book-to-market stocks (defined in

Section 5) as we observe in the data. Having said that, the median old-minus-new return

difference when simulating from the model of Zhang (2005) is about 20 bps, which is

non-negligible economically.

In all, we reject the models, because neither model generates a large difference in

returns between old and new sorts as well as between old and new stocks.

[Insert Table VIII about here]

7. Conclusion

In contrast to most existing literature that focuses on characteristic-based return pre-

dictability over short horizons, we study horizons up to five years. We uncover large

pricing errors across horizons, measured as the alpha in a regression of returns to old

sorts on the returns to new sorts. These alphas imply that returns do not in general

decay at the same speed as characteristics and exist even though the returns of the new

and old sorts tend to be highly correlated. Combining these two facts, it is easy to see

why existing factor models fail to eliminate the relative pricing errors between old and

new sorts. However, there is an important trade-off between small (e.g., the CAPM) and

big (e.g., the FF5M) models. Neither prices both old and new sorts, because big models
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only price relatively new sorts, whereas small models only price relatively old sorts. We

thus argue that longer horizon returns to characteristic-based investing provide a useful

new set of moments to distinguish between asset pricing models.

We further find that the relative pricing errors are mostly driven by the first principal

component of returns, which explains why adding a single factor based on old sorts (to a

model with factors based on new sorts) goes a long way to capture the pricing errors across

horizons. Having said that, we leave for future work the challenge of finding the most

parsimonious factor representation that jointly prices new and old sorts. Furthermore,

pricing errors across horizons are (i) strongly related to a characteristic’s market beta,

which contributes a new dimension to the low beta anomaly, and (ii) connected to the

difference in returns between “new” and “old” stocks, which are stocks in the extreme

decile portfolios that have recently experienced, respectively, large and small changes in

the characteristic.

Our empirical evidence has important implications for practitioners trading charac-

teristics as well as empiricists testing asset pricing models. Future empirical research

can use the decompositions developed in this paper (in new versus old sorts, and in new

versus old stocks) to shed light on the dynamics of return predictability for a newly dis-

covered characteristic or anomaly; this will, in turn, help evaluating the breadth of its

asset pricing implications. An interesting avenue for future theoretical work is to under-

stand the economic drivers of the pricing errors across horizons and, more specifically,

why the expected return compensation for a unit loading of a portfolio on a characteristic

seems to depend on the time this portfolio was formed.
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Appendix A. Simulation

We run a number of Monte Carlo simulations to assess the size of our tests. The main

concern is that returns across the 56 characteristic-sorted portfolios are correlated, which

may affect the inference from our tests. In the simulations, we impose the null of zero

alpha between the old and new sort, but respect the correlation structure (as well as

other moments) in the data. We analyze the regression of Eq. (4) focusing on s = 36:

RX,(t−36),t+1 = α + βRX,(t),t+1 + εX,(t−36),t+1. (8)

In each of 10000 simulations, we first create for each characteristic X = 1, ...,56 an

artificial time-series of returns to the new sorts collected in the T × 56 matrix: Rsim
(t),t+1

=

[Rsim
1,(t),t+1

, ...,Rsim
56,(t),t+1

]. These returns are drawn from a multivariate normal distribution,

Rsim
(t),t+1

∼ N(µ(t),Σ(t)), where µ(t) and Σ(t) are the vector of means and the variance-

covariance matrix of R(t),t+1 in the data. Next, we create artificial returns to the old sorts,

imposing zero alpha: Rsim
X,(t−36),t+1

= βsimX Rsim
X,(t),t+1

+usimt+1 . The exposure of the old sort to the

new sort, βsimX is drawn from a normal distribution with mean (standard deviation) equal

to the average (standard deviation) of β in the data taken over the 56 characteristics. The

residuals are drawn from a multivariate normal distribution usimt+1 ∼ N(056,Σu), where Σu is

the variance-covariance matrix of the residuals from Eq. (8) in the data. As a benchmark,

we also present results for a simulation that assumes the variance-covariance matrices,

Σ(t) and Σu, are diagonal (rather than full), which thus ignores the correlation between

characteristics. Finally, we consider 10000 bootstrap simulations that account for the fact

that return(-innovations) are not normal in the data. Each bootstrap resamples (with

replacement) from the original time index t = 1, ..., T both the returns of the newest sort

and residuals from Eq. (8) in the data. We combine these bootstrapped time-series with

the simulated βsimX ’s to create returns to the older sort.

For each set of artificial data, we estimate Eq. (8) and present below the 50, 90, 95

and 99 percentiles of the simulated distribution of the number of significant (at the 10%

36



level) α’s out of 56. In the data, we find that 23 out of 56 characteristics have an alpha

(between the old sort at s = 36 and the newest sort at s = 0) that is significant at the

10% level. This number is unlikely to be generated under the null, because in 99% of

the simulations that respect the correlation structure in the data (using either normal

returns or bootstrapped returns) the number of significant α’s is below 16.

Table A.I: Simulated distribution of number of significant alphas
We simulate returns to the older sort at s = 36 under the null of zero alpha with respect to the
newest sort at s = 0. We report the 50, 90, 95, and 99 percentiles of the distribution (in 10000
simulations) of the number of alphas of the older sort with respect to the newest sort that are
significant (out of a total of 56 and estimated as in Eq.(8)).

Percentiles 50 90 95 99 Data

# Significant 23
Diagonal 5 9 9 11
Full 5 10 12 16
Bootstrap 5 10 12 16
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Figure 1: Relative pricing errors between old and new sorts
This figure presents the unconditional (αu, Panel A) and conditional (αc, Panel B) alpha (with associated White et al. (1980)
heteroskedasticity-consistent t-statistics in Panels C and D) of the old sorts with respect to the newest sort for 56 characteristics (as defined in
Table IA.I). We report this alpha for a single combination of five old sorts: RX,(t−60∶t−12),t+1 = 1/5(RX,(t−12),t+1+RX,(t−24),t+1+...+RX,(t−60),t+1),
such that it represents the abnormal return from one to five years after portfolio formation. The unconditional alpha is estimated using a
single time-series regression of RX,(t−60∶t−12),t+1 on RX,(t),t+1 (see Eq. (4)). The conditional alpha represents the average return to a strategy
that invests in RX,(t−60∶t−12),t+1 but hedges in each month t the conditional exposure to RX,(t),t+1 (see Eq. (5)). To facilitate interpretation,
we sort the characteristics from low to high αc. The sample period runs from July 1974 to December 2017.

44



Figure 2: Persistence and the beta of old to new sorts
This figure presents the persistence of the 56 characteristics we study (in the same order as the
conditional alphas from Figure 1) as well as the beta in a regression of old to new sorts, βs for
s = 12,36,60. Persistence is measured as the high-minus-low characteristic spread that remains
s months after portfolio formation as a fraction of the same spread at portfolio formation.
Persistence equals beta under the null of Section 1: (XH−L,(t−s)/XH−L,(t)) = βs. The sample
period runs from July 1974 to December 2017.
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Figure 3: Restricted versus unrestricted pricing errors
This figure presents two alternative alphas from a regression of the old sort (s = 36) on the newest
sort for 56 characteristics. The first alpha is the regression intercept when the slope coefficient
βs is estimated freely; the second alpha is the intercept when we fix βs = XH−L,(t−s)/XH−L,(t),
as under the null. The sample period runs from July 1974 to December 2017.
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Figure 4: Betas of old with respect to new sorts
This figure presents the distribution across 56 characteristics of the beta in a regression of
older sorts, with returns RX,(t−s),t+1 for s = 12, ...,60, on the newest sort, with return RX,(t),t+1.
The solid line highlights the median. We also highlight the relatively low betas for the past-
return-based characteristics (as defined in Table IA.I) and the relatively high betas for three
characteristics related to sales. The sample period runs from July 1974 to December 2017.
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Figure 5: Principal component loadings
This figure plots the loadings of the first principal component extracted from returns of the
newest sorts, RX,(t),t+1 from July 1974 to December 2017 and in the same order as the conditional
alphas from Figure 1.
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Figure 6: Cross-sectional R2s
This figure presents for each factor model (defined as in Table IV) the cross-sectional R2 when the test assets are 112 characteristic-sorted
portfolios (56 returns to new sorts, RX,(t),t+1, and 56 returns to old sorts, RX,(t),t+1, with sample average return denoted µ) and the factor
risk premia are set equal to the sample average factor returns (denoted µF ). Thus, R2 = 1 − var(µ − β′FµF )/var(µ). The sample period runs
from July 1974 to December 2017.
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Figure 7: Contribution to R2 from old and new stocks
In Panel A of this figure we report the R2 from a regression of an old sort (RX,(t−36),t+1)
on the newest sort (RX,(t),t+1). Panel B plots the relative contribution to the R2 in a
regression of the old sort (RX,(t−36),t+1) on the new stock component (RNew

X,(t),t+1
) and the

old stock component (ROld
X,(t),t+1

) that together make up the return of the newest sort.
The old stock component is the return to a strategy that goes long the subset of stocks
for which, among all stocks in the High portfolio at time t, the characteristic X is above
the median value of that characteristic 36 months ago. Conversely, this strategy goes
short the subset of stocks for which, among all stocks in the Low portfolio at time t, the
characteristic X is below the median value of that characteristic 36 months ago. The
new stock component uses all remaining stocks in the High and Low portfolio at time t.
To smooth out temporary variation in characteristics, we do not directly use the values
of firm characteristics at t − 36, but instead use the average ranking of the firm from 24
to 48 months. The sample period runs from July 1974 to December 2017.
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Table I: The relative performance of old and new sorts for four popular characteristics
This table reports the relative performance of old and new sorts on book-to-market, size, profitability, and investment. To this end, we track
the returns of long-short decile portfolios (value-weighted and split at NYSE breakpoints) for each characteristic from one month to five
years after portfolio formation. Panel A reports the average number of firms in the high plus low portfolios (Firms) as well as the average
high-minus-low return. Panel B reports the intercept, αu, and slope coefficients, βu, from a regression of the return of an old sort on the
contemporaneous return of the newest sort: RX,(t−s),t+1 = αus +βusRX,(t),t+1+εX,(t−s),t+1. This unconditional alpha represents the average return
to a strategy that invests in RX,(t−s),t+1 but hedges unconditionally the exposure to RX,(t),t+1 (see Eq. (4)). We also report the conditional
alpha, αc, which represents the average return to a strategy that invests in RX,(t−s),t+1 but hedges in each month t the conditional exposure
to RX,(t),t+1. Following Eq. (5), we estimate this exposure over a 60 month historical rolling window. Panel C reports the Sharpe ratio of
returns immediately after portfolio formation, Sharpe(RX,(t),t+1), and the maximum increase in Sharpe ratio achievable from combining the
newest sort with the (unconditionally or conditionally hedged returns of the) older sort. Panel D reports the intercepts, αu and αc, from a
regression of the unconditionally hedged, Ru−hedge

X,(t−s),t+1
, or conditionally hedged, Rc−hedge

X,(t−s),t+1
, returns on a five factor model that includes as

pricing factors the returns to the four newest characteristic-sorted portfolios and the market. White et al. (1980) heteroskedasticity consistent
t-statistics are reported in parentheses in Panels A, B and D. The reported p-values for the GRS tests in Panel D are robust to conditional
heteroskedasticity. The sample period runs from July 1974 to December 2017.

Book-to-market Size Profitability Investment

Panel A: Summary statistics

Firms Ret. t-stat Firms Ret. t-stat Firms Ret. t-stat Firms Ret. t-stat

RX,(t),t+1 1155 0.53 1.86 2121 0.31 1.55 1085 0.43 3.28 1343 0.51 3.48
RX,(t−12),t+1 1029 0.61 3.12 1882 0.50 2.49 960 0.26 2.13 1193 0.22 1.80
RX,(t−24),t+1 917 0.50 2.85 1661 0.41 2.05 848 0.14 1.14 1054 0.09 0.75
RX,(t−36),t+1 821 0.49 2.84 1476 0.32 1.71 756 0.02 0.15 937 0.03 0.22
RX,(t−48),t+1 738 0.51 3.02 1316 0.37 2.06 677 0.02 0.13 837 0.00 0.03
RX,(t−60),t+1 664 0.38 2.25 1176 0.36 1.93 610 -0.01 -0.04 750 -0.06 -0.44

Panel B: Relative pricing errors across horizons

αu βu αc αu βu αc αu βu αc αu βu αc

RX,(t−12),t+1 0.36 0.47 0.43 0.22 0.90 0.26 -0.08 0.78 -0.08 0.01 0.41 -0.01
(2.68) (7.93) (3.35) (2.69) (18.46) (3.40) (-1.29) (15.80) (-1.43) (0.05) (11.86) (-0.14)

RX,(t−24),t+1 0.33 0.32 0.42 0.15 0.84 0.21 -0.13 0.63 -0.12 -0.05 0.28 -0.06
(2.28) (6.49) (3.03) (1.46) (16.93) (2.16) (-1.55) (9.84) (-1.51) (-0.40) (6.38) (-0.51)

RX,(t−36),t+1 0.36 0.24 0.43 0.07 0.79 0.13 -0.23 0.58 -0.23 -0.10 0.24 -0.14
(2.35) (4.78) (2.95) (0.77) (18.37) (1.44) (-2.35) (9.60) (-2.59) (-0.74) (6.30) (-1.10)

RX,(t−48),t+1 0.39 0.23 0.43 0.14 0.75 0.20 -0.22 0.55 -0.24 -0.18 0.37 -0.23
(2.56) (4.79) (2.97) (1.43) (17.78) (2.13) (-2.25) (10.03) (-2.66) (-1.42) (6.97) (-1.76)

RX,(t−60),t+1 0.27 0.21 0.28 0.13 0.74 0.18 -0.23 0.52 -0.25 -0.24 0.35 -0.29
(1.75) (4.62) (1.93) (1.20) (14.21) (1.75) (-2.19) (7.26) (-2.60) (-1.79) (5.68) (-2.22)
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Continued

Book-to-market Size Profitability Investment

Panel C: Improvement in Sharpe ratio

u c u c u c u c

Sharpe(RX,(t),t+1)

RX,(t),t+1 0.28 0.23 0.50 0.53

Max. Sharpe(RX,(t−s),t+1, RX,(t),t+1) - Sharpe(RX,(t),t+1)

RX,(t−12),t+1 0.19 0.28 0.21 0.30 0.04 0.05 0.00 0.00
RX,(t−24),t+1 0.16 0.25 0.08 0.16 0.05 0.05 0.00 0.01
RX,(t−36),t+1 0.16 0.24 0.03 0.08 0.12 0.14 0.01 0.03
RX,(t−48),t+1 0.19 0.24 0.08 0.16 0.11 0.15 0.04 0.06
RX,(t−60),t+1 0.10 0.12 0.06 0.11 0.10 0.14 0.07 0.10

Panel D: Alphas in five-factor model

αu αc αu αc αu αc αu αc
GRS F -stat

[p-val]

RX,(t−12),t+1 0.20 0.24 0.29 0.30 -0.03 -0.03 0.08 0.05 3.33 3.74
(1.63) (1.98) (3.50) (3.74) (-0.51) (-0.53) (0.73) (0.43) [0.0104] [0.0052]

RX,(t−24),t+1 0.23 0.31 0.31 0.33 -0.07 -0.04 0.03 0.01 3.16 3.66
(1.64) (2.25) (3.35) (3.55) (-0.81) (-0.47) (0.27) (0.08) [0.0139] [0.0060]

RX,(t−36),t+1 0.33 0.39 0.24 0.26 -0.19 -0.16 -0.06 -0.10 3.23 3.86
(2.10) (2.58) (2.85) (3.05) (-1.87) (-1.81) (-0.44) (-0.79) [0.0123] [0.0042]

RX,(t−48),t+1 0.36 0.40 0.26 0.29 -0.19 -0.19 -0.15 -0.19 3.90 4.70
(2.26) (2.62) (2.98) (3.31) (-1.92) (-2.09) (-1.11) (-1.40) [0.0039] [0.0010]

RX,(t−60),t+1 0.16 0.19 0.28 0.29 -0.19 -0.19 -0.15 -0.19 3.15 3.63
(1.03) (1.24) (2.71) (2.83) (-1.74) (-1.96) (-1.08) (-1.46) [0.0142] [0.0063]
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Table II: Do factor models price principal components at longer horizons after
portfolio formation?
In Panel A of this table, we present F -statistics and p-values from GRS tests, where the test
assets are the first three principal components extracted from characteristic-sorted portfolio
returns at different horizons after portfolio formation (λ′

(t−s),z=1,2,3RX,(t−s),t+1). We ask whether
these returns are priced by one of five models. The first is a statistical factor model that uses the
first three principal components extracted from RX,(t),t+1 as factors, denoted 3PC(t),t+1. Next,
we also consider the single-factor CAPM (Sharpe (1964), Lintner (1965), Mossin (1966)); the
three-factor model of Fama and French (1993, FF3M); the five-factor model of Fama and French
(2015, FF5M); and a six-factor model that augments FF5M with momentum (FF5M+MOM).
These returns are taken directly from Kenneth French’s website. Panel B presents the summary
statistics for the first principal component extracted from RX,(t−s),t+1. The sample runs from
July 1974 to December 2017.

Panel A: GRS tests

λ′
(t−s),z=1,2,3

RX,(t−s),t+1 3PC(t),t+1 CAPM FF3M FF5M FF5M+MOM

s F -stat p-val F -stat p-val F -stat p-val F -stat p-val F -stat p-val

0 8.06 0.0000 8.43 0.0000 1.45 0.2284 0.96 0.4128
12 5.27 0.0014 5.52 0.0010 5.40 0.0012 3.48 0.0159 2.98 0.0310
24 9.85 0.0000 2.48 0.0607 2.98 0.0310 5.16 0.0016 5.39 0.0012
36 9.77 0.0000 2.30 0.0768 3.10 0.0264 5.89 0.0006 5.67 0.0008
48 10.71 0.0000 2.27 0.0794 2.90 0.0346 6.81 0.0002 6.85 0.0002
60 9.54 0.0000 1.59 0.1901 2.42 0.0656 6.18 0.0004 6.30 0.0003

Panel B: Summary statistics for the first principal component

λ′
(t−s),1

RX,(t−s),t+1 Avg. Ret. Correlations

s 0 12 24 36 48 60

0 -0.60 1.00 0.96 0.93 0.91 0.90 0.90
12 0.36 0.96 1.00 0.98 0.96 0.95 0.94
24 0.86 0.93 0.98 1.00 0.98 0.97 0.95
36 0.94 0.91 0.96 0.98 1.00 0.98 0.96
48 1.03 0.90 0.95 0.97 0.98 1.00 0.98
60 1.02 0.90 0.94 0.95 0.96 0.98 1.00
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Table III: Alphas of individual principal components at longer horizons after port-
folio formation
This table presents the intercept (α) and associated t-statistic (based on White et al. (1980)
heteroskedasticity consistent standard errors) from regressing the returns at longer horizons af-
ter portfolio formation for each of three principal component strategies on five candidate factor
models (Panels A to E). These returns are defined as the linear combination of (i) the loadings
λ(t),z of the z-th principal component extracted from RX,(t),t+1 and (ii) characteristic-sorted
portfolio returns at horizons s = 12,24, ...,60 after portfolio formation (see Section 4.1 for more
detail). The five models are: the statistical factor model 3PC(t),t+1, CAPM, FF3M, FF5M
and FF5M+MOM, respectively, as in Table II. Panel F presents the alpha from a regression of
returns to an old-minus-new strategy (i.e., a simple long-short combination of RX,(t−s),t+1 and
RX,(t),t+1, weighted by λ(t),1) on the same factor models. The sample period runs from July
1974 to December 2017.

λ′
(t),z

RX,(t−s),t+1 PC1 (z = 1) PC2 (z = 2) PC3 (z = 3)

s α t-stat α t-stat α t-stat

Panel A: 3PC(t),t+1

12 0.68 3.69 0.07 0.39 -0.38 -1.34
24 1.13 5.06 0.20 0.80 -0.28 -0.95
36 1.27 4.99 0.25 0.79 0.00 -0.01
48 1.39 5.39 0.09 0.28 -0.21 -0.81
60 1.38 5.13 0.11 0.33 -0.39 -1.46

Panel B: CAPM

0 -2.32 -3.26 -0.36 -0.51 1.45 3.39
12 -1.09 -1.69 -1.25 -2.04 -0.02 -0.06
24 -0.45 -0.73 -1.07 -1.86 -0.03 -0.09
36 -0.28 -0.47 -0.87 -1.58 0.37 1.19
48 -0.16 -0.29 -1.03 -1.92 0.20 0.60
60 -0.15 -0.27 -0.96 -1.77 -0.01 -0.04

Panel C: FF3M

0 -2.18 -4.46 1.67 3.37 0.85 2.36
12 -0.86 -2.04 0.69 2.40 -0.31 -1.01
24 -0.13 -0.31 0.61 1.81 -0.46 -1.64
36 0.09 0.23 0.65 1.79 -0.13 -0.44
48 0.21 0.57 0.41 1.11 -0.34 -1.16
60 0.17 0.46 0.41 1.04 -0.55 -1.93

Panel D: FF5M

0 -0.33 -0.86 1.19 2.04 0.51 1.33
12 0.60 1.81 0.81 2.90 -0.32 -1.01
24 1.12 3.27 0.81 2.34 -0.52 -1.68
36 1.30 3.85 0.80 2.02 -0.19 -0.59
48 1.36 4.31 0.57 1.41 -0.51 -1.68
60 1.28 4.01 0.66 1.58 -0.76 -2.38

Panel E: FF5M+MOM

0 0.10 0.25 0.01 0.04 -0.36 -1.69
12 0.64 1.87 0.69 2.41 -0.58 -1.80
24 1.09 3.13 0.88 2.55 -0.56 -1.78
36 1.26 3.63 0.86 2.22 -0.24 -0.73
48 1.36 4.20 0.64 1.59 -0.61 -1.96
60 1.30 3.92 0.77 1.84 -0.74 -2.18
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Panel F: Old-minus-new sorts

λ′
(t),1

(RX,(t−s),t+1 −RX,(t),t+1) CAPM FF3M FF5M FF5M+MOM

α t-stat α t-stat α t-stat α t-stat

12 1.23 5.00 1.32 5.67 0.93 3.63 0.54 2.26
24 1.87 6.22 2.05 7.19 1.45 4.63 0.99 3.48
36 2.04 5.91 2.27 6.82 1.63 4.66 1.16 3.47
48 2.16 6.04 2.39 7.08 1.69 4.82 1.26 3.61
60 2.17 5.92 2.35 6.81 1.61 4.65 1.20 3.40

55



Table IV: Does a four-factor model capture the alpha between old and new sorts?
This table presents results from asset pricing tests for the principal components extracted from new and old characteristic-sorted portfolios.
Panel A reports the intercept (α, with accompanying t-statistic) from simple regressions of each of the first five principal components on
a four factor model, 4PC(t,t−36),t+1, that augments the first three principal components extracted from RX,(t),t+1 with the first principal
component extracted from RX,(t−36),t+1. Consistent with Table III, this factor is defined as λ′

(t),1RX,(t−36),t+1, where λ(t),1 is the vector of
loadings of the first principal component extracted from RX,(t),t+1. We also report the GRS test statistic and associated p-values from pricing
the first three or first five principal components extracted from the returns at each horizon. Panel B reports the mean absolute alpha (MAA)
and number of test statistics significant at the 5%-level (#) from simple regressions of new and old characteristic-sorted portfolio returns for
each of the 56 characteristics on the five candidate factor models. We report results for both unconditionally hedged returns, Ru−hedge

X,(t−s),t+1
and

conditionally hedged returns, Rc−hedge
X,(t−s),t+1

. The sample period runs from July 1974 to December 2017.

Panel A: Alphas of principal components in 4PC(t,t−36),t+1 model

λ′
(t),z

RX,(t−s),t+1 PC1 (z = 1) PC2 (z = 2) PC3 (z = 3) PC4 (z = 4) PC5 (z = 5) GRS3 GRS5

s α t-stat α t-stat α t-stat α t-stat α t-stat F -stat p-val F -stat p-val

0 0.00 0.19 0.00 -0.95 0.00 11.98 0.21 0.60 0.47 1.52
12 0.06 0.46 0.03 0.21 -0.60 -2.02 0.31 0.94 0.22 0.88 1.36 0.25 1.38 0.23
24 0.22 1.64 0.22 0.84 -0.54 -1.83 0.10 0.32 0.17 0.72 1.99 0.11 1.36 0.24
36 0.00 0.14 0.48 1.46 -0.26 -0.97 0.08 0.26 0.41 1.77
48 0.30 2.30 0.31 0.91 -0.44 -1.56 0.17 0.55 0.24 0.97 2.72 0.04 1.94 0.09
60 0.45 2.40 0.27 0.75 -0.40 -1.48 0.02 0.08 0.00 -0.02 3.48 0.02 2.09 0.06

Panel B: Alphas of 56 characteristic-sorted portfolios

Benchmark models

CAPM FF3M FF5M FF5M+MOM

Uncond. Cond. Uncond. Cond. Uncond. Cond. Uncond. Cond.

s MAA # MAA # MAA # MAA # MAA # MAA # MAA # MAA #

12 0.13 12 0.14 14 0.11 9 0.12 10 0.11 9 0.11 8 0.11 12 0.11 9
24 0.15 15 0.16 15 0.15 13 0.15 14 0.14 12 0.13 13 0.15 14 0.14 14
36 0.15 15 0.15 14 0.15 15 0.15 15 0.15 14 0.14 14 0.15 14 0.15 14
48 0.17 20 0.18 18 0.17 14 0.18 20 0.17 14 0.17 15 0.16 14 0.17 14
60 0.16 18 0.16 19 0.15 16 0.15 17 0.17 13 0.17 14 0.18 15 0.17 15
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Continued

Statistical models

3PC(t),t+1 4PC(t,t−36),t+1

Uncond. Cond. Uncond. Cond.

s MAA # MAA # MAA # MAA #

12 0.10 8 0.11 11 0.08 4 0.10 7
24 0.13 16 0.14 14 0.09 8 0.09 8
36 0.14 15 0.14 16 0.09 7 0.09 8
48 0.16 17 0.17 19 0.09 11 0.10 12
60 0.16 19 0.16 20 0.09 10 0.10 11
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Table V: Relative pricing errors across market beta groups
This table presents pricing errors across horizons for three market beta groups. To this end, we
sort the 56 characteristics using the market beta of the newest characteristic-sorted portfolio
estimated over a 60 month rolling window. Characteristic-sorted portfolio returns are equal-
weighted within each market beta group. We report results for unhedged returns (RX,(t−s),t+1),

unconditionally hedged returns (Ru−hedge
X,(t−36),t+1

), and conditionally hedged returns (Rc−hedge
X,(t−36),t+1

).

Panel A reports average returns for the newest portfolio (s = 0) and an older portfolio (s = 36).
Panel B reports the intercept from regressing the market beta-sorted portfolios on benchmark
factor models. Panel C reports the intercept from regressing the market beta-sorted portfolios
on the statistical factor models of Tables II and IV. t-statistics use White et al. (1980) het-
eroskedasticity consistent standard errors. The sample period runs from July 1974 to December
2017.

Low Mid High H-L Low Mid High H-L

Panel A: Average returns of old versus new sorts

Avg. Ret. t-stat

RX,(t),t+1 0.24 0.37 0.30 0.07 1.65 5.82 2.91 0.28
RX,(t−36),t+1 -0.12 0.13 0.25 0.38 -1.10 3.05 2.72 1.89

Ru−hedge
X,(t−36),t+1

-0.22 -0.01 0.11 0.32 -3.85 -0.33 3.00 4.06

Rc−hedge
X,(t−36),t+1

-0.23 -0.01 0.10 0.33 -4.35 -0.31 2.86 4.42

Panel B: Benchmark factor models

α t-stat

CAPM

RX,(t),t+1 0.53 0.43 0.13 -0.40 4.70 7.01 1.45 -2.09
RX,(t−36),t+1 0.09 0.15 0.10 0.01 0.91 3.60 1.23 0.08

Ru−hedge
X,(t−36),t+1

-0.17 -0.01 0.08 0.26 -3.14 -0.31 2.37 3.29

Rc−hedge
X,(t−36),t+1

-0.20 -0.01 0.07 0.27 -3.77 -0.30 2.18 3.71

FF3M

RX,(t),t+1 0.51 0.32 0.08 -0.43 5.52 5.71 1.14 -2.79
RX,(t−36),t+1 0.03 0.10 0.09 0.06 0.45 2.40 1.52 0.47

Ru−hedge
X,(t−36),t+1

-0.23 -0.02 0.08 0.31 -4.74 -0.43 2.38 4.49

Rc−hedge
X,(t−36),t+1

-0.24 -0.01 0.07 0.30 -4.76 -0.33 2.00 4.38

FF5M

RX,(t),t+1 0.21 0.19 0.23 0.02 2.48 3.52 3.21 0.15
RX,(t−36),t+1 -0.19 0.04 0.24 0.43 -2.71 0.81 3.99 3.59

Ru−hedge
X,(t−36),t+1

-0.27 -0.02 0.10 0.37 -4.85 -0.59 2.65 4.78

Rc−hedge
X,(t−36),t+1

-0.25 -0.02 0.07 0.32 -4.29 -0.52 2.08 4.18
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Continued

Low Mid High High-Low Low Mid High High-Low

α t-stat

FF5M+MOM

RX,(t),t+1 0.14 0.21 0.23 0.10 1.38 3.44 2.89 0.57
RX,(t−36),t+1 -0.18 0.03 0.24 0.42 -2.60 0.70 3.81 3.44

Ru−hedge
X,(t−36),t+1

-0.24 -0.04 0.08 0.32 -4.14 -1.09 1.96 3.84

Rc−hedge
X,(t−36),t+1

-0.22 -0.05 0.06 0.28 -3.62 -1.15 1.49 3.33

Panel C: Statistical models

3PC(t),t+1

RX,(t),t+1 0.11 0.30 0.32 0.21 1.84 5.98 5.34 1.92
RX,(t−36),t+1 -0.19 0.09 0.29 0.48 -3.38 2.44 5.25 4.78

Ru−hedge
X,(t−36),t+1

-0.23 -0.02 0.10 0.34 -4.69 -0.68 2.79 4.49

Rc−hedge
X,(t−36),t+1

-0.24 -0.02 0.09 0.33 -4.61 -0.70 2.59 4.41

4PC(t,t−36),t+1

RX,(t),t+1 0.07 0.24 0.27 0.20 1.14 4.80 4.18 1.75
RX,(t−36),t+1 -0.02 0.10 0.15 0.18 -0.48 2.65 3.11 2.10

Ru−hedge
X,(t−36),t+1

-0.05 0.01 0.02 0.07 -1.55 0.27 0.68 1.47

Rc−hedge
X,(t−36),t+1

-0.06 0.01 0.02 0.08 -1.62 0.44 0.65 1.52
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Table VI: Descriptives for new and old stock portfolios across market beta groups
This table presents descriptive statistics for the new and old stock portfolios, which together
make up the newest characteristic-sorted portfolio. Each statistic is presented for three groups
of characteristics sorted on market beta and we equal-weight within each group. We present
for both the old and new stock portfolio: (i) the high-minus-low characteristic spread as a
fraction of the characteristic spread in the not-decomposed portfolio; (ii) the total market cap
(as a fraction of total CRSP market cap) in the high and low portfolio; (iii) the high-minus-low
difference in market cap (as a fraction of total CRSP market cap); and (iv-vi) the difference
in median book-to-market, profitability, and investment between the high and low portfolio.
To put these differences in perspective, the table also reports the characteristic spread that is
obtained in a single sort of stocks on these characteristics.

Market beta
Low Mid High

Characteristic Spread

New 0.99 1.04 0.90
Old 1.02 0.98 1.04
Not Decomposed 1

% CRSP Market Cap (High + Low)

New 0.09 0.09 0.10
Old 0.11 0.11 0.15
Not Decomposed 0.61

% CRSP Market Cap (High - Low)

New 0.00 0.00 0.01
Old 0.01 0.02 0.05
Not Decomposed 0.58

Book-to-Market (BM)

New 1.44 1.36 1.44
Old 1.49 1.41 1.52
Not Decomposed 1.98

Profitability (PROF )

New 1.20 1.24 1.21
Old 1.24 1.31 1.30
Not Decomposed 2.13

Investment (I2A)

New 23.66 28.53 22.58
Old 14.20 17.79 14.65
Not Decomposed 85.89
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Table VII: The relative performance of new versus old stocks in characteristic-
sorted portfolios
This table presents results for the returns of new versus old stocks across three market beta
groups. The returns of new (RNewX,t,t+1) and old (ROldX,t,t+1) stocks together make up the return to
the newest sort (RX,t,t+1). The old stock component is the return to a strategy that goes long
the subset of stocks for which, among all stocks in the High portfolio at time t, the characteristic
X is above the median value of that characteristic 36 months ago. Conversely, this strategy
goes short the subset of stocks for which, among all stocks in the Low portfolio at time t, the
characteristic X is below the median value of that characteristic 36 months ago. The new stock
component uses all remaining stocks in the High and Low portfolio at time t. All returns are
equal-weighted within market beta groups. We report the intercept from regressing the market
beta-sorted portfolios on benchmark asset pricing models as defined in Table II. t-statistics use
White et al. (1980) heteroskedasticity consistent standard errors. The sample period runs from
July 1974 to December 2017.

Market beta Market beta
Low Mid High H-L Low Mid High H-L

Avg. Ret. t-stat

R(t)t+1 0.24 0.37 0.30 0.07 1.65 5.82 2.91 0.28
RNew
X,t,t+1 0.31 0.34 0.19 -0.12 2.45 4.99 1.84 -0.53

ROld
X,t,t+1 0.14 0.40 0.38 0.25 0.79 5.29 3.67 0.94

ROld
X,t,t+1 - RNew

X,t,t+1 -0.18 0.06 0.19 0.37 -2.13 0.90 3.13 3.18

α t-stat

CAPM

R(t)t+1 0.53 0.43 0.13 -0.40 4.70 7.01 1.45 -2.09
RNew
X,t,t+1 0.56 0.39 0.03 -0.53 5.44 5.89 0.36 -2.91

ROld
X,t,t+1 0.47 0.48 0.22 -0.26 3.33 6.58 2.34 -1.17

ROld
X,t,t+1 - RNew

X,t,t+1 -0.09 0.09 0.18 0.27 -1.09 1.39 3.09 2.39

FF3M

R(t)t+1 0.51 0.32 0.08 -0.43 5.52 5.71 1.14 -2.79
RNew
X,t,t+1 0.56 0.27 -0.03 -0.58 6.19 4.33 -0.36 -3.80

ROld
X,t,t+1 0.41 0.35 0.18 -0.22 3.67 5.52 2.44 -1.32

ROld
X,t,t+1 - RNew

X,t,t+1 -0.15 0.07 0.21 0.36 -1.94 1.19 3.60 3.37

FF5M

R(t)t+1 0.21 0.19 0.23 0.02 2.48 3.52 3.21 0.15
RNew
X,t,t+1 0.29 0.18 0.11 -0.19 3.41 2.57 1.34 -1.23

ROld
X,t,t+1 0.04 0.20 0.32 0.28 0.41 3.36 4.30 1.85

ROld
X,t,t+1 - RNew

X,t,t+1 -0.25 0.02 0.22 0.47 -3.42 0.29 3.43 4.30

FF5M+MOM

R(t)t+1 0.14 0.21 0.23 0.10 1.38 3.44 2.89 0.57
RNew
X,t,t+1 0.23 0.22 0.13 -0.10 2.21 3.01 1.39 -0.53

ROld
X,t,t+1 -0.03 0.19 0.30 0.34 -0.32 2.92 3.83 1.98

ROld
X,t,t+1 - RNew

X,t,t+1 -0.26 -0.04 0.17 0.43 -3.39 -0.56 2.58 3.71
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Table VIII: Simulating from Gomes, Kogan and Zhang (2003) and Zhang (2005)
This table reports results from 1500 simulations of the models in Gomes et al. (2003) and
Zhang (2005). We thank the authors for sharing the code on their websites. These models
endogenously generate a positive spread in returns between high and low book-to-market stocks.
We ask whether these models can match the relative performance of old versus new sorts and
stocks that we observe for book-to-market in the data, while matching other moments of interest.
Indeed, we run these simulations using the same parameters as those used in the original studies.
Panel A reports the average returns of the newest, RBM,(t),t+1, and older, RBM,(t−s),t+1, high-
minus-low book-to-market portfolios. Panel B reports the intercept from a regression of the
older sorts on the newest sort. Panel C reports the difference in average returns between old,
ROldBM,(t),t+1, and new, RNewBM,(t),t+1, stocks that together make up the newest sort (following the

definition in Table VII). In each panel, we report the percentiles of the simulated distribution
as well as our estimate in the data.

Percentiles 1 5 10 50 90 95 99 Data

Panel A: Average returns of new and old sorts

Z05

RBM,(t),t+1 0.17 0.40 0.47 0.62 0.74 0.78 0.85 0.53
RBM,(t−12),t+1 0.19 0.24 0.27 0.36 0.43 0.45 0.49 0.61
RBM,(t−24),t+1 0.09 0.12 0.15 0.22 0.28 0.29 0.33 0.50
RBM,(t−36),t+1 0.04 0.07 0.09 0.14 0.19 0.20 0.23 0.49
RBM,(t−48),t+1 0.00 0.03 0.04 0.09 0.13 0.15 0.17 0.51
RBM,(t−60),t+1 -0.01 0.01 0.02 0.06 0.10 0.11 0.13 0.38

GKZ03

RBM,(t),t+1 0.00 0.04 0.06 0.11 0.16 0.17 0.18 0.53
RBM,(t−12),t+1 -0.03 -0.01 0.00 0.05 0.09 0.10 0.14 0.61
RBM,(t−24),t+1 -0.05 -0.04 -0.02 0.03 0.07 0.07 0.09 0.50
RBM,(t−36),t+1 -0.07 -0.04 -0.04 0.01 0.05 0.06 0.06 0.49
RBM,(t−48),t+1 -0.08 -0.05 -0.04 0.00 0.05 0.05 0.07 0.51
RBM,(t−60),t+1 -0.07 -0.05 -0.04 0.00 0.04 0.05 0.06 0.38

Panel B: Alphas of old versus new sorts

Z05

RBM,(t−12),t+1 -0.08 -0.05 -0.04 0.01 0.08 0.11 0.17 0.36
RBM,(t−24),t+1 -0.08 -0.06 -0.04 0.00 0.05 0.07 0.13 0.33
RBM,(t−36),t+1 -0.08 -0.05 -0.05 -0.01 0.04 0.06 0.09 0.36
RBM,(t−48),t+1 -0.08 -0.05 -0.04 -0.01 0.04 0.05 0.08 0.39
RBM,(t−60),t+1 -0.07 -0.05 -0.04 0.00 0.04 0.05 0.07 0.27

GKZ03

RBM,(t−12),t+1 -0.08 -0.05 -0.04 0.00 0.04 0.05 0.07 0.36
RBM,(t−24),t+1 -0.08 -0.05 -0.04 0.00 0.04 0.05 0.06 0.33
RBM,(t−36),t+1 -0.08 -0.06 -0.05 -0.01 0.03 0.04 0.05 0.36
RBM,(t−48),t+1 -0.09 -0.06 -0.05 -0.01 0.04 0.04 0.06 0.39
RBM,(t−60),t+1 -0.08 -0.06 -0.05 -0.01 0.03 0.04 0.05 0.27

Panel C: Average returns of old versus new stocks

Z05 ROld
BM,(t),t+1

- RNew
BM,(t),t+1

-0.39 -0.03 0.06 0.20 0.29 0.31 0.35 0.56

GKZ03 ROld
BM,(t),t+1

- RNew
BM,(t),t+1

-0.22 -0.17 -0.14 -0.03 0.08 0.11 0.15 0.56
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Internet Appendix for
“New and Old Sorts:

Implications for Asset Pricing”

A. Additional empirical evidence

Figure IA.1: Average returns of new and old characteristic-sorted portfolios
This figure presents the average return of the newest sort (RX,(t),t+1) and a single combination
of five old sorts: RX,(t−60∶t−12),t+1 = 1/5(RX,(t−12),t+1 + RX,(t−24),t+1 + ... + RX,(t−60),t+1). Thus,
RX,(t−60∶t−12),t+1 represents the average return from one to five years after portfolio formation.
To facilitate interpretation, the characteristics are sorted in the same order as the conditional
alphas, αc, from Figure 1.
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Figure IA.2: Relative pricing errors between old and new sorts in subsamples
This figure presents the unconditional and conditional alpha of the older sorts (with return RX,(t−60∶t−12),t+1) relative to the newest sort (with

return RX,(t),t+1) over two subsamples split around March 1996. In each subsample, the unconditional alpha is the average of Ru−hedge
X,(t−s),t+1

defined in Eq. (4), whereas the conditional alpha is the average of Rc−hedge
X,(t−s),t+1

defined in Eq. (5). To facilitate interpretation, the characteristics

are sorted in the same order as the conditional alphas, αc, from Figure 1.
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Figure IA.3: Relative pricing errors old and new sorts in expansions versus recessions
This figure presents the conditional alpha of the older sorts (with return RX,(t−60∶t−12),t+1) relative to the newest sort (with return RX,(t),t+1)

in NBER expansions and recessions. In each subsample, the conditional alpha is the average of Rc−hedge
X,(t−s),t+1

defined in Eq. (5). To facilitate

interpretation, the characteristics are sorted in the same order as the conditional alphas, αc, from Figure 1.
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Figure IA.4: Relative pricing errors old and new sorts in high versus low sentiment regimes
This figure presents the conditional alpha of the older sorts (with return RX,(t−60∶t−12),t+1) relative to the newest sort (with return RX,(t),t+1)
in high and low sentiment regimes using the sentiment index of Baker and Wurgler (2006). We follow Stambaugh et al. (2012) and define a
high-sentiment month as one in which the sentiment index is above its historical mean. To facilitate interpretation, the characteristics are
sorted in the same order as the conditional alphas, αc, from Figure 1.
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Figure IA.5: Survivorship bias-adjusted alphas
This figure presents the unconditional alpha of the old sort with return RX,(t−36),t+1 relative to
the newest sort with return RX,(t),t+1 (estimated using the regression in Eq. (4)). It also reports
a survivorship bias-adjusted version of the newest sort, for which we exclude from the high and
low portfolio at time t all stocks that were not in the CRSP file at t − 36. In this way, we
condition on firm survival on both sides of the regression, such that we estimate a survivorship
bias-adjusted α.
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Figure IA.6: Increases in Sharpe Ratio
This figure presents the maximum improvement in Sharpe ratio from combining the newest sort
(RX,t,t+1) with a single combination of five old sorts (RX,(t−60∶t−12),t+1). The improvement is
formally defined as: Max. Sharpe(RX,(t−60∶t−12),t+1, RX,(t),t+1) - Sharpe(RX,(t),t+1).
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Figure IA.7: The average return of old versus new stocks in characteristic-sorted portfolios
In Panel A of this figure, we present the difference in average return between old (ROld

X,(t),t+1
) and new (RNew

X,(t),t+1
) stocks, which

together make up the newest long-short characteristic-sorted portfolio (RX,(t),t+1). Panel B presents the intercept from a regression
of old-minus-new returns on the newest sort. Panels B and D present White et al. (1980) t-statistics. The sample period runs from
July 1974 to December 2017.
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Table IA.I: Characteristics
This table lists the characteristics used in this paper. For each characteristic, we present the associated acronym, the original source and the
definition of the characteristic.

Acronym Author(s) Definition

A2ME Bhandari (1988) Total assets (at) over market capitalization (prc x shrout)
AT Gandhi and Lustig (2015) Total assets (at)
ATO Soliman (2008) Net sales (sales) over lagged net operating assets. Net operating assets is the difference

between operating assets and operating liabilities. Operating Assets is total assets (at)
minus cash and short-term investments (che) minus investments and other advances (ivao).
Operating Liabilities is total assets (at) minus debt in current liabilities (dlc) minus long-
debt debt (dltt) minus minority interest (mib) minus preferred stock (pstk) minus common
equity (ceq).

BEME (BM) Davis et al. (2000) Book equity to market equity. Book equity is shareholders’ equity (seq), (if missing,
common equity (ceq) plus preferred stock (pstk), if missing, total assets (at) minus total
liabilities (lt)), plus deferred taxes and investment tax credit (txditc) minus preferred stock
(pstrkrv), (if missing, liquidation value, (pstkl), if missing par value (pstk)). Market value
of equity is shares outstanding (shrout) times price (prc).

aBEME Asness et al. (2000) BEME minus average industry BEME. Industry level is defined as the Fama-French 48
industries.

C2A Palazzo (2012) Cash and short-term investments (che) to total assets (at).
C2D Ou and Penman (1989) Cashflow to debt. Cashflow is the sum of income and extraordinary items (ib) and de-

preciation and amortization (dp). And debt is to total liabilities (lt).
CAT Haugen and Baker (1996) Sales (sale) to lagged total assets (at).
D2P Litzenberger and Ramaswamy (1979) Debt to price. Debt is long-term debt (dltt) plus debt in current liabilities (dlc). Market

capitalization is the product of shares outstanding (shrout) and price (prc).
dCEQ Richardson et al. (2005) Annual % change in book value of equity (ceq).
dGS Abarbanell and Bushee (1997) % change in gross margin minus % change in sales (sale). Gross margin is the difference

in sales (sale) and cost of goods sold (cogs).
dPIA Lyandres et al. (2008) Change in property, plants and equipment (ppegt) and inventory (invt) over lagged total

assets (at).
dSO Fama and French (2008) Log change in the product of shares outstanding (csho) and the adjustment factor (ajex).
dSOUT Pontiff and Woodgate (2008) Annual % change in shares outstanding (shrout).
DP Litzenberger and Ramaswamy (1979) Sum of monthly dividend over the last 12 months to last month’s price (prc).
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Continued

Acronym Author(s) Definition

DTO Garfinkel (2009) Daily volume (vol) to shares outstanding (shrout) minus the daily market turnover and
detrended by the 180 trading day median. To address the double counting of volume for
NASDAQ securities, we follow Anderson and Dyl (2005) and scale down the volume of
NASDAQ securities by 50% before and by 38% after 1997.

E2P Basu (1983) Income before extraordinary items (ib) to market capitalization (prc x shrout).
EPS Basu (1977) Income before extraordinary items (ib) to shares outstanding (shrout).
I2A (INV) Cooper et al. (2008) Annual % change in total assets (at).
IDIOV Ang et al. (2006) Standard deviation of the residuals from a regression of excess returns on the Fama and

French (1993) three-factor model.
IPM Pre-tax income (pi) over sales (sale).
IVC Thomas and Zhang (2002) Annual change in inventories (invt) in the last two fiscal years over the average total assets

(at) over the last two fiscal years.
LEV Lewellen (2015) long-term debt (dltt) plus current liabilities (dlc) over the sum of long term debt (dltt),

debt in current liabilities (dlc) and stockholders equity (seq).
MAXRET Bali et al. (2011) Maximum daily return in the previous month.
NOA Hirshleifer et al. (2004) Operating assets minus operating liabilities to lagged total assets (at). Operating assets is

total assets (at) minus cash and short term investments (che) minus investment and other
advances (ivao). Operating liabilities is total assets (at) minus debt in current liabilities
(dlc) minus long-term debt (dltt) minus minority interest (mib) minus preferred stock
(pstk) minus common equity (ceq).

OL Novy-Marx (2011) Sum of cost of goods sold (cogs) and selling, general and administrative expense (xsga)
over total assets (at).

PCM Gorodnichenko and Weber (2016) Net sales (sale) minus cost of goods sold (cogs) all scaled by net sales (sale).
PM Soliman (2008) Operating Income after depreciation (oiadp) to sales (sale).
aPM Soliman (2008) PM minus average industry PM . Industry level is defined as the Fama-French 48 indus-

tries.
PROF Ball et al. (2015) Gross profitability (gp) over book equity as defined in BEME.
Q Total assets (at) plus market value of equity (shrout x prc) minus common equity (ceq)

minus deferred taxes (txdb) all scaled by total assets (at).
R 12 2 Fama and French (1996) Cumulative return from 12 months to 2 months ago.
R 12 7 Novy-Marx (2012) Cumulative return from 12 months to 7 months ago.
R 2 1 Jegadeesh (1990) Lagged one month return.
R 36 13 De Bondt and Thaler (1985) Cumulative return from 36 months to 13 months ago.
R 6 2 Jegadeesh and Titman (1993) Cumulative return from 6 months to 2 months ago.
RETVOL Ang et al. (2006) Standard deviation of residuals from a regression of excess returns on a constant using

one month of daily data. We require there to be at least 15 non-missing observations.

71



Continued

Acronym Author(s) Definition

RNA Soliman (2008) Operating income after depreciation (oiadp) scaled by lagged net operating assets. Net
operating assets is operating assets minus operating liabilities. Operating assets is total
assets (at) minus cash and short term investments (che) minus investment and other
advances (ivao). Operating liabilities is total assets (at) minus debt in current liabilities
(dlc) minus long-term debt (dltt) minus minority interest (mib) minus preferred stock
(pstk) minus common equity (ceq).

ROA Balakrishnan et al. (2010) Income before extraordinary items (ib) to lagged total assets (at).
ROC Chandrashekar and Rao (2009) Market value of equity (shrout x prc) plus long-term debt (dltt) minus total assets (at)

all over cash and short-term investments (che).
ROE Haugen and Baker (1996) Income before extraordinary items (ib) to lagged book-value of equity.
ROIC Brown and Rowe (2007) Earnings before interest and taxes (ebit) less non-operating income (nopi) to the sum of

common equity (ceq), total liabilities (lt), and cash and short-term investments (che).
S2C Ou and Penman (1989) Net sales (sale) to cash and short-term investments (che).
S2P Lewellen (2015) Net sales (sale) to market capitalization (shrout x prc).
SAT Soliman (2008) Sales (sale) to total assets (at).
aSAT Soliman (2008) SAT minus average industry SAT . Industry level is defined as the Fama-French 48

industries.
sdDVOL Chordia et al. (2001) Standard deviation of residuals from a regression of daily volume (vol) on a constant. Use

one month of daily data requiring at-least 15 non-missing observations.
sdTURN Chordia et al. (2001) Standard deviation of residuals from a regression of daily turnover on a constant. Turnover

is volume (vol) times shares outstanding (shrout). Use one month of daily data requiring
at-least 15 non-missing observations.

SG Lakonishok et al. (1994) % growth rate in sales (sale).
SGNA Selling, general and administrative expenses (XSGA) to net sales (sale).
SIZE Fama and French (1992) Price (prc) times shares outstanding (shrout) .
aSIZE Asness et al. (2000) SIZE minus average industry SIZE. Industry level is defined as the Fama-French 48

industries.
SPREAD Chung and Zhang (2014) Average daily bid-ask spread in the previous month.
SUV Garfinkel (2009) Difference between actual volume and predicted volume. Predicted volume is from a

regression of previous month’s daily volume on a constant and the absolute values of
positive and negative previous month’s returns. Unexplained volume is standardized by
the standard deviation of the residuals from the regression.

TAN Hahn and Lee (2009) Tangibility is defined as (0.715 x total receivables (rect) + 0.547 x inventories (invt) +
0.535 x property, plant and equipment (ppent) + cash and short-term investments (che))
/ total assets (at).

TNOVR Datar et al. (1998) Volume (vol) over shares outstanding (shrout).
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Table IA.II: Overview of results for alternative asset pricing models
This table presents an overview of alphas from old versus new sorts and stocks relative to the
models of Hou et al. (2015, HXZ), Frazzini and Pedersen (2014, BAB), Daniel et al. (2020b,
DMRS), Stambaugh and Yuan (2016, SY), and Daniel et al. (2020a, DHS). In Panel A, we report
the alpha of the first principal component of returns at all horizons s = 0,12, ...,60 after sorting
(defined as λ′

(t),1RX,(t−s),t+1 as in Table III). In Panel B, we report the alpha of a strategy that
is long the first principal component of older sorts and short the first principal component of the
newest sort (analogous to Panel F of Table III). In Panel C, we report the alpha of a strategy
that is long (short) an equal-weighted portfolio of the conditionally hedged returns (defined
as in Eq. (5)) of high (low) market beta characteristics (analogous to Table V). In Panel D,
we report the alpha of a strategy that is long (short) an equal-weighted portfolio of high (low)
market beta characteristics (analogous to Table VII). The return of each characteristic portfolio
is split into the return coming from new and old stocks, and we also report the old-minus-new
difference. t-statistic are based on White et al. (1980) heteroskedasticity consistent standard
errors. The sample period runs from July 1974 to the end of the sample over which the factors
are report on the author’s web sites. We thank the authors for sharing the factor data.

HXZ BAB DMRS SY DHS
α t α t α t α t α t

Panel A: Alpha of first principal component of old and new sorts

λ′
(t),1

RX,(t−s),t+1

0 0.21 0.45 -0.33 -0.43 -1.14 -2.89 0.34 0.71 1.31 2.16
12 0.81 1.73 0.58 0.78 -0.14 -0.46 0.51 1.13 1.74 3.25
24 1.21 2.56 0.99 1.35 0.39 1.26 0.83 1.89 1.97 3.89
36 1.42 3.22 1.05 1.52 0.49 1.59 1.05 2.47 1.98 3.91
48 1.55 3.76 1.18 1.76 0.59 2.00 1.10 2.77 1.93 4.01
60 1.39 3.41 1.14 1.81 0.58 1.92 1.06 2.65 1.77 3.62

Panel B: Alpha of old-minus-new sorts

λ′
(t),1

(RX,(t−s),t+1 −RX,(t),t+1)

12 0.60 2.35 0.91 3.15 1.00 4.26 0.17 0.70 0.43 1.47
24 1.00 3.33 1.32 3.85 1.53 5.46 0.49 1.70 0.66 1.84
36 1.21 3.49 1.38 3.51 1.64 5.14 0.71 1.98 0.68 1.63
48 1.34 3.77 1.51 3.84 1.74 5.31 0.75 2.03 0.62 1.49
60 1.18 3.34 1.47 3.79 1.73 5.08 0.71 1.82 0.47 1.13

Panel C: Alpha of conditionally hedged strategies (in High-minus-Low market beta portfolio)

Rc−hedge
X,(t−12),t+1

0.04 0.57 0.08 1.12 0.05 0.90 0.09 1.12 0.13 1.80

Rc−hedge
X,(t−24),t+1

0.21 2.63 0.24 3.11 0.24 3.65 0.15 1.82 0.25 3.25

Rc−hedge
X,(t−36),t+1

0.28 3.36 0.31 3.48 0.31 4.52 0.24 2.70 0.30 3.47

Rc−hedge
X,(t−48),t+1

0.35 4.22 0.34 3.63 0.34 4.95 0.28 3.12 0.34 3.86

Rc−hedge
X,(t−60),t+1

0.35 3.83 0.35 3.72 0.32 4.26 0.28 2.85 0.32 3.44

Panel D: Alpha of Old versus New stocks (in High-minus-Low market beta portfolio)

RNew
X,t,t+1 -0.11 -0.60 -0.06 -0.30 -0.24 -1.65 0.03 0.15 0.25 1.15

ROld
X,t,t+1 0.33 1.81 0.31 1.37 0.11 0.70 0.42 2.24 0.70 3.36

ROld
X,t,t+1 −R

New
X,t,t+1 0.45 3.70 0.37 2.93 0.35 3.39 0.39 3.07 0.45 3.70
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