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Abstract

I study the sorting of students into school districts using new lottery data from an
inter-district school choice program in Massachusetts. I �nd that moving to a more pre-
ferred school district increases student math scores by 0.19 standard deviations. The
program also improves coursework quality and increases the probability of high school
graduation and college attendance. Motivated by these �ndings, I develop a feature-rich
model of treatment e�ect heterogeneity and estimate it using a new application of em-
pirical Bayes. The estimator I propose improves accuracy by synthesizing information
contained in the choices of students who are exposed to the lottery with information
contained in the choices of students who are not. I use the heterogeneous e�ects to ex-
amine selection into the choice program. Students who bene�t from the program are
more likely to apply, and conditional on taking up an o�er to enroll, they are more likely
to continue on in the program beyond their �rst year. I �nd that this Roy-type selection
drives nearly all of the program evaluation treatment e�ect identi�ed with the lottery.
The fact that families sort students to school districts according to potential bene�t sug-
gests that research relying on school choice lotteries to learn about di�erences in school
quality may lack a broad claim to external validity.
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1 Introduction

There is now a well-documented causal link between educational inputs, test scores, and later
life outcomes. Whether it is the size of a kindergarten classroom, the value added of a middle
school teacher, or the type of high school a student attends, educational interventions have
far-reaching consequences for outcomes like teen pregnancy, incarceration, college atten-
dance, and adult earnings (Cullen et al., 2006; Chetty et al., 2011; Angrist et al., 2012; Chetty
et al., 2014; Deming et al., 2014; Dobbie and Fryer, 2015; Angrist et al., 2016). Understanding
institutional quality is therefore important for e�ectively targeting educational investments.

Recent work on educational e�ectiveness leverages randomization embedded within the
school assignment process to estimate quality di�erences across institutions. Since the out-
comes of lotteries are random, estimates of school quality based on a comparison between
applicants who win a school choice lottery and applicants who lose a school choice lottery
are not confounded by higher ability or better resourced students choosing to attend better
schools. For this reason, researchers have used lottery estimates of school quality to con-
struct novel measures of institutional value added, validate observational methods of ranking
schools, and estimate the relation between e�ectiveness and educational inputs (Angrist et al.,
2013; Dobbie and Fryer, 2013; Deming et al., 2014; Abdulkadiroglu et al., 2017; Angrist et al.,
2017).

While school choice lotteries may seem like an attractive tool for learning about e�ective-
ness, individual students may nonetheless experiences test score gains by switching schools,
even in the absence of di�erences in average school quality. It could be that some schools are
better for each student or that each school is better for some students. In either case, a school
choice lottery may make the receiving school look e�ective. But to design the best system,
the policymaker must know which mechanism is at work. In general, school choice lottery
estimates are not externally valid if the decision to apply to an institution is correlated with
the student’s potential bene�t (Walters, 2018). Thus knowing whether and to what degree
lottery-identi�ed test score gains are driven by Roy selection versus di�erences in quality is
necessary for understanding the practical policy implications of this body of academic work.

In this paper, I use random admission o�ers from an inter-district school choice program
in Massachusetts to study the consequences of sorting for understanding school quality. I
provide three main contributions. The �rst contribution is a causal evaluation of participa-
tion in inter-district school choice on student outcomes using new lottery data. The second
contribution is an examination of Roy selection and its role in generating the causal e�ects of
inter-district choice. The third contribution is a new method for estimating treatment e�ect
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heterogeneity using empirical Bayes.
I start with a program evaluation of inter-district school choice in Massachusetts. The

program allows primary school students to apply for open seats in neighboring school dis-
tricts. Importantly, the law requires seats to be rationed via a lottery whenever there is excess
demand. I use new data on the outcomes of these lotteries to identify the causal e�ect of par-
ticipating in inter-district choice. I �nd that moving to a more preferred district increases
student math scores by 0.19 standard deviations, with no e�ect on English Language Arts
(ELA). The impact on math is large. Angrist et al. (2013) �nd that, on average, choosing to at-
tend a charter middle school or high school in Massachusetts generates math test score gains
of 0.21 and 0.27 standard deviations, respectively. My results also stand in contrast to prior
estimates of the e�ect of school choice in the traditional public school sector, which �nd little
to no impact on test scores (see, e.g., Cullen et al., 2006; Hastings et al., 2012; Deming et al.,
2014). I �nd that participation in the inter-district choice program increases the probability
that students take Advanced Placement (AP) and other advanced classes. I also �nd positive
but imprecise e�ects on the probability that students graduate from high school and go on to
attend a four-year college.

The �ndings from this evaluation are important because they represent the �rst lottery
evaluation of a statewide inter-district choice program. Such programs are common in the
United States (Wixom, 2016) and are also controversial. Critics argue that because funding for
this type of program typically follows the student, inter-district choice drains educational re-
sources from underprivileged communities (O’Connell, 2017). Thus, quantifying the bene�ts
of inter-district choice is important for understanding the value of these programs for the stu-
dents who choose to use them. Prior work has examined the impact of within-district urban
assignment mechanisms, choice to charter schools, private school vouchers, and race-based
desegregation programs.1

Next I examine Roy selection in the inter-district choice context. I accomplish this by
estimating a model of treatment e�ect heterogeneity that incorporates a rich set of student
observables: lagged test scores, subsidized lunch recipiency, race/ethnicity, gender, and stu-
dent behavior measures. Students of lower socioeconomic status, students with disabilities,
and students with discipline problems appear to be hurt by the program, while older, higher

1For recent examples of choice among traditional public schools, see Cullen et al. (2006), Hastings et al. (2012),
Deming et al. (2014), and Abdulkadiroglu et al. (2017). For recent examples of choice to the charter sector, see
Hoxby and Murarka (2009), Abdulkadiroglu et al. (2011), Dobbie and Fryer (2011), Angrist et al. (2012), and
Angrist et al. (2016). For examples of the impact of private school vouchers, see Howell et al. (2002), Wolf et al.
(2008), Mills and Wolf (2017), and Abdulkadiroglu et al. (2018). For race-based programs, see Angrist and Lang
(2004) and Bergman (2018).
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ability students tend to bene�t. I �nd that the observed heterogeneity predicts student take-
up behavior that is consistent with Roy selection. Students who would be positively impacted
by the program are more likely to apply. Conditional on applying, those who bene�t from
the program are more likely to take up a randomly assigned o�er to enroll, and once enrolled,
those who bene�t are more likely to continue on after their �rst year.

Roy selection is signi�cant because it drives a wedge between the local average treatment
e�ect (LATE) identi�ed by the lottery and the average treatment e�ect (ATE) of interest:
district quality. To quantify the wedge’s magnitude, I use the observed heterogeneity to ex-
trapolate the ATE for the treated, the applicants and the non-applicants. I �nd that 45% of the
treatment e�ect for the treated comes from postlottery selection into enrollment, and 67% of
the treatment e�ect for applicants is driven by prelottery selection into the applicant pool.
Almost none of the LATE identi�ed with the lottery is the result of quality di�erences across
districts.

This �nding is important because it provides insight into the potential domain of external
validity for a body of work that uses school choice lotteries to study educational e�ective-
ness (Angrist et al., 2013, 2017; Dobbie and Fryer, 2013; Deming et al., 2014; Abdulkadiroglu
et al., 2017). For example, Angrist et al. (2017) uses school choice lotteries within the Boston
school district to estimate the bene�t of closing a low value-added school. However, real
world accountability systems such as the one actually employed in Massachusetts often com-
pare schools across district boundaries. In fact, the Massachusetts Board of Elementary and
Secondary Education (DESE) cited low levels of student test score growth relative to the rest
of the state among the reasons they voted to place the Holyoke Public School District in re-
ceivership in 2015 (Massachusetts Department of Elementary and Secondary Education, 2015).
State-level accountability systems that use value added for decision-making will not neces-
sarily generate welfare gains in the presence of sorting across districts. Prior work has also
used lotteries to argue that certain educational practices are generally e�ective mediators of
educational quality (Angrist et al., 2013; Dobbie and Fryer, 2015). Scaling up these practices
will unlikely be able to generate the anticipated bene�ts if the original gains identi�ed from
the lotteries emerged in part from a sorting mechanism.2

The �nal contribution of this paper is a new application of empirical Bayes to the esti-
2There is compelling evidence that the sorting mechanism is less important within large urban districts.

For example, Deming et al. (2014) demonstrates that students in the Charlotte-Mecklenburg school district in
North Carolina only bene�t from school choice when they gain access to a higher quality school. Further,
Angrist et al. (2017) provides evidence based on reweighting methods that school e�ects within the Boston
Public School district are approximately linear. Finally, Abdulkadiroǧlu et al. (2020) �nd that, conditional on
peer quality, parental preferences are uncorrelated with school e�ectiveness or match quality in New York City.
In principle, there is nothing inconsistent between these �ndings and the present work.
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mation of treatment e�ect heterogeneity. This application leverages non-experimental data
to more accurately estimate heterogeneous treatment e�ects in a quasi-experimental design.
To study the sorting of students to districts on the basis of potential bene�t, I must �rst �t
a feature-rich heterogeneous treatment e�ects model using an instrumental variables (IV)
strategy. Using IV is necessary to correct for postlottery selection on the margin of treatment
take-up. Unfortunately, IV designs are notoriously noisy (Young, 2017), making accurately
estimating the heterogeneous e�ects di�cult with the lottery sample at my disposal. How-
ever, I show that corresponding estimates of the heterogeneous e�ects using observational
data on the universe of public school students in Massachusetts are highly correlated with
the estimates from the experimental sample. This �nding suggests that the non-experimental
data contains information useful for pinning down the LATEs identi�ed by the lottery. I for-
malize this intuition by combining the experimental and non-experimental treatment e�ect
estimates within a hierarchical model. I show that the estimator is consistent under the same
conditions as IV, and I provide simulations that suggest the procedure dominates among other
common estimators with respect to the mean squared error.

The estimator I propose adds to an emerging literature in economics that uses random
e�ects and other Bayesian or quasi-Bayesian methods to synthesize information from mul-
tiple sources (see, e.g., Angrist et al., 2017; Hull, 2018; Meager, 2017, 2018; Chetty and Hen-
dren, 2018; Rothstein, 2018). In particular, the method outlined in Angrist et al. (2017) is
closely related. The authors use a simulated method of moments approach that combines
non-experimental and lottery-identi�ed value added in a hierarchical model to generate a
complete quality ranking across oversubscribed and undersubscribed schools in Boston.

The method I develop is similar in spirit to Angrist et al. (2017)’s model. However, I am
only interested in gains with respect to accuracy, whereas they use the non-experimental data
to extrapolate treatment e�ects to schools that are not oversubscribed. As a result, I do not
need to model the �rst-stage, reduced-form, and bias jointly within the parent distribution
of the hierarchical model, allowing me to �nd a closed-form representation of the estimator
with a simple, transparent intuition. And unlike Angrist et al. (2017), my approach allows
for the possibility that the LATE identi�ed via the lottery is di�erent from the ATE in the
population. This is important because assuming equality between the LATE and ATE would
e�ectively assume away the Roy selection I am looking for.
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2 Increasing Access with District Choice

The purpose of inter-district choice in Massachusetts is to weaken the link between geogra-
phy and access to a high-quality education. The program was originally established in 1993
as one portion of a broader set of education reforms known as the Massachusetts Educational
Reform Act (MERA). Broadly speaking, the reforms centered around three areas: school fund-
ing, accountability, and access. To further the latter objective, MERA established provisions
allowing for both charter schools and inter-district choice (Chester, 2014). Between 2001 and
2016, over 70,000 students enrolled in a school outside of their home district via the inter-
district choice program. To put this number in context, over the same time span, the charter
sector in Massachusetts enrolled around 119,000 students.3 Figure 1 shows enrollment in the
inter-district choice and the charter sector over time.

[Figure 1 about here.]

At the district level, the program operates in several stages that may or may not culminate
in a lottery for admission. By default, every public school district in Massachusetts partici-
pates in the program. However, each year the local school board may vote to opt out; if they
do, the district is not required to enroll students from other districts. Nonetheless, voting to
opt out does not preclude local students from using the program. The law then requires that
participating districts project capacity and enrollment and make excess seats available to any
student in the state. The projection methods are determined locally. Since 2001, nearly 200
districts out of approximately 295 traditional public school districts4 in Massachusetts have
enrolled at least one student via the program, with 156 districts participating in an average
year. Figure 2 shows the geospatial distribution of choice districts as of 2016.

When the number of students who apply exceeds the number of seats available, the district
is required to allocate the seats via lottery. Once a student is o�ered a spot in the district and
accepts, she becomes a full public school student of the district until she graduates or leaves
voluntarily. However, the student’s family is responsible for transportation.5 The sending
district is then required to pay the receiving district the lesser of 75% of average per-pupil
expenditures in the sending district or $5,000. However, the sending district must pay the full
cost of any special education services as determined by the state funding formula. In practice,
the $5,000 cap is binding for non-special education students.

3Both calculations are my own and were made using administrative student micro-data provided by the
DESE.

4Over this period, some districts consolidated into regional districts.
5There are some exceptions to this rule for students with disabilities.
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[Figure 2 about here.]

The way the program is implemented in practice sometimes di�ers substantially from the
text of the law. For example, an advisory memo from the Massachusetts O�ce of General
Counsel concluded that the nondiscrimination language in the law was so strong that even
sibling preference should not be considered when administering lotteries for admissions pur-
poses (Moody, 1994). In practice, nearly every district o�ers some form of sibling preference,6

and there are a number of districts that are regularly oversubscribed yet conduct admissions
on a �rst-come, �rst-serve basis.7 Finally, there are some portions of the law that simply
never made it into practice. For example, the original bill asked participating districts to sub-
mit their enrollment and capacity projections to the DESE. I learned from my conversations
with state-level program administrators that this information has never been collected.

3 Collecting District Choice Data in Massachusetts

The data I use for this project come from several sources. I start with hand-collected lottery
records from school districts in Massachusetts. I then match and merge these lottery records
to administrative data on the universe of public school students in Massachusetts. These ad-
ministrative data include information on standardized test scores, teachers, and coursework
as well as college outcomes via an extract from the National Student Clearinghouse (NSC).
I also make use of several spreadsheets provided to me by the DESE, which describe infor-
mation such as which districts were open to choice in a given year, how the structure and
coverage of districts has changed over time, and the within-district distribution of education
spending. I will now brie�y discuss each of my primary data sources in turn. For a more
detailed discussion of the primary data sources, as well as more detailed descriptions of the
less frequently used data sources, see Appendix A.1.

3.1 New Lottery Data

In May 2016, I contacted every public school district in the state of Massachusetts that had
ever enrolled a student via inter-district choice and asked them to share their lottery records

6This assertion is based on conversations I had with state-level program o�cials and district-level adminis-
trators while collecting data.

7While collecting data, at least �ve districts indicated this to me, but not all districts o�ered this information
when responding.
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with me.8 Of the districts I contacted, approximately 75% responded, and of the districts that
responded, 36% con�rmed they had ever conducted a lottery. Typically, districts that did not
conduct a lottery were not oversubscribed. A small number of districts accepted new students
using a �rst-come, �rst-serve procedure despite being oversubscribed. Of the districts that
had ever conducted a lottery, 38% had maintained records that they were willing to share
with me. By far, the most common reason for not sharing data was poor record keeping.
Some districts elected not to participate out of privacy concerns. Of the records I collected,
a substantial portion were unusable due to insu�cient documentation of the lottery process.
Ultimately, I was left with approximately 3,000 student-level lottery records from 203 lotteries
across 14 districts.

Districts used a variety of randomization mechanisms to conduct the lotteries. The most
common randomization method involved having a secretary or administrator randomly select
some subset of the applicants to receive o�ers of admission. I code these random o�ers as a
binary “initial o�er” instrument. Ninety-one percent of the lotteries in my sample used this
randomization procedure. Typically, the remaining applicants were then randomly assigned a
waitlist number. When available, I also code these numbers as a “waitlist number” instrument.
There was one district that, for a single year in my data, randomly chose students from a
waitlist pool instead of assigning them lottery numbers. I code these random o�ers as a
binary “waitlist o�er” instrument and include it for completeness. There was also one small
district whose records consisted of randomly assigned lottery numbers with no indication as
to who actually received an o�er of admission. For this district, I code the raw number as a
“lottery number” instrument. In practice, the results in this paper are driven by initial o�ers;
see Appendix B.2 for results that only use the initial o�er instrument.

The typical lottery in my sample is small. The average number of students I view in a
single lottery is 9.6, and the median is 7. The lotteries also span a considerable time period.
The earliest lottery in my data occurs in academic year 2002–2003, while the latest occurs
in academic year 2016–2017. None of the 2016–2017 lotteries are included in my estimation
sample since, as of the time the analysis was conducted, the necessary outcome variables were
unavailable postlottery. The lotteries in my sample also span all grade levels. However, as
Figure 3 shows, the lotteries are clustered at grades that are typically within-district, cross-
school transition points for students.9 For more detailed descriptive statistics regarding the

8A number of these districts were vocational districts, internet-based learning programs, or other nontradi-
tional programs that I subsequently learned were not required to use a lottery-based admissions process. For
this reason, I do not count these districts when calculating response rates.

9For example, students often move from grammar to middle school in the �fth, sixth, or seventh grade and
from middle to high school in the ninth grade.
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lottery data, including histograms of lotteries by year and size, see Appendix A.3.

[Figure 3 about here.]

I merge these student lottery records to the data provided by the DESE by looking for
exact �rst and last name matches within the implied application grade/year. When available,
I break ties using middle names/initials, hometown and date of birth. When town of residence
is unavailable and I am otherwise unable to break a tie, I choose individuals that live within
the empirical distribution of towns that lose students to the receiving district via choice. If I
am unable to break a tie in this way, I consider the student unmatched and drop her from the
sample. When this procedure fails to �nd any exact match, I repeat it using fuzzy �rst and
last name matching. For this reason, all of my speci�cations include indicators for whether
a student was matched via the exact or fuzzy version of the algorithm. Overall, I obtain an
89% match rate. For further discussion of the procedure used to match the lottery data to the
state data, see Appendix A.2.

My lottery sample exhibits some imbalance along predetermined characteristics. Figure 4
presents point estimates and two standard error intervals from a within-lottery regression10

of all baseline observable and otherwise exogenous characteristics on the initial o�er indicator
for the subsample of students where I observe at least one test score prior to the lottery. The
joint F-statistic across all predetermined characteristics is 2.11 Of particular concern is the fact
that the coe�cient for black students is negative and the two standard error interval does not
include zero. However, I note that the administrators conducting the lottery could not directly
observe race,12 the coe�cient’s magnitude is small, white students also have a negative point
estimate, and the point estimate for black students is not signi�cantly di�erent than the point
estimate for white students (or any other racial group). For these reasons, it seems unlikely
that racial discrimination is the culprit. In Appendix A.4, I consider the possibility that this
imbalance is driven by di�erential attrition and conclude that this is also unlikely to be the
case.

[Figure 4 about here.]

While it is possible that the covariate imbalance is due to some form of cheating on the
part of districts, I believe this is unlikely for two reasons. First, all of the districts that provided

10Within lottery is the level of variation at which the instrument is randomly assigned. I leverage this variation
by including lottery �xed e�ects in the regression. I also drop from this regression all students who received
sibling preference or were indicated as applying late.

11Rounded to the hundredth decimal place.
12Of course, it is possible that lottery administrators were able to infer race from student or parent names or

were able to observe race if a student or her family dropped the application form o� in person.
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lottery data did so voluntarily and described to me in detail their randomization process, and
there was no consequence for opting to not share data with me. Second, cheating would open
the district up to potentially serious liability. As I discussed in Section 2, the legal o�ce in the
department of education in Massachusetts concluded that the anti-discrimination language
in the inter-district choice law was even stronger than that used in the charter sector. Thus
if a district was cheating, it had a strong incentive to not provide me with data.

One potential explanation for the imbalance is the possibility that some of the lottery
records I obtained did not track things like sibling preference or late applications properly.
Another potential explanation is that this imbalance is simply the product of sampling varia-
tion. In any event, I show in Appendix A.5 that conditioning on earlier prelottery test scores
increases my precision substantially, and more importantly, such speci�cations pass all of the
standard falsi�cation tests used in lottery designs. For this reason, every speci�cation in this
paper using the lottery variation is restricted to the sample of students for whom I observe at
least one test score prior to the lottery year and will include baseline test scores as controls.

3.2 Administrative Student Records and Other Data Sources

For this project, the state of Massachusetts provided me with data on the universe of pub-
lic school students. I retrieved demographic and socioeconomic information from the Stu-
dent Information Management System (SIMS) spanning academic years 2001–2002 through
2016–2017. This information included variables related to race/ethnicity, gender, attendance,
discipline, disability, and whether the student received a subsidized lunch as well as the vari-
ables necessary for matching. It also included administrative information on the district,
school, and grade level where students are assigned in a given year, including an indicator for
whether a student was enrolled in a district via inter-district choice. Unless otherwise noted,
I drop observations from the state data that appear in nontraditional public school environ-
ments. These include collaborative schools, charter schools, vocational schools, agricultural
schools, adult education programs, virtual schools, institutional schools, and residential/deaf
programs.

I retrieve test scores from the Massachusetts Comprehensive Assessment System (MCAS)
spanning academic years 2001–2002 through 2016–2017. I standardize the test scores at the
grade, year, and test-type13 level to have a mean of zero and a standard deviation of one.
I retrieve coursework taken by students from Student Course Schedule (SCS) data spanning

13The state transitioned testing regimes from the original MCAS exam to the PARCC exam over the course of
my sample frame. There are three years in my data where the old and new examinations appear simultaneously.
For this reason, all regressions will also include test-type �xed e�ects.
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academic years 2010–2011 through 2016–2017. I also use data on college attendance contained
in an extract from the NSC purchased by the DESE.

For some auxiliary regressions, I make use of additional spreadsheets provided to me by
the state-level o�cials who administer the program. These spreadsheets describe district
�nances as well as the outcome of the annual district-level votes on choice status spanning
academic years 2007–2008 to 2016–2017. For further description of the various data sources
along with a detailed breakdown of the cleaning process, see Appendix A.1.

4 Program Take-Up by Students and Districts

Students in my lottery sample are positively selected both relative to the state as a whole
and relative to their home district peers. Table 1 illustrates this fact. The column labeled “All
Students” provides averages of observable characteristics across the entire state for students
in test-taking grades in academic years 2001–2002 through 2016–2017. The column labeled
“Choice Students” restricts the statewide sample to observations where a student is currently
participating in inter-district choice. The column labeled “Sending Districts” restricts the
statewide sample to districts that lose a student to choice via a lottery I observe in my data.
The column labeled “Lottery Sample” restricts the statewide sample to students found in my
lottery data as observed in the year when they applied.

[Table 1 about here.]

Compared to their home district peers, the lottery sample is disproportionately white, less
likely to receive a subsidized lunch, less likely to be identi�ed as limited English pro�ciency
and less likely to be diagnosed with a disability and has higher average test scores. However,
when compared to the state as a whole, the di�erences are smaller. One notable pattern is the
enormous di�erence in subsidized lunch recipiency across subsamples, likely due to the fact
that the family is responsible for transportation to the new district. For this reason, we should
expect families with the resources to transport their children long distances to be more likely
to apply to the program and to subsequently accept lottery o�ers.

At the district level, the decision to not opt out of inter-district choice is typically deter-
mined by a desire to supplement revenue. When a district observes that it has extra space
in a classroom, in the sense that it is below the target student-to-teacher ratio in a given
grade level, the district will use the program as a source of additional funds. However, in the
Greater Boston area, participation is quite low, likely due to the fact that many suburban dis-
tricts in the Boston area participate in the Metropolitan Council for Educational Opportunity
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(METCO) program. As discussed in Angrist and Lang (2004), METCO is the nation’s oldest
voluntary school desegregation program, and it provides a separate mechanism for �lling
excess seats whereby predominantly white suburban districts enroll minority students from
Boston. Thus METCO leads to a crowding out of inter-district choice.

These explanations are supported both by informal discussions I have had with district
o�cials and by suggestive regressions in my data. Table 2 displays select coe�cients from a
joint regression using district characteristics to predict an indicator that takes a value of one in
years when a district did not vote to opt out of inter-district choice. Column (1) displays select
results from the joint regression estimated via ordinary least squares (OLS), and column (2)
displays select results from the variables chosen when estimation is performed using post-
Lasso. Column (3) displays select results from a joint regression that also includes district
and year �xed e�ects; in e�ect, the column asks whether trends in the independent variables
are predictive of changes in participation status. In levels, the student-teacher ratio, various
per-pupil expenditure categories, and the number of METCO students are predictive of the
decision to participate. Other observables, such as the district demographic composition and
urbanicity, are not. And almost none of the variables considered exhibit trends that predict
changes in participation status. See Appendix B.4 for complete results including the variables
not displayed in Table 2.

[Table 2 about here.]

Finally, as a result of this participation disparity, the net student gain/loss to choice is not
evenly distributed across the state. Figure 5 shows the geographic distribution of the net gains
and losses. The largest net winners and losers are concentrated in the middle and western
regions. The winners tend to be suburbs and large regionalized school districts, and the losers
tend to be urban and rural.

[Figure 5 about here.]

5 Program Evaluation

In this section, I evaluate the bene�ts of inter-district choice for students who participate. For
identi�cation, I examine applicants to oversubscribed districts and compare the district choice
lottery winners to the district choice lottery losers within a two-stage least squares (2SLS)
framework. I �nd that participating in district choice causes large test score gains in math,
and I �nd no e�ect on ELA scores. I also �nd that participating in district choice increases
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the quality of the coursework that students take. Finally, I provide suggestive evidence that
participating in district choice increases the probability a student will graduate from high
school and attend a four-year college.

5.1 Identi�cation and Estimation

Consider the following 2SLS framework:

yit = δ0 + βdit + δ` + γWi + ϵit (1)

dit = δ
′
0 + ΠZi + δ

′
` + γ

′Wi + ηit , (2)

where yit denotes the outcome of student i during a postlottery period of time t (typically
an academic year), δ0 is an intercept, dit is an indicator for whether student i was enrolled
out of district via the choice program at time t , δ` is a lottery �xed e�ect,14 Wi are covariates
observed at baseline,15 and Zi denotes the vector of four lottery instruments16 discussed in
Section 3.

The parameter β identi�es a LATE speci�c to the instrument vector Zi under a standard
set of instrument-by-instrument conditions: exclusion, random assignment, �rst stage, and
monotonicity (Imbens and Angrist, 1994). Exclusion requires that the lottery’s result a�ects
potential outcomes only via take-up of the treatment, and random assignment requires that
within each lottery the results are in fact random. The �rst stage requires that the lottery
results change take-up behavior for some subset of the population (i.e., that Π > 0 for some
element ofZi ). Monotonicity is a restriction on the heterogeneity of potential treatment status
permitted in the �rst stage; it requires that all individuals whose behavior is changed by the
lottery results behave consistently with respect to take-up. Provided these four conditions are

14To be precise, a lottery is de�ned as the interaction of the grade, application district, and year where the
student appears in my lottery data.

15All speci�cations will include an average of all test scores observed prior to the lottery year, academic year
and grade �xed e�ects, indicators for PARCC testing, and indicators for whether or not a student was matched
to the state data via an exact or fuzzy process. One district asked students who were not given a random initial
o�er whether or not they wanted to be included on the waitlist before assigning them a random waitlist number;
I include an indicator where this happens in my data. However, the results are not sensitive to dropping these
observations (see Appendix B.3). I also had a district that, for one lottery, indicated “admission rounds” in their
lottery spreadsheet without further explanation. For this reason, I also include indicators for these admissions
rounds. The results are not sensitive to dropping this lottery (see Appendix B.3).

16These include random initial o�ers of attendance, random o�ers from the waitlist, lottery numbers, and
waitlist numbers. However, 91% of the students in my estimation sample were involved in lotteries that used an
initial o�er mechanism. In practice, this instrument drives virtually all of the results I will present. See Appendix
B.2 for results when the sample is restricted to students exposed to initial o�er lotteries.
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satis�ed, β is properly interpreted as the ATE of moving to a more preferred school district for
lottery compliers who applied to oversubscribed districts that maintained and were willing to
share high quality lottery records. I save a discussion of heterogeneity and external validity
for Section 6.

I restrict the sample to the set of students appearing in my lottery data such that I ob-
serve at least one pre- and one postlottery test score. I drop students who received sibling
preference or applied late. When students apply to lotteries in multiple years, I randomly
choose which observation to use. I also drop all students involved in a lottery if I am unable
to match at least one student from that lottery who receives a lottery o�er and one student
who does not; otherwise, the lottery would contribute no identifying variation to the esti-
mate. Finally, I restrict the data to the set of student-year observations occurring after the
lottery randomization.

For the standard errors, I follow the design-based approach of Abadie et al. (2017) and
cluster at the level at which treatment is assigned (i.e., the student). Other sensible approaches
would be to cluster at the school-by-grade level, as in Angrist et al. (2013) or at the lottery
level. In practice, neither of these alternatives materially change the standard errors.

5.2 District Choice Bene�ts the Average Student Who Participates

I begin this section with the results on test scores. Table 3 shows OLS, reduced-form, �rst-
stage, and 2SLS results side-by-side for my baseline speci�cation. The 2SLS estimates imply
that the causal e�ect of moving to a more preferred district is to increase math test scores by
0.19 standard deviations. There is no detectable impact on ELA.

[Table 3 about here.]

The e�ects in Table 3 are large in both absolute terms and relative to the existing litera-
ture on choice between traditional public schools. For example, Angrist et al. (2013) �nd that,
on average, choosing to attend a charter middle and high school in Massachusetts generates
math test score gains of 0.21 and 0.27 standard deviations, respectively. For ELA, Angrist
et al. (2013) �nd that choosing to attend a charter middle school in Massachusetts increases
test scores by 0.075 standard deviations, and for high schools they �nd increases of 0.206
standard deviations. Prior lottery evaluations of choice between traditional public schools
have examined the impact that attending a student’s most preferred school has on test scores
within the context of large, urban district assignment algorithms. In that environment, at-
tending a most preferred school does not typically impact test scores (Cullen et al., 2006;
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Hastings et al., 2012; Deming et al., 2014). For additional speci�cations where I include pre-
determined student-level controls, as well as speci�cations that use student �xed e�ects and
year-by-lottery �xed e�ects to achieve identi�cation via a comparison of trend changes across
winners and losers within lottery, see Appendix B.1. All results in Table 3 are robust to these
more demanding speci�cations.

Next I examine the impact that moving to a more preferred district has on coursework.
For the coursework regressions, I am forced to drop a small number of students who only
appear in the sample frame prior to the �rst year the DESE kept student-level records on
courses taken. Table 4 presents results from the baseline 2SLS using, as an outcome, indi-
cators for whether the student was enrolled in coursework labeled as AP, remedial, general,
or advanced. AP classes consist of a nationally recognized curriculum known for rigor and
college preparedness, and remedial, general, and advanced are designations from the state
of Massachusetts. When examining AP coursework, I restrict the sample to years when stu-
dents progressing normally would appear in grades 11 and 12, since access to AP coursework
is uncommon at earlier grades.

[Table 4 about here.]

Table 4 tells a consistent story: moving to a more preferred district increases the quality
of the student’s coursework. There is a substantial increase in the probability that students
enroll in advanced and AP coursework and a moderate decrease in the probability that a
student enrolls in a remedial class. In Appendix B.5, I present additional results on coursework
using intensive margin variation that suggests the pattern of substitution moves students from
remedial to general coursework and from general to advanced.

Finally, I present results pertaining to the impact of inter-district choice on graduation
and college attendance. For Table 5, I restrict the data to the sample of students whose on-
time graduation date relative to their lottery grade-year is 2016 or prior. Since the estimates
are imprecise, I present both the reduced-form and 2SLS estimates. The point estimates from
Table 5 suggest that students who participate in inter-district choice are more likely to grad-
uate from high school and are less likely to attend a two-year college. However, the decline
in two-year attendance is approximately compensated for by an increase in four-year college
attendance, suggesting that lottery winners are substituting four-year college for two-year
college. Combined with the results on coursework, it is tempting to conclude that this is
coming from the increase in college application competitiveness that access to advanced and
AP coursework bestows upon lottery winners. However, this is purely speculative. It is not
possible to rule out other potential mechanisms or even the absence of an e�ect.
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[Table 5 about here.]

6 School Quality and External Validity

A minimum de�nition of school quality is that it is equal to the expected test score gain a
student randomly selected from the population would experience if sent to that institution.17

It follows that to credibly relate estimates of test score gains from choice lotteries to institu-
tional quality, we need to know if the LATE identi�ed with the lottery is equal to the ATE for
the relevant student population. Thus whether, and to what degree, the program evaluation
results presented in Section 5 communicate information about school quality is, at its core, a
question about externally validity.

Of particular concern for the external validity of choice lottery estimates is the potential
for test score gains to emerge from Roy selection. Simple models of economic behavior would
predict that families should use choice programs to sort students to schools on the basis of
potential bene�t (Hoxby, 2000). This selection on gains will drive a wedge between the LATE
and the ATE by ensuring that students with higher average bene�t are disproportionately
likely to apply to the program, accept admission o�ers, and subsequently remain in the pro-
gram after the �rst year. Thus school choice can generate positive test score gains even when
there are no quality di�erences across insitutions.

It is possible to test for this sorting under weak conditions. Consider the following simple
model of potential outcomes:

yi = diy
1
i + (1 − di)y0i = βidi + y0i . (3)

Here yi is the observable test score of student i , di is a treatment indicator denoting whether
the student accepted an o�er to switch schools, (y1i ,y0i ) represents the student’s test score in
the treated and control state, respectively, and βi = y1i −y0i is the program’s bene�t to student
i . Let τi denote an indicator for whether or not a student applied to the program.

Then a necessary condition for the LATE to be externally valid is that application and
take-up behavior are unrelated to potential bene�t:

17I call this a minimum criterion because, in the presence of treatment e�ect heterogeneity, it is not obvious
how to properly de�ne school quality. A stronger, but somewhat more natural, criterion would be that a school
is higher quality if it bene�ts every student in the population relative to the reference school; however, the
weaker criterion is still a reasonable measure for many practical applications despite the fact that optimal policy
should, to the greatest degree possible, account for observed heterogeneity rather than rely on averages.
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βi ⊥ (di, τi). (4)

In general, a linear extrapolation is appropriate to any subsample of the population where
this condition holds. Hence, I will refer to condition (4) as weak linearity.

Existing literature has looked for violations of weak linearity by testing for “selection on
gains” via generalized Roy models (Walters, 2018; Hull, 2018; Mogstad et al., 2018). This ap-
proach relies on the existence of a continuous instrument that shifts di�erent student types in
and out of compliance as a means of identifying the joint distribution of (βi,di) (Heckman and
Vytlacil, 2001; Cornelissen et al., 2016). In the school choice context, prior work has argued
that distance to receiving institution is conditionally randomly assigned to student families
and is also excluded from the outcome equation, and hence it can serve as an instrument (e.g.,
Walters, 2018). Unfortunately, I do not observe student addresses in the state data, and it is
inconsistently available in the lottery data, so I am unable to calculate precise measures of
student distance to receiving institution. In addition, I note that while it may be plausible that
distance to a school is randomly assigned to families within small geographic areas such as
Boston, it seems intuitively less plausible that distance is randomly assigned across the en-
tire state of Massachusetts conditional on covariates, which is what would be required to use
these methods here. For these reasons, I am unable to apply the generalized Roy framework
in this context.

However, observe that with a su�ciently rich model of observable treatment e�ect het-
erogeneity, I can still look for evidence of selection on gains under weak conditions. Without
loss of generality, suppose I am interested in testing for selection on postlottery take-up be-
havior (di ). Then weak linearity implies that E(βidi) = 0; however, βi is unknowable, and
hence we cannot test this implication directly. Instead, let k = k(Xi) be an injective mapping
between covariates and student types as indexed by k . Suppose βi = βk + vi , where βk is the
treatment e�ect for type k students. Note that βk is, in principle, identi�ed from the data.
Now I can test whether

E(βkdi) = 0. (5)

A �nding that E(βkdi) , 0 would imply a violation of weak linearity except in the knife-
edge case where the correlation between take-up behavior and the observable heterogeneity
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is exactly o�set by the correlation between take-up and the unobserved heterogeneity.18 In
practice, this is the test I will take to my data in Section 8. To implement it, however, I will
�rst need to estimate the observable heterogeneity (βk ).

7 Estimating Treatment E�ect Heterogeneity

To understand the relation between potential bene�t, application, and take-up behavior, I
need to estimate a rich model of treatment e�ect heterogeneity. However, my estimation
sample is only moderately sized (≈ 1, 000 students), and I am using a noisy estimation proce-
dure (2SLS). This makes it di�cult to precisely estimate the necessary number of interaction
terms.

To overcome this technical challenge, I develop a new application of empirical Bayes that
uses non-experimental data to fully leverage the available information when forming quasi-
experimental estimates of treatment e�ect heterogeneity. The model assumes a hierarchical
structure for the heterogeneity, allowing the posterior mode of the experimental estimates to
incorporate information from non-experimental data. The resulting estimator swaps noisy
experimental variation for precise non-experimental variation according to the correlation of
the heterogeneous e�ects across samples. The estimator is consistent under the same condi-
tions as IV, and I provide simulation evidence that the estimation procedure dominates stan-
dard methods, as measured via the mean squared error over the collection of heterogeneous
e�ects.

In this section I also explore the drivers of the observed heterogeneity. I �nd that stu-
dents of lower socioeconomic status, students with disabilities, and students with discipline
problems appear to be hurt by the program, while older, high-ability students tend to bene�t.

7.1 A Hierarchical Model of Treatment E�ect Heterogeneity

Suppose that we wish to estimate treatment e�ect heterogeneity in a population with I ob-
servations. Further, assume that a subset of size E from this population are exposed to some
quasi-experiment, while the remaining N = I − E are not. Let k = k(Xi) be an injective
mapping between covariates Xi and a student’s type as indexed by k .

Suppose we are interested in estimating the following model:
18More precisely, E(βkdi ) = −E(vidi ) implies it is possible to �nd E(βkdi ) , 0 even when the data-generating

process (DGP) exhibits no selection on gains.
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yi = βidi + ui (6)

βi = βk +vi . (7)

Here βk is the LATE for type k individuals identi�ed via the quasi-experiment (e.g., a lottery
design). Let β̂e

k
denote the estimate of βk from the quasi-experiment, and let β̂n

k
denote an

estimate using only observational data (e.g., a lagged test score model using the N observa-
tions not exposed to the experiment). Let the joint asymptotic distribution of the estimators
be given by

[
β̂e
k

β̂n
k

]
a
∼ N

([
βk

βk + bk

]
Ωk

)
, (8)

wherebk is the di�erence between the LATE βk identi�ed by the quasi-experiment and the es-
timand of the observational design. Note that up to this point, we have not assumed anything
beyond what is ordinarily required for identi�cation and inference.

In general, the econometrician may prefer the experimental estimates because with a com-
pelling quasi-experiment, these should be unbiased (or at least consistent) for the LATE of
interest. However, if the experimental sample E is small, or if the quasi-experiment requires
a noisy technique such as IV (or both), the estimated heterogeneous e�ects may still be far
from the LATE due to sampling variation. At the same time, the non-experimental estimates
may be inconsistent for the LATE in general as a result of some form of selection. Neverthe-
less, the non-experimental estimates can still contain valuable information useful for pinning
down the heterogeneous e�ects in the experimental sample. Intuitively, highly correlated re-
alizations of the estimators (β̂e

k
, β̂n

k
) are unlikely to emerge from chance alone. Hence such a

realization should give the econometrician more con�dence that the point estimates from the
experiment are close to the LATE of interest. The following model formalizes this intuition.

Assume a hierarchical model for the estimands of the experimental and non-experimental
designs:

[
βk

βk + bk

]
∼ N

([
β0

β0 + b0

]
Σ

)
, (9)

where β0 is the center of the distribution of the heterogeneous e�ects identi�ed by the exper-
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iment, and b0 is the di�erence between the centers of the experimental and non-experimental
distributions. The assumption that the estimands are random induces a Bayesian structure:

P

([
βk

βk + bk

] ��� [β̂ek
β̂n
k

])
∝ P

([
β̂e
k

β̂n
k

] ��� [ βk

βk + bk

])
P

([
βk

βk + bk

])
, (10)

with the parent distribution from the hierarchical model taking on the role of the prior. Spec-
ifying the joint distribution of the estimands in this way allows the posterior mode of the
experimentally identi�ed heterogeneous e�ects to be in�uenced by the realization from the
non-experimental sample in a way that I will make precise later. First, I discuss identi�cation.

Observe that to operationalize this model empirically, I will need values for Ωk , Σ, and
(β0, β0 + b0). One option would be to specify a prior on these parameters and to estimate the
model in a fully Bayesian framework. Another option, and the one I pursue in this paper, is
to estimate these quantities from the data and to thus implement the model via an empirical
Bayes procedure. The main advantage of this approach is that I will be able to provide a
simple analytical representation of the resulting estimator that makes transparent how the
non-experimental variation is used to inform the posterior mode. The center of the joint
distribution (β0, β0 + b0) is identi�ed via the corresponding pooled regressions that assume
no heterogeneity (i.e., βk = β), and the population covariance matrix Σ is identi�ed via the
residuals of the pooled and unpooled models.19 The joint asymptotic covariance matrix is
calculated from the residuals of the experimental and non-experimental heterogeneous e�ects
regressions.20 For more detail, see Appendix C.

From equation (10), we can use standard properties of the multivariate normal distribution
to calculate the posterior mode of βk in the experimental data as follows:

βsk = β0 + αk(β̂
e
k − β0) + δk(β̂

n
k − β0 − b0). (11)

Equation (11) consists of three terms. The �rst term (β0) anchors the estimator to the cen-
19Intuitively, the residuals of the treated units from the pooled model contain the observable heterogene-

ity plus sampling variation, while the residuals of the treated units for the unpooled model contain only the
sampling variation; hence the di�erence in residuals for treated units across models contains only the hetero-
geneity, and thus the variance of the heterogeneous e�ects may be calculated in a straightforward manner.
This generalizes naturally to the case of multiple quasi-experimental/observational designs. See Appendix C for
mathematical detail.

20When the quasi-experimental estimates are generated via OLS (as opposed to IV or 2SLS), this is analogous
to estimating the covariance matrix of a seemingly unrelated regression model via Zellner (1962).
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ter of the experimental distribution. The next two terms consist of a weighted average of
the experimental variation in the heterogeneous e�ects (β̂e

k
− β0) and the non-experimental

variation (β̂n
k
− β0 − b0). For now, assume the o�-diagonal elements of Ωk are zero, as would

typically be the case when the observations in the experimental data are not also included in
the non-experimental data.21 Then the weights are given by

αk =
ϕkn − ρ

2

ϕknϕ
k
e − ρ2

(12)

δk =
ρ
(ωk

e )
2

σeσn

ϕknϕ
k
e − ρ2

, (13)

where ρ ≡ corr (βk, βk+bk) is the correlation between the experimental and non-experimental
estimands and ϕkj ≡

σ 2
j +(ω

k
j )

2

σ 2
j

is the inverse of a standard empirical Bayes weight,22 commonly

referred to as the signal-to-noise ratio. The parameters (ωk
e ,ω

k
n ,σe,σn) come from the diago-

nals of Ωk and Σ. When ρ = 0, the system decouples and equation (11) reduces to a standard
empirical Bayes estimator applied to the experimental data alone. Otherwise, the resulting
estimate is a mixture of the two sources of variation. I show in Appendix C that after plug-
ging in the empirical counterparts for (αk, δk, β0, β0 + b0), the resulting posterior modes are
consistent under the same conditions as IV.23

I also provide simulation evidence that the consensus estimates using all of the data dom-
inate the individual estimators (and their decoupled empirical Bayes counterparts) in terms
of the mean squared error over the collection of heterogeneous e�ects. This is true even un-
der certain violations of the normality assumption on the parent distribution, and it is true
when the procedure is applied to a DGP calibrated to match the actual data/model I use for
estimation in the next section. See Appendix C for more detail.

7.2 Estimating Student Heterogeneity in Practice

I want to estimate a rich model of student-level treatment e�ect heterogeneity using all of
the available covariates at my disposal. However, some of these covariates are continuous or

21For a more general expression, see Appendix C.
22Here j = e and j = n refer to the experimental and non-experimental weights, respectively
23While this is true, a better model for the large sample behavior of this estimator might be to �x the ratio

of the sample size between the experimental and non-experimental data. Doing this should slow the rate of
convergence for the experimental sample and thus preserve the experimental/non-experimental sample size
disparity in the limit. However, this is left for future work.
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have many support points; thus constructing indicators for student types based on their full
interaction is infeasible. For this reason, I assume the heterogeneity takes the following form:

βit = βk(Xit ) +vit = α0 + αXit +vit . (14)

The vector Xit includes student age; indicators for race/ethnicity; lagged values for atten-
dance, days suspended, and test scores; and lagged indicators for whether the student received
a subsidized lunch or was diagnosed with a disability. In Appendix C.3, I provide simulation
evidence that models assuming a linear approximation for the heterogeneity perform well
on simulated data calibrated to match my actual data despite the fact that the heterogeneous
e�ects’ linearity implies a potential for violations of the normality assumption on the parent
distribution.

Moving back to the 2SLS framework, the linearity assumption yields the following model
for the experimental data:

yit = δ0 + δ` + βkdit + γwWi + γxXit + ϵit (15)

βk = α
e
0 + α

eXit +vit (16)

dit = δ
′
0 + δ

′
` + π0Zit + πXitZit + γ

′
wWi + γ

′
xXit + ηit . (17)

Note that in equation (16) I have added the superscript e to distinguish the important param-
eters estimated from the experimental data from those estimated using the non-experimental
data (which I will superscript by n). To estimate the model, I plug equation (16) into equation
(15) and proceed with 2SLS to recover (αe0,αe) via the corresponding interaction terms.

For the non-experimental data, I consider the following model:

yit = δhдt + βkdit + θxXit + uit (18)

βk = α
n
0 + α

nXit +v
′
it , (19)

where δhдt is a home district (h) by grade (д) by academic year (t ) �xed e�ect. To estimate the
model, I plug equation (19) into equation (18) and proceed with OLS to recover (αn0 ,αn) via
the corresponding interaction terms. Thus the comparison I have in mind with equation (18)
is between two children who would, by default, be assigned to the same grade and district
during academic year t and who have similar values for the covariates Xit . However, the �rst
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child has left the home district via inter-district choice (dit = 1), while the second has not
(dit = 0). Note that I drop all students used in the quasi-experiment to estimate (αe0,αe) from
the observational sample used to estimate (αn0 ,αn).

Before proceeding to the fully heterogeneous models, I �rst present a comparison of es-
timates from the fully pooled versions that assume no heterogeneity (i.e., αe = αn = 0). The
coe�cients on the treatment indicator from these pooled models are the estimates of β0 and
β0+b0 that I use in the parent distribution when estimating the cross-design posterior modes.
Table 6 shows the results. Note that the estimate of β0 here using 2SLS is not mechanically
identical to the estimate of β0 found in the program evaluation due to the inclusion of vector
Xit in equation (15).

[Table 6 about here.]

In general, the non-experimental estimate appears to indicate a moderate bene�t to par-
ticipating in inter-district choice. However, the point estimates across designs are quite far
apart. This could be due to uncontrolled selection bias in the non-experimental sample, a
LATE that diverges from the ATE in the lottery sample, sampling variation, or a mixture of
all three.

Next I estimate the fully heterogeneous models. Figure 6 plots the predicted treatment
e�ects from the non-experimental model against the predicted treatment e�ects from the
experimental model over the support points ofXit contained in the experimental data.24 While
the two sets of estimated treatment e�ects are not one-to-one, there is still a moderately
strong relation between them (a correlation of 0.35), especially when considering that the
measurement error in the estimates will tend to drive the slope toward zero. This strong
relation suggests that knowledge of the heterogeneous e�ects from the non-experimental
model is informative about the value we would expect in the experimental model. Hence,
it seems reasonable to use a hierarchical model to incorporate information from the non-
experimental data into the estimates.

[Figure 6 about here.]

Next I estimate the consensus posterior modes. Figure 7 provides a visualization of how
the estimator mixes the two sources of information in practice. For each support point Xit

in the experimental data, Figure 7 plots its rank in the distribution of experimental treat-
ment e�ects against the predicted treatment e�ect from the experimental model (denoted by

24To be precise, the experimental treatment e�ect is given by β̂ek = α̂e0 + α̂
eXit and the non-experimental

treatment e�ect is given by β̂nk = α̂
n
0 + α̂

nXit , where Xit comes from an observation in the lottery sample.
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purple circles), the non-experimental model (denoted by green triangles), and the consensus
posterior mode (denoted by yellow squares).25 Thus we can observe directly, for each obser-
vation in the data, how much mixing occurs between the experimental and non-experimental
predicted values.

[Figure 7 about here.]

7.3 What Factors Predict the Observed Heterogeneity?

In this section, I show that students of lower socioeconomic status, students with disabilities,
and students with discipline problems appear to be hurt by the program, while older, high-
ability students tend to bene�t. To explore which covariates drive the observed heterogeneity,
I use the posterior modes from the preceding section to estimate the treatment e�ect for var-
ious subsamples of the data relative to the average student in the sample.26 Figure 8 displays
the results. Each point in the �gure shows the di�erence between the treatment e�ect for
the indicated subgroup and the remaining students in the sample. The lines represent two
standard error intervals, which I calculate under the distributional assumptions of the hierar-
chical model.27 Figure 8 appears to tell a consistent story: students who would traditionally
be considered “high-needs” are hurt upon switching schools, while higher ability, older stu-
dents tend to reap the bene�ts. Demographic variables are largely unrelated to the treatment
e�ect’s size.

[Figure 8 about here.]

Why this particular pattern emerges is impossible to know de�nitively with the data at
my disposal. However, given that the �ows of students in the sample are largely from dis-
tricts with a high concentration of high-needs students to districts with high concentrations
of “high test score” students (see Table 1), it is tempting to speculate that the mix of educa-
tional inputs in sending/receiving districts are more heavily tailored to match the needs of

25I trim a small number of observations from the �gure whose predicted value in the experimental sample
would be less than –1. I do this to keep the scale of the y-axis small, which makes it easier to visualize how the
consensus posterior modes mix the corresponding experimental and non-experimental estimates in practice.

26To be precise, I project the consensus posterior modes onto an intercept and a subgroup indicator (e.g.,
β̂k = α + ωdk + uk , where β̂k is the posterior mode of the heterogeneous e�ect for a type k student, dk is an
indicator for whether the student belongs to the subgroup, andω is the average di�erence between the students
who are and are not in the subgroup).

27The subgroup di�erences are a linear combination of the posterior modes and hence have a known distri-
bution under the assumptions of the hierarchical model.
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the particular student populations that have sorted into them. For example, the sending dis-
tricts may have more guidance counselors on sta� to address disciplinary/behavioral issues
and have more teachers who specialize in helping students with disabilities. In turn, the re-
ceiving districts may make it easier to take advanced coursework because they have a higher
concentration of students with high test scores. In fact, this latter possibility is reinforced via
the �nding from Section 5 that winning an inter-district lottery causes students to take more
advanced classes.

More broadly, this interpretation of the results is consistent with additional evidence in the
literature. For example, there is compelling evidence from a developing country context that
shows school-student matches are important drivers of test score gains (Bau, 2019). When
these patterns of heterogeneity are taken together with the patterns of sorting I document
in the next section, this interpretation is also consistent with �ndings from the experimen-
tal literature that parents use information about their child’s ability to select appropriately
matched educational inputs (Dizon-Ross, 2019). However, I would like to emphasize that it is
impossible to know with certainty that this is the mechanism given the data and variation at
my disposal. The evidence in favor of this interpretation is entirely circumstantial.

8 Inter-District Choice and Roy Selection

In this section, I examine the consequences that Roy selection has for the interpretation of the
program evaluation LATE identi�ed with the lottery. To test for selection on gains, I examine
three phases of the admissions process, and in each case, I �nd that treatment e�ect hetero-
geneity is predictive of the take-up decision. First I examine the subpopulation of students
who have already taken up o�ers to switch districts. I �nd that students who are positively
impacted by the program are more likely to continue on in the program; students who are
hurt by the program are more likely to return to their home district. Second, I reexamine the
�rst stage of the 2SLS estimates from the program evaluation. I �nd that holding constant
the outcome of the lottery, students who bene�t from the program are more likely to take
up treatment. Third, I extrapolate treatment e�ects to the pool of students who were eligible
to apply for the school choice slots in my lottery data. I �nd that students who are likely to
bene�t from the program based on observables are also more likely to apply.

I conclude by using the observed heterogeneity to extrapolate the average bene�t of inter-
district choice to students who took up o�ers of treatment, to students who applied, and to
students who did not apply. I �nd that 45% of the treatment e�ect for the treated comes from
postlottery selection into enrollment and 67% of the treatment e�ect for applicants is driven
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by prelottery selection into the applicant pool. Almost none of the lottery LATE is attributable
to di�erences in average quality across districts.

8.1 Testing for Selection on Gains

Recall from Section 6 that for a lottery estimate to identify educational quality di�erences,
weak linearity must hold: individual bene�t (βi ) is unrelated to both prelottery application
behavior (τi ) and postlottery take-up behavior (di). Hence we should expect to �nd patterns
of treatment e�ect heterogeneity consistent with no selection on gains: E(diβi) = E(τiβi) = 0.
Since individual potential bene�t (βi ) is unobserved, I cannot test for selection on gains di-
rectly.28 Instead, I will test E(βkdi) = 0 and E(βkτi) = 0, where βk is the observable het-
erogeneity. This is a valid test for selection on gains, provided we rule out the knife-edge
case where the correlation between take-up behavior and unobserved heterogeneity exactly
o�sets the correlation between take-up behavior and the observed heterogeneity.

This discussion motivates tests of weak linearity via models of the following form:

di = α + ρβk + ϵi, (20)

where ρ , 0 indicates a failure of weak linearity and ρ > 0 implies Roy selection. However,
the parameter ρ is di�cult to interpret directly since βk is measured in units of standardized
test score gains.

Another natural test of selection on gains is to ask whether students who would be pos-
itively impacted by the treatment are more likely to apply or to take it up. This motivates
models of the following form:

di = α + ρ1(βk > 0) + ϵi . (21)

Here ρ , 0 implies a violation of weak linearity, with ρ > 0 indicating Roy selection. Speci-
�cations like (21) have the advantage of a straightforward interpretation.

28In principle, if I had access to a continuous instrument, it would also be possible to test for this selection di-
rectly using methods from the marginal treatment e�ects literature (see Cornelissen et al., 2016, for an overview);
however, my lottery instrument is binary, and I was unable to isolate another source of compelling variation for
this purpose. For this reason, I have chosen to utilize an approach based on observables instead.
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8.2 Assessing the Impact of Roy Selection

First, I restrict the sample to students who I use for lottery estimation and who also accept an
o�er to enroll in a district outside of their home district. I then restrict the data to student-
years after the �rst postlottery year and estimate the following model:

dit = δдdt + ρβ̂k + ϵit , (22)

where δдdt is a grade-by-district-by-academic year �xed e�ect, dit is an indicator for whether
student i participated in choice in year t , and β̂k is the estimated heterogeneous treatment
e�ect recovered in the preceding section. With model (22), the comparison I have in mind is
between two students who accepted lottery o�ers and are now attending school outside of
their home district via the choice program in the same receiving district, grade, and year. The
parameter ρ tells me whether students with high potential test score gains are more likely to
remain in the program relative to those with low potential test score gains.

To look at the participation decision, I use the entire lottery estimation sample and revisit
the �rst stage of the 2SLS,29 but now include β̂k as a predictor:

dit = δ
′
0 + δ

′
` + ρβ̂k + πZit + γ

′
wWi + ηit . (23)

The comparison I have in mind with model (23) is between two students who entered the
same lottery and had a similar lottery outcome. The parameter ρ tells me whether students
with high potential bene�t are more likely to take up treatment than those with low potential
bene�t.

Finally, I wish to compare the potential bene�t of students who applied to the inter-district
choice program to those who were eligible to apply but did not. In theory, every student in
the state is eligible to enter every lottery. In practice, commuting costs make it unreasonable
for students to apply to choice spots far away from their home. To �nd a reasonable group of
comparison students, I use the empirical distribution of home districts for each lottery30 and
only consider students in the relevant grades/districts. Since the pool of eligible students is
large and the estimation procedure for the heterogeneous e�ects plus the bootstrap procedure
I use for the standard errors is computationally intensive, I form the comparison group using

29See the discussion around equation (2) for a complete set of variable de�nitions for the �rst-stage equation.
30In other words, if only students from districts A and B appear in lottery 1, I only consider students from

districts A and B as lottery eligible for the purposes of �nding a comparison group.
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a randomly chosen 1% subsample within grade, year, and home district. I consider all students
who appear in my lottery estimation sample as having applied.31 I then estimate models of
the following form:

τi = δдdt + ρβ̂k + ϵi, (24)

where δдdt is a grade-by-home-district-by-academic-year �xed e�ect and τi is an indicator for
whether student i did, in fact, enter the lottery for which they were eligible. With model (24),
the comparison I want to exploit is between two students currently in the same grade, district,
and year who are eligible to enter one of the lotteries in my sample. The parameter ρ tells me
whether the students with high potential bene�t are more likely to apply.

For all three models, I also estimate speci�cations where I replace β̂k with an indicator for
positive bene�t 1(β̂k > 0). As I argued in the previous section, the magnitudes in these models
are easier to interpret. For a general discussion of the procedure I used to estimate β̂k , see
Section 7. To ensure there is no mechanical correlation between the participation indicators
(dit , τi ) and the estimated heterogeneity (β̂k ), I calculate the heterogeneous e�ects for these
models using a leave lottery out jack-knife procedure (in the case of the observations in the
lottery data) or a split sample procedure (in the case of the non-experimental observations).
See Appendix C for more detail. I calculate asymptotic standard errors clustered at the student
level, and to account for the increased variability introduced by the generated regressor, I also
calculate standard errors using a parametric bootstrap by resampling from the distribution of
β̂k . In all cases, I choose the most conservative value.

Table 7 reveals important selection at each stage of the admissions and enrollment pro-
cess. Students with a positive potential bene�t are 10% more likely to apply. Conditional on
applying and receiving a randomly assigned o�er, they are 5% more likely to enroll, and con-
ditional on enrolling, they are 8% more likely to continue on in the program after their �rst
year.

[Table 7 about here.]

Taken together, the results in Table 7 suggest that it is unlikely that potential bene�t is
unrelated to application and take-up. This implies that the program evaluation LATE is not
externally valid and hence does not identify average quality di�erences between sending and

31I continue to exclude students who received preferences in the lottery or applied late as well as students
who were missing a baseline test score since I am unable to calculate the necessary heterogeneous e�ect.
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receiving districts. However, if the component of selection on gains that is driven by the
sorting of students to schools is small, it is possible that the lottery-identi�ed LATE is still
“close” to the quantity of interest in the sense that the majority of the estimated e�ect could
still be driven by average quality di�erences across institutions.

To quantify the magnitude of the wedge induced by the Roy selection, I average the pre-
dicted heterogeneous e�ects for three subpopulations: the treated, the applicants, and the
non-applicants. For this exercise to be valid, the extrapolation from the complier population
to the applicants and non-applicants must be accurate conditional on the observed hetero-
geneity. This will be the case when there is no selection on the unobserved heterogeneity:
vi ⊥ (di, τi). This assumption is unlikely to be true. However, I note that this assumption is
strictly weaker than the stronger version of no selection on gains that implicitly drives much
of the interpretation of lottery estimates in the literature. Thus the present exercise generates
value by demonstrating in practice how far from the truth estimates that do not account for
heterogeneity can be.

I �nd that virtually all of the test score gains generated by inter-district choice are driven
by selection. The ATE on the treated32 is 0.11σ , the ATE for applicants is 0.06σ , and the ATE
on non-applicants is 0.02σ . This suggests that 45% of the treatment on the treated comes from
postlottery selection into the program and 67% of the treatment e�ect for applicants is driven
by selection into the applicant pool.33 The point estimates suggest that at most, 18% of the
lottery LATE can be attributed to di�erences in average quality across sending and receiving
districts.34 Finally, note that if there is also Roy selection on the unobserved heterogeneity,
we would expect the extrapolated estimates presented here to be an upper bound. Thus I
cannot rule out the possibility that the entirety of the program evaluation LATE is the result
of sorting.

9 What Can Lotteries Say About School Quality?

In this paper, I have shown how the sorting of students to school districts on the basis of
potential bene�t leads to lottery estimates of test score gains that have no straightforward

32There are three possible explanations for why the estimate here is lower than the program evaluation LATE:
1) it is constructed with the consensus posterior modes and hence shrunk toward the non-experimental estimate,
2) it is a student-weighted average as opposed to a conditional-variance-weighted average, and 3) it includes the
extrapolated e�ect to always takers instead of being solely based on compliers.

33There were over 170,000 eligible applicants, which is large relative to the number that applied (≈ 1, 000).
Hence the treatment for the non-applicants is e�ectively the population ATE in this case.

34This is based on the ratio of the treatment for the treated and the ATE. If I use the program evaluation LATE
instead of the treatment on the treated, this number would change to 11%.
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connection to institutional quality. I accomplish this in three steps. First, I document that
the inter-district choice program is substantially bene�cial to students who participate. Inter-
district choice increases math test scores by 0.19 standard deviations and the quality of course-
work students take as well as increases the probability a student graduates from high school
and goes on to attend a four-year college.

Next, I provide a new application of empirical Bayes for estimating treatment e�ect het-
erogeneity. This method leverages information contained in non-experimental data by posi-
tioning the heterogeneity within a hierarchical model. The resulting estimator is a weighted
average of experimental and non-experimental variation, with the weights chosen accord-
ing to the correlation of the heterogeneous e�ects across samples. Finally, I show that the
heterogeneous treatment e�ects associated with inter-district choice predict student take-up
behavior in a manner consistent with Roy selection. I �nd that Roy selection on the basis
of observable characteristics can explain almost the entirety of the program evaluation treat-
ment e�ect identi�ed with the lottery. Taken together, these results suggest that research
using lotteries to identify school quality should exercise caution with regard to the external
validity of their estimates beyond school district boundaries.

The fact that families sort students to districts on the basis of potential bene�t �ts within
a broader pattern of facts in the literature that suggest some of the gains to charter atten-
dance are conditional on initial selection into a large urban district. Within Boston, charter
takeovers and expansion generate lottery gains commensurate with already established char-
ters (Abdulkadiroglu et al., 2016; Cohodes et al., 2018), suggesting the charter model gener-
ates a real quality improvement for students within Boston. However, the e�ect of charters in
Massachusetts outside of urban areas is negative (Angrist et al., 2013). Indeed, a recent meta-
analysis of charter e�ectiveness found that controlling for the quality of a student’s fallback
option attenuates much of the e�ect of factors associated with the highly touted set of charter
teaching practices known as the “No Excuses” philosophy (Chabrier et al., 2016). This �nding
is consistent with the idea that selection across districts is an important mediator of e�ec-
tive educational practices. Why selection at this more aggregate level leads to an equilibrium
where some students in urban areas appear to be so poorly served by the teaching methods
of the traditional public education system relative to charters is an open question.

Last, the patterns of heterogeneity and selection I �nd across districts call into question
the use of test scores for the purpose of evaluating and ranking schools. As pointed out in
Hoxby (2000), simple Tiebout models imply that in equilibrium students should be sorted
among districts based on school types and individual ability to bene�t. In a world where
test score gains are driven by more aggregate levels of sorting, ranking schools on the basis
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of test score gains is unlikely to be a useful exercise. There are no straightforward policy
implications from the fact that Jane experiences smaller test score gains at the school where
she is best suited than Jill experiences at the school where she is best suited. On the other
hand, my results suggest that leveraging heterogeneity to design an education system that
encourages better student-school matches across district lines may be a promising area for
future work.
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Figure 1: Enrollment in Inter-District Choice and Charter Schools over Time
Note: This �gure plots statewide enrollment in the Massachusetts Inter-District Choice Program and charter
schools from academic year 2001–2002 to academic year 2016–2017 using data from the Massachusetts Student
Information Management System.
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Closed to New Choice Students
Open to New Choice Students

Figure 2: Inter-District Choice in 2016–2017
Note: This �gure displays the inter-district choice participation status of Massachusetts’ school districts in aca-
demic year 2016–2017. Each polygon in the �gure represents the boundaries of a 12th grade school district.
Note that some districts regionalize at the high school level but not at the primary or middle school level. Since
students admitted in primary grades via inter-district choice are eligible to follow the feeder patterns of the
receiving district, I aggregate district participation for earlier grades to the appropriate 12th grade boundary.
Thus a district is considered “closed” to inter-district choice if all school districts aggregated to the 12th grade
boundary voted to opt out of the program in 2016–2017; a district is considered “open” to inter-district choice if
at least one district aggregated to the 12th grade boundary did not vote to opt out.
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Figure 3: Lottery Distribution by Grade
Note: This �gure displays the distribution of lotteries by grade for the districts where I collected data. I de�ne
a lottery as occurring at the entry grade by academic year in the receiving district, provided some form of
randomization was used to ration an open seat.
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Figure 4: Covariate Balance by Initial O�er Status
Note: This �gure visualizes covariate balance by plotting coe�cients (β) and two standard error intervals from a
regression of the form di = βXi + δ` + ϵi , where di is an indicator for whether a student received an initial o�er
from a lottery, Xi is the vector of covariates listed on the y-axis of this �gure, and δ` is a lottery �xed e�ect. To
facilitate comparability across regression coe�cients, I standardize the vector of covariatesXi to have a mean of
zero and a standard deviation of one prior to estimation. The sample of students includes all students exposed
to an initial o�er lottery instrument. The x-axis is scaled such that its length re�ects two standard deviations of
residual variation in di after projecting out the lottery �xed e�ects. Standard errors are clustered at the student
level.
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Figure 5: Net Student Gain/Loss to Inter-District Choice in 2016

Note: This �gure displays the total change in student enrollment from inter-district choice for each Mas-
sachusetts school district for academic year 2016–2017. Each polygon in the �gure represents the boundaries of
a 12th grade school district. Note that some districts regionalize at the high school level but not at the primary or
middle school level. Since students admitted in primary grades via inter-district choice are eligible to follow the
feeder patterns of the receiving district, I aggregate enrollment for earlier grades to the appropriate 12th grade
boundary. Students are considered a choice “gain” for a district if they are listed in the Student Information
Management System (SIMS) data as enrolled via the inter-district choice program. A district “loses” a student if
that student is listed in SIMS with a town of residence that feeds into the district, but the student is enrolled in
a di�erent district as a result of inter-district choice.

39



−4

−2

0

−0.2 0.0 0.2 0.4
Treatment Effect (Observational Design)

Treatment Effect (Experimental Design)

Figure 6: Correlation across Experimental and Non-Experimental Models

Note: This �gure plots the predicted treatment e�ects from the non-experimental model against the predicted
treatment e�ects from the experimental model over the support points of Xit contained in the experimental
data. The experimental treatment e�ect is given by β̂ek = α̂

e
0 + α̂

eXit , and the non-experimental treatment e�ect
is given by β̂nk = α̂

n
0 + α̂

nXit , where (αe0 ,αe ,αn0 ,αn) come from estimating the models described by equations
(15), (16), (17), (18), and (19), and where Xit comes from an observation in the lottery sample. The correlation
between the experimental and non-experimental estimates is 0.35.
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Figure 7: Visualizing Cross-Design Mixing

Note: This �gure visualizes how the empirical Bayes estimator mixes the experimental and non-experimental
information in practice. The x-axis plots the rank of a typek student in the distribution of experimental treatment
e�ects against the predicted treatment e�ect from the experimental model (denoted by purple circles), the non-
experimental model (denoted by green triangles), and the consensus posterior mode (denoted by yellow squares).
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Figure 8: Predictors of Heterogeneous Treatment E�ects
Note: This �gure plots the predictors of treatment e�ect heterogeneity for the inter-district school choice pro-
gram. Points come from regressions of the form β̂k = α + ωdk + uk , where β̂k is the posterior mode of the
heterogeneous e�ect for a type k student, dk is an indicator for whether the student belongs to the subgroup,
and ω is the average di�erence between the students who are and are not in the subgroup. Lines represent two
standard error intervals around ω.
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Table 1: Student Selection into Inter-District Choice

All Students Choice Students Sending Districts Lottery Sample
Math 0.01σ −0.02σ −0.25σ 0.11σ
ELA 0.01σ 0.03σ −0.25σ 0.14σ

White 83% 93% 69% 90%
Black 11% 6% 29% 9%

Hispanic 15% 8% 27% 6%
Male 51% 48% 51% 47%

Subsidized Lunch 33% 28% 56% 21%
Limited English 6% 1% 11% 0%

Disability 14% 13% 15% 11%
Days Attended 163.41 162.13 159.08 168.05
Observations 4,890,552 66,817 305,673 968

Observations (Students) 1,528,038 33,251 155,473 968

Note: The sample used for constructing this table includes all students in Massachusetts attending traditional
public schools. The column labeled “All Students” provides averages of observable characteristics across the
entire state for students in test-taking grades in academic years 2001–2002 through 2016–2017. The column la-
beled “Choice Students” restricts the statewide sample to observations where a student is currently participating
in inter-district choice. The column labeled “Sending Districts” restricts the statewide sample to districts that
lose a student to inter-district choice via a lottery I observe in my data. The column labeled “Lottery Sample”
restricts the statewide sample to students found in my lottery data as observed in the year when they applied.
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Table 2: Select Predictors of District Participation

Accepting New Choice Students
(1) (2) (3)

Student-Teacher Ratio −0.07 −0.07 −0.002
(0.02) (0.02) (0.01)

Per-Pupil-Spending: Pupil Services 0.15 0.23 0.03
(0.08) (0.07) (0.04)

Metco Students (tens) −0.01 −0.01 0.01
(0.005) (0.005) (0.02)

Estimation Method OLS Post-Lasso OLS
District/Year Fixed E�ects No No Yes
Dependent Variable Mean 0.55 0.55 0.55
Observations 2,280 2,280 2,280
Observations (Districts) 285 285 285
Adjusted R2 0.34 0.31 0.88

Note: The coe�cients in this table come from models of the form djt = βx jt + ujt , where djt is an indicator
for whether district j participated in inter-district choice in year t . x jt is a vector of covariates that includes
measures of student test scores, demographic characteristics, disciplinary records, and attendance, all averaged
at the district-year level; average teacher experience and demographics; per-pupil measures of expenditure
across ten categories; an indicator for urbanicity; and the total number of students, METCO students, schools,
and teachers present in the district. For the complete list of coe�cients from all predictors, see Appendix B.4.
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Table 3: The Impact of Inter-District Choice on Test Scores

Math English Language Arts
OLS RF FS 2SLS OLS RF FS 2SLS

Choice 0.01 0.19 −0.05 0.01
(0.04) (0.08) (0.03) (0.08)

Initial O�er 0.10 0.52 0.01 0.51
(0.04) (0.03) (0.04) (0.03)

Waitlist O�er −0.12 0.96 −0.15 0.96
(0.15) (0.06) (0.20) (0.06)

Lottery Number −0.003 0.01 0.005 0.01
(0.004) (0.004) (0.004) (0.004)

Waitlist Number 0.01 0.02 0.01 0.02
(0.01) (0.01) (0.01) (0.01)

F-Stat Excluded Instruments 117.2 117.2 114.9 114.9
Observations 1702 1702 1702 1702 1702 1702 1702 1702
Observations (students) 959 959 959 959 961 961 961 961
Adjusted R2 0.66 0.66 0.32 0.65 0.56 0.56 0.32 0.56

Note: The table shows results from the two-stage least squares model outlined in equations (1) and (2). All of
the table’s estimates are from speci�cations that use my preferred set of controls. These include a lottery �xed
e�ect, a baseline average of test scores observed prior to randomization, academic year and grade �xed e�ects,
indicators for PARCC testing, indicators for whether or not a student was matched to the state data via an exact
or fuzzy process, and indicators for waitlist requests or admissions rounds. The sample used for estimation
includes all students from the lottery data who I was able to match to the state data who were involved in
competitive lotteries, did not receive a sibling preference, did not apply late, and for whom I observe at least one
test score prior to randomization. Note that the results are identical if I omit lotteries where waitlist requests
or admissions rounds were used, and they are robust if I restrict to the set of students exposed only to the
initial o�er instrument. The results are also robust to dropping all controls except the lottery �xed e�ect and
baseline test score average, and they are robust to models that include student �xed e�ects and year-by-lottery
�xed e�ects so that the identi�cation comes entirely from comparing test score trends within a lottery across
winners and losers. For these robustness checks and others, see Appendix B.
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Table 4: Impact of Inter-District Choice on Coursework

Class Type Indicator
AP Remedial General Advanced

Choice 0.14 −0.07 0.003 0.19
(0.06) (0.03) (0.01) (0.05)

Mean Dependent Variable 0.19 0.09 0.99 0.27
Observations 805 2,413 2,413 2,413
Observations (students) 467 911 911 911
Adjusted R2 0.27 0.09 0.05 0.36

Note: The results in this table come from the two-stage least squares model outlined in equations (1) and (2).
All of the table’s estimates are from speci�cations that use my preferred set of controls. These include a lottery
�xed e�ect, a baseline average of test scores observed prior to randomization, academic year and grade �xed
e�ects, indicators for PARCC testing, indicators for whether or not a student was matched to the state data
via an exact or fuzzy process, and indicators for waitlist requests or admissions rounds. The sample used for
estimation includes all students from the lottery data that I was able to match to the state data who were involved
in competitive lotteries, did not receive a sibling preference, did not apply late, and for whom I observe at least
one test score prior to randomization. I also drop a small number of students who appear in my data only prior
to the period when the department of education in Massachusetts kept records on student coursework. The
column labeled “AP” further restricts the sample to observations that occur in grades 11 and 12, since Advanced
Placement courses are typically unavailable to students in earlier grades.
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Table 5: Suggestive Evidence on Medium-Run Outcomes

Post-Secondary Outcome
Graduate Highschool Attend 2 Year Attend 4 Year

Initial O�er 0.01 −0.05 0.05
(0.03) (0.05) (0.04)

Choice 0.03 −0.09 0.07
(0.07) (0.10) (0.09)

Mean Dependent Variable 0.88 0.88 0.38 0.38 0.61 0.61
Estimation Method OLS 2SLS OLS 2SLS OLS 2SLS
F-Stat Excluded Instruments 66.5 66.5 66.5
Observations (Students) 537 537 537 537 537 537
Adjusted R2 0.04 0.04 0.05 0.05 0.21 0.21

Note: This table’s results come from the two-stage least squares model outlined in equations (1) and (2). All of
the estimates in this table include as controls lottery �xed e�ects, a baseline average of test scores as observed
prior to randomization, and indicators for whether or not a student was matched to the state data via an exact
or fuzzy process. The sample used for estimation includes all students from the lottery data that I was able to
match to the state data who were involved in competitive lotteries, did not receive a sibling preference, did not
apply late, had a test score on �le prior to the randomization, and who had an on-time graduation date prior to
spring of 2016.
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Table 6: Comparison of Pooled Models

Standardized Math Test Score
2SLS OLS

Choice 0.19 0.08
(0.08) (0.003)

F-Stat Excluded Instruments 75.32
Observations 1,705 6,549,949
Observations (Students) 966 1,784,773
Adjusted R2 0.68 0.44

Note: This table compares results from the experimental and non-experimental pooled models. The column
labeled “2SLS” provides results from equations (15), (16), and (17), with the further restrictions that αe = π = 0
so that there is no heterogeneity (i.e., βk = β is a constant). The estimation sample for the 2SLS column is
identical to that used for the program evaluation in Section 5. The column labeled OLS provides results from
equations (18) and (19) with a similar restriction on the heterogeneous e�ects (αn = 0). It is estimated using the
sample of students in Massachusetts who do not appear in the lottery sample.
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Table 7: Testing for Selection on Gains

Take-up Indicator
Continue Participate Apply

Heterogeneous E�ect 0.10 0.15 0.15
(0.07) (0.10) (0.06)

Heterogeneous E�ect > 0 0.08 0.05 0.10
(0.03) (0.04) (0.02)

Subsample Ever-Enrolled Ever-Enrolled Applicants Applicants Elligible Elligible
Observations 860 860 1,621 1,621 2,520 2,520
Observations 395 395 894 894 2,198 2,198
Dependent Variable Mean 0.85 0.85 0.46 0.46 0.32 0.32
Adjusted R2 0.38 0.38 0.32 0.32 0.23 0.24

Note: This table presents results from models (22), (23), and (24). The “Ever-Enrolled” sample includes all students
in my lottery data who ever accepted a lottery o�er. The “Applicants” sample includes all students who appear in
initial o�er lotteries. The “Eligible” sample includes the “Applicant” sample plus a random 1% sample of students
who appear in the same district-grades as the applicants during their application year.
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Appendix to the Consequences of Sorting
for Understanding School Quality

Intended for Online Publication Only

A Data Appendix

A.1 Primary Data Sources

Lo�ery Data

The lottery data I collected came in many forms. Most districts were able to provide me with a
spreadsheet containing the relevant information. One district only maintained paper records
and recorded the lottery results on the physical record. I scanned these paper records and
compiled the results by hand. Another district only maintained records in the form of digital
copies of letters, which were mailed to student families and contained the outcome of the
lottery. I also compiled these by hand.

As discussed in the body of the paper, a number of districts that shared data with me
did not document their lottery process in su�cient detail to warrant inclusion in my sample.
Typically, this was due to the fact that every student in the lottery eventually received an
o�er of admission (after earlier admitted students declined), and the secretary wrote over the
initial lottery results when indicating who received these later o�ers. There was also one
district that used a complex scheme of highlighting, strikeouts, bold, italics, and shading cells
to encode information related to their lottery-based admissions process. Reverse engineering
the outcomes of this lottery ultimately proved impossible.

From the lottery records, I extracted student names, application grade and year, lottery
preferences (e.g., sibling or late application), and lottery results. As discussed in the main
text, this resulted in four di�erent lottery instrument types. Nearly every district used what I
term an “initial o�er” instrument whereby some students were randomly selected and initial
o�ers of admission were made to the family either via email or phone. I coded this as a binary
indicator. Some districts then randomized students to positions on a waitlist, and I coded the
numerical value of these positions as a “waitlist number” instrument. There is one district
that, for one lottery in my data, did not use waitlist numbers and instead randomly chose
students from the waitlist pool as spaces became available. I coded this as a binary “waitlist
o�er” instrument. Some of the �rst-stage and reduced-form results using this instrument
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look odd. However, omitting the instrument due to odd-looking results could, in theory,
create bias as a result of speci�cation search (Gelman and Loken, 2013), and thus I included
the instrument in my main speci�cations. That said, due to the small sample size involved,
and the fact that all important results in the paper go through when I drop this instrument,
I am not concerned by the odd-looking results. Finally, there was one district that assigned
students random lottery numbers but did not record which students received initial o�ers. I
coded these random number as a “lottery number” instrument.

When available, I also extracted date of birth and town of residence from the lottery data,
since these were useful for matching. Town of residence was frequently misspelled, and I
corrected these by hand as necessary. Observations in the lottery data frequently contained
a census-designated place rather than a town of residence that would be recognizable in the
state data. Where this occurred, I used zip code and publicly available information online
to determine the town in which the census-designated place was located, and I replaced the
census-designated place with the appropriate town.

As discussed in the main paper, a number of the lotteries exhibited idiosyncrasies. For
example, there was one district that provided me a spreadsheet of lottery results that had a
column labeled “admission rounds” and the numbers 1–3 entered into the corresponding cells
below. The secretary I spoke with was unable to recall what this information was in reference
to. For this reason, I coded indicators for each admission round and included them in the
relevant speci�cations. There was also one district that, after the initial lottery results, asked
students whether they wanted to be included on the waitlist before randomly assigning them
waitlist numbers. I created indicators for this and included them in my main speci�cations.
Omission of these idiosyncratic lotteries does not alter the results (see Appendix B for details).

Massachuse�s Comprehensive Assessment System Data

The state of Massachusetts provided MCAS data to me for the spring test administration
spanning the years 2002 through 2017. In all cases, I dropped students taking alternative
assessments. For years 2002–2014, I used raw MCAS scores and standardized them within
year and grade to have a mean of zero and a standard deviation of one. In 2015 and 2016,
Massachusetts piloted a next-generation assessment based on the Partnership for Assessment
of Readiness for College Careers (PARCC). For those years, some students in the state took the
PARCC, some took the MCAS, and others took both. In 2017, the state transitioned entirely
to the PARCC. Thus for the years 2015–2017, I took the raw MCAS scores wherever available.
When unavailable, I used raw PARCC scores. For the 2015 test administration, the state was
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unable to locate raw PARCC scores, so I used PARCC theta scores in their place.35 Thus
for each of these years, I standardized the test scores at the year-grade-test type level (raw
MCAS, raw PARCC, PARCC theta) to have a mean of zero and a standard deviation of one.
In addition, I included indicators for test types (raw MCAS, raw PARCC, PARCC theta) in the
relevant speci�cations. For speci�cations that included lagged or baseline test scores, I also
included lagged or baseline test type indicators.36

Student Information Management System Data

The state of Massachusetts provided information on the universe of public school students in
Massachusetts spanning academic years 2001–2002 through 2016–2017. These data contained
information on student names, gender, birth dates, assigned schools, grade, attendance, race,
ethnicity, disabilities, and free and reduced-price lunch status. They also contained a vari-
able describing which students were enrolled in a district via the inter-district school choice
program. For years 2006–2007 through 2016–2017, students could identify as multiple races
(e.g., black and white). Prior to 2006, students were restricted to choosing only one. For this
reason, I coded the race/ethnicity variables as a series of indicators that take a value of one if
a student in the given year identi�ed as belonging to the given category. Since all speci�ca-
tions in the main text include year �xed e�ects, doing this will account for the fact that the
meaning of the variables changes over time.

Student Course Schedule Data

The state of Massachusetts provided me with student course scheduling data spanning aca-
demic years 2010–2011 through 2016–2017. From these data, I determined which courses were
AP classes by searching for “AP” within the course name. The remaining course designations
I use in the paper (advanced, general, and remedial) come from a variable already contained
in the data. I then counted the number of each course type each student in the state is enrolled
in during the given academic year.

National Student Clearinghouse Data

The state of Massachusetts contracts with the NSC to produce data on postsecondary out-
comes for students. The NSC data itself contain information on college enrollment and com-

35These are transformed versions of the raw scores meant to adjust for question di�culty using techniques
from item response theory.

36The one exception here is the regressions for postsecondary outcomes. I did not include these indicators
here since all test scores observed at baseline for this sample are raw MCAS and are hence unnecessary.
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pletion from over 3,600 universities enrolling 98% of all college students in the United States
(National Student Clearinghouse, 2020). The data I received were split into two folders based
on whether the student had or had not graduated from high school at the time NSC conducted
the search. I used this division to determine whether or not a student graduated from high
school. I coded variables for two- and four-year college attendance based on enrollment dates
contained in the NSC data. Because only a small minority of my sample would have an on-
time four-year college graduation date of 2016 or earlier, I did not examine outcomes related
to college completion.

EPIMS Data

The EPIMS data come from information transmitted from school districts to the state of Mas-
sachusetts. The data were provided to me in ten separate SPSS .sav �les, each one corre-
sponding to an academic year. The unit of observation in these data is a teacher-school-
course-section-term. After standardizing variable names, I merged the �les into a single data
set at the teacher-year-school-course-term level. From there, I resolved inconsistencies in the
data. For example, the gender variable sometimes coded males as "M" and others as "m"; I
ensured such coding was common across all years.

Auxiliary Sources

Finally, I also made use of a small number of auxiliary data sources:

• Choice Votes over Time: The DESE provided spreadsheets to me containing the results
of votes for district choice participation over time. These �les contained a number of
naming inconsistencies across years, which I �xed.

• Mapping between Town of Residence and Assigned District: The DESE also provided
me with a spreadsheet describing the mapping between town of residence and assigned
school district at each grade level for the year 2017. This spreadsheet also contained
a tab describing how this mapping had changed over time. For example, a number of
smaller districts regionalized over my sample period. I used this second tab to construct
a panel data frame that describes the mapping between town of residence and assigned
district over my entire sample period for the purposes of determining the “home dis-
trict” of students who participate in inter-district choice.

• District Spending: The DESE also provided a spreadsheet containing detailed data on
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expenditures across various categories by school district from academic years 2008–
2017. These data required very little cleaning.

A.2 Matching Details

To match the state data to the lottery data, I �rst looked for students with exact �rst and
last name matches in the appropriate grade and year. When available, I would break ties with
date of birth, followed by town of residence as necessary. If town of residence was unavailable
and I was unable to produce a unique match using birth date, I would look for unique �rst
name/last name matches within the empirical distribution of towns such that I either observed
a student apply from that town in the lottery data or I observed a student enroll from that
town in the state data. When I was unable to break a tie in this manner, I would consider the
student unmatched and drop them from the lottery sample.

When I was unable to �nd an exact �rst name/last name match anywhere in the state, I re-
peated the algorithm from the previous paragraph using fuzzy �rst name/last name matching.
I would calculate the Levenshtein distance37 between the �rst and last name of the observa-
tion in my lottery data and the rest of the students in the state enrolled in the appropriate
grades/years/towns, and I would then restrict the state data to observations falling within a
Levenshtein distance of two. When this procedure did not produce a unique match, I would
further break ties using birth date (if available). At this point, if the student remained with-
out a unique match, I would consider the student unmatched and drop them from the lottery
sample.

A.3 Additional Lottery Descriptive Statistics

In this section, I present some additional descriptive information related to the lotteries. Fig-
ure A.1 is a histogram of lotteries by the number of students involved, and Figure A.2 shows
the distribution of lotteries over time.

[Figure A.1 about here.]

[Figure A.2 about here.]
37Given two strings “a” and “b,” the Levenshtein distance calculates the minimum number of insertions, dele-

tions, and substitutions necessary to turn b into a.
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A.4 Di�erential Attrition

Di�erential attrition is problematic if winning the lottery a�ects the probability of a student
subsequently appearing in the state data. For example, if high-ability lottery losers attrit by
leaving for private schools, the postlottery winners would be higher ability, on average, even
in the absence of a causal e�ect of inter-district school choice, and would hence lead to a
biased result.

To check for this possibility, I start with the raw lottery data and restrict it to the sample
of students I am ever able to match in the state data. I drop students who received sibling
preference or applied late. I then regress an indicator for whether I observe a student in the
postlottery period on the lottery instruments and a vector of lottery �xed e�ects.38 Table A.1
presents the results. Column (1) presents results for the entire lottery sample, and column
(2) controls for demographic characteristics. Column (3) further restricts the sample to stu-
dents I observe in the data at baseline and includes additional baseline controls.39 Column
(4) further restricts the sample to the set of students for whom I observe a baseline test score
and includes these baseline scores as controls. In all cases, it would appear that winning the
lottery is unrelated to the probability a student subsequently appears in the state data. Thus it
is unlikely that the results in the main body of the paper are a�ected by di�erential attrition.

[Table A.1 about here.]

A.5 Falsi�cation Tests

In this section, I present the results of a standard IV falsi�cation test for math and ELA test
scores. Intuitively, if the IV exclusion restriction holds, then for subsamples or time periods
where the �rst stage is known to be zero, we should not �nd a reduced-form relation between
the instrument and the outcome. In the school choice context, this means there should be no
relation between winning a lottery o�er and prelottery test scores.

Consistent with the covariate imbalance discussed in the main body of the paper, I �nd
that the lotteries do not pass this test. As I argue in the main body, it is likely that this is due
either to sampling variation or poor record keeping on the part of some districts with respect
to things like sibling preference or late application. Given the strong anti-discrimination
language of the state legislation, the timing of how lotteries were conducted, discussions I

38As mentioned in the main body of the paper, there was one lottery that had “admission rounds” indicated in
their spreadsheets without further explanation. I also include indicators where this happens. There was also one
district that asked lottery losers whether they wanted to be included on the waitlist before randomly assigning
waitlist numbers. I include indicators where this happens as well.

39Indicators for any disability, subsidized lunch status, and English language learners.
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had with district administrators related to their lottery process, and the incentives around
sharing data with me, I believe it is unlikely that the failure here is due to cheating. In any
event, whatever the cause of the imbalance, I need to correct for it to achieve consistent
estimates of the parameter of interest.

[Table A.2 about here.]

[Table A.3 about here.]

Importantly, I �nd that conditional on an earlier test score, there is no relation between
the baseline scores and the lottery results. To show this, I start by restricting the sample to the
set of students I can match to the state data who were involved in competitive lotteries, who
were not indicated as receiving a sibling preference in the lottery nor as having applied late,
and who also have at least one prelottery test score. I then regress the most recent prelottery
test score on the vector of lottery instruments and a set of lottery �xed e�ects.40 Tables A.2
and A.3 present the results. Column (1) presents the otherwise uncontrolled comparison,
and column (2) shows results including other baseline demographic controls. Column (3)
restricts the sample to the set of students for whom I observe at least two test scores prior
to the lottery and presents results for the otherwise uncontrolled comparison. Column (4)
adds baseline controls to the two-test sample, and column (5) uses the two-test sample but
exchanges the baseline demographic controls for a second prelottery test score. Column (6)
presents results for the two-test sample controlling both for demographic characteristics and
the second prelottery test score.

As we can see from Tables A.2 and A.3, conditioning on an earlier test score substantially
reduces the unexplained variation and eliminates the relation between the lottery vector and
the baseline test scores. For this reason, all lottery speci�cations in the main text are restricted
to the sample where I observe at least one test score prior to randomization and includes an
average of prelottery test scores as a control.

40As mentioned in the main body of the paper, there was one lottery that had “admission rounds” indicated in
their spreadsheets without further explanation; I also include indicators where this happens. There was also one
district that asked lottery losers whether they wanted to be included on the waitlist before randomly assigning
waitlist numbers, and I include indicators where this happens as well.
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B Supplemental Results and Robustness Checks

B.1 Speci�cations with Additional Controls

In this section, I present evidence that the results are robust to including additional sets of
controls. Table A.4 presents the results. Columns (1) and (4) replicate the results from the main
speci�cation in the text, and columns (2) and (5) add controls for demographic characteristics
and other baseline observables. These controls include indicators for race, ethnicity, and
gender; age (measured in days). They also include indicators for whether the student received
a subsidized lunch at baseline, had any disability at baseline, number of days suspended at
baseline, number of unexcused absences at baseline, and whether the student was labeled as
an English language learner at baseline.

Columns (3) and (6) expand the sample to include all student years observed prior to the
lottery and replaces all controls with a set of student �xed e�ects and year-by-lottery �xed
e�ects.41 Hence columns (3) and (6) represent an IV di�erence-and-di�erence design that
generates reduced-form and �rst-stage estimates by comparing the trends in test scores and
choice status across lottery winners and losers relative to the lottery’s date. In all cases, the
results continue to hold.

[Table A.4 about here.]

B.2 Results Using Only Initial O�er Instrument

In this section, I present evidence that the results are robust to omitting the less frequently
observed instruments. I do this by restricting the sample to the set of lotteries that used initial
o�er instruments and otherwise replicating the baseline speci�cation. Table A.5 shows the
results. Columns (1) and (3) replicate the main speci�cation from Table 3 using all instru-
ments. Columns (2) and (4) drop students who were not involved in initial o�er lotteries and
only uses the initial o�er instrument in the �rst stage.

[Table A.5 about here.]
41To be precise, the 2SLS speci�cation used for columns (3) and (6) is yit = αi + βdit + δ`t + ϵit with the �rst

stage given by dit = α
′
i + ΠZi + δ

′
`t + ηit . In these equations, αi and α ′i are �xed e�ects for student i , while δ`t

and δ ′
`t are �xed e�ects de�ned by the interaction of the lottery �xed e�ects and the calendar year �xed e�ects.

The other variables/parameters in these two equations are as de�ned in the main body of the text.
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B.3 Omitting Idiosyncratic Lotteries

In this section, I present evidence that the results are not driven by lotteries with idiosyncratic
randomization procedures. Recall that there was one lottery in my data where the district
had labeled “admission rounds” in the lottery records without explanation as to how these
were used. For the speci�cations in the main text, I control for this using admission round
indicators. In addition, there was one district that, after initially randomly selecting students
to receive initial o�ers, would ask students whether or not they wanted to be assigned a
random waitlist number. For the speci�cations in the main text, I control for this with an
indicator for the students who are a�ected. Table A.6 presents robustness checks where I
instead omit these lotteries. Columns (1) and (4) replicate the speci�cations from Table 3.
Columns (2) and (5) drop the lottery with admission rounds, while columns (3) and (6) drop
the waitlist request lotteries.

[Table A.6 about here.]

B.4 District Take-Up

Table A.7 presents a series of regressions where I predict a year-by-district indicator for par-
ticipation in inter-district choice since 2009 with district-level observable characteristics. Col-
umn (1) estimates the model with OLS and includes nearly all observables at my disposable:
demographic composition of students and teachers, average test scores, rates of suspensions
and unexcused absences, an urban indicator, a METCO participation indicator, and per-pupil
expenditures across 11 categories. Column (2) presents results from a post-Lasso regression
where model selection was performed over the set of variables included in column (1). For
visual clarity, the only variables displayed in the table are those that were Lasso selected.
Columns (3) and (4) provide the results from regressions using the time-varying observables
from columns (1) and (2) but including district and time �xed e�ects. In e�ect, columns (3)
and (4) ask if trends in the predictors are related to changes in the status of choice.

While trends in the predictors appear to be unrelated to the decision to participate in
choice,42 in levels there are a number of economically meaningful covariates, suggesting that
over the short term, participation in choice is driven largely by the geographic distribution
of covariates. While the most important predictors appear to be average test scores, I will
not speculate on what that implies for the decision to participate. Test scores are highly
correlated with many other observables, making the relation di�cult to interpret. On the

42This is at least true over a seven-year time span.
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other hand, other economically meaningful covariates such as the student-teacher ratio and
per-pupil expenditures appear to agree with informal conversations I have had with district
administrators. The decision to participate in choice is often driven by a desire to supplement
revenue subject to class-size constraints.

[Table A.7 about here.]

B.5 Coursework Results: Intensive Margin

Table A.8 provides results on coursework using intensive margin variation. I replicate the
speci�cations used to analyze coursework in Table 4, but I use the number of classes of each
type the student was enrolled in as an outcome variable. While noisy, the point estimates
show that the number of general classes has also increased, suggesting that the coursework
substitution works by pushing students from remedial into general classes and from general
classes into advanced or AP classes. Note that there is no adding up constraint on these coef-
�cients, since there are many classes in the data (e.g., gym and music) that do not receive any
of the three labels, suggesting that some of the increases are also being driven by substitution
away from non-academic classes.

[Table A.8 about here.]
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C Statistical Appendix

C.1 AdditionalDetails ofHeterogeneous E�ect EstimationProcedure

To generate the consensus posterior modes of the heterogeneous e�ects that incorporate both
the experimental and non-experimental variation, I proceed in �ve steps:

1. Estimate the center of the parent distribution.

2. Estimate the heterogeneous e�ects.

3. Estimate the variance-covariance matrix of the parent distribution.

4. Estimate the asymptotic covariance matrix of the heterogeneous e�ects.

5. Calculate the posterior modes.

Estimating the Center of the Parent Distribution

To recover the center of the experimental distribution β̂0, I estimate the following model
on the lottery sample using 2SLS:

yit = δ0 + δ` + β0dit + γwWi + γxXit + ϵ
p
it (25)

dit = δ
′
0 + δ

′
` + πZit + γ

′
wWi + γ

′
xXit + η

p
it , (26)

where yit is the postlottery test score of student i at time t , δ0 is an intercept, δ` is a lottery
�xed e�ect, dit is an indicator for whether student i appeared outside of their home district
under the choice program at time t ,Wi is the vector of baseline observables described in the
main text, and Xit are the relevant margins of heterogeneity as described in the body of the
main text.

To recover the center of the non-experimental distribution (β̂n0 = �β0 + b0), I estimate the
following model on the non-experimental data using OLS:

yit = δhдt + β
n
0dit + θxXit + u

p
it , (27)

where δhдt is a home district (h) by grade (д) by academic year (t ) �xed e�ect.
Note that I have superscripted the residuals of the regressions in this section by the letter

p, which stands for “pooled.” This notation will become useful later on to distinguish the
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residuals from these regression from the corresponding heterogeneous regressions when I
estimate the parent variance-covariance matrix.

Estimating Heterogeneous E�ects

To recover the heterogeneous e�ect estimates, I �rst estimate the following model on the
lottery sample using 2SLS:

yit = δ0 + δ` + α
e
0dit + α

eXitdit + γwWi + γxXit + ϵit (28)

dit = δ
′
0 + δ

′
` + π0Zit + πXitZit + γ

′
wWi + γ

′
xXit + ηit . (29)

I then estimate the following model on the non-experimental sample using OLS:

yit = δhдt + α
n
0dit + α

nXitdit + θxXit + uit . (30)

(31)

And from there, I recover the observable heterogeneity as

β̂e = α̂e0 + α̂
eX (32)

β̂n = α̂n0 + α̂
nX, (33)

where X = (X1t , . . .XEt ) is the matrix of support points for covariates found in the lottery
sample.

Estimating the Variance-Covariance Matrix of the Parent Distribution

To estimate the variance-covariance matrix of the parent distribution, I calculate Σ̂ =

cov(ϵ̃
p
it − ϵ̃it , ũ

p
it − ũit |dit = 1) ≈ cov(βe, βn). I calculate the residuals (ϵ̃pit , ϵ̃it , ũ

p
it , ũit ) using

the estimated coe�cients from models (25), (27), (28), and (30) and the support points of the
lottery data as follows:

• ϵ̃pit = yit − (δ̂0 + δ̂` + β̂0 + γ̂wWi + γ̂xXit )

• ϵ̃it = yit − (δ̂0 + δ̂` + α̂e0 + α̂eXit + γ̂wWi + γ̂xXit )

• ũ
p
it = yit − (δ̂hдt + β̂

n
0 + θ̂xXit )

12



• ũit = yit − (δ̂hдt + α̂
n
0 + α̂

nXit + θ̂xXit )

Estimating the Asymptotic Covariance Matrix of the Heterogeneous E�ects

As discussed in the main body of the text, I assume the o�-diagonal entries of the asymp-
totic covariance matrix Ωk are zero. This assumption is reasonable because I have dropped
the students appearing in the lottery sample from the nonlottery data when estimating the
non-experimental model. To recover the diagonal entries, observe that

Ω̂k = diaд(var (β̂
e
k),var (β̂

n
k )) = diaд(X

′
itvar (α̂

e)Xit ,X
′
itvar (α̂

n)Xit ). (34)

Hence I recover Ω̂k by replacing var (α̂e) and var (α̂n) with standard sample analogues.

Calculating Posterior Modes

Let θk =
[
βe
k

βn
k

]
and θ0 =

[
β0

β0 + b0

]
, and recall that the hierarchical model induces the

following Bayesian structure:

p(θk |θ̂k) ∝ p(θ̂k |θk)p(θk). (35)

Then provided the parent distribution is normal, the posterior distribution isN(µk, Γk), where

Γk = (Σ
−1 + Ω−1k )

−1 (36)

µk = ΓkΩ
−1
k θ̂k + ΓkΣ

−1θ0. (37)

And thus we can plug in in the empirical analogues Σ̂, Ω̂k , and θ̂0 to recover an estimate of
the consensus posterior mode µ̂k .

Jack-Knife and Split Sample Procedures

Ultimately, I recover the posterior modes because I wish to correlate them with the ap-
plication and take-up behavior of students. For this reason, I estimate the posterior modes
using a jack-knife procedure to ensure there is no mechanical correlation between the treat-
ment indicator and heterogeneous e�ects. The jack-knife algorithm for the experimental data
proceeds as follows:

1. Drop all students associated with lottery ` from the sample.
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2. Estimate the pooled and heterogeneous experimental and non-experimental models.

3. Estimate the joint covariance matrix of the parent distribution.

4. Use the estimated experimental and non-experimental models to predict the heteroge-
neous e�ects of the students associated with lottery ` along with the corresponding
covariance matrices Ωk .

5. Calculate the posterior modes for the students associated with lottery `.

To estimate the posterior modes of the heterogeneous e�ects of students not contained in
the lottery data but who were eligible to apply, I use a split sample procedure where I divide
the pool of eligible applicants in half. I use the �rst half of the potential applicants to estimate
the relevant models along with the joint covariance matrix. I then predict the heterogeneous
e�ects for the second half of students out of sample using the models estimated on the �rst
half and apply the shrinkage.

C.2 Properties

A General Expression for the Posterior Modes

For all empirical results in this paper, I have assumed the o�-diagonal elements of the
joint covariance matrix Ωk are zero. This is justi�ed because I do not include the students
in the lottery data in the non-experimental models. Under this assumption, we can write the
consensus posterior modes as

βsk = β0 + αk(β̂
e
k − β0) + δk(β̂

n
k − β0 − b0) (38)

αk =
ϕkn − ρ

2

ϕknϕ
k
e − ρ2

(39)

δk =
ρ
(ωk

e )
2

σeσn

ϕknϕ
k
e − ρ2

, (40)

where ρ ≡ corr (βk, βk+bk) is the correlation between the experimental and non-experimental
estimands,ϕke ≡

σ 2
e+(ω

k
e )

2

σ 2
e

is the inverse of the weight you would recover by applying a standard

empirical Bayes idea to the experimental data alone, and ϕkn ≡
σ 2
n+(ω

k
n )

2

σ 2
n

is the inverse of the
weight you would recover if applying a standard empirical Bayes idea to the non-experimental
data alone.
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Now I will provide general expressions for the weights when we relax the assumption on
the o�-diagonal elements of the variance-covariance matrix. First, I will clarify the notation.

Let θk =
[
βe
k

βn
k

]
and θ0 =

[
β0

β0 + b0

]
, Σ =

[
σ 2
e σ 2

en

σ 2
en σ 2

n

]
, and Ωk =

[
(ωk

e )
2 (ωk

en)
2

(ωk
en)

2 (ωk
n )

2

]
. Observe that

we can write the posterior distribution of heterogeneous e�ect k as θk ∼ N(µk, Γk), where

Γk = (Σ
−1 + Ω−1k )

−1, (41)

µk = ΓkΣ
−1θ0 + ΓkΩ

−1
k θ̂k =W0θ0 +W1θ̂k, (42)

whereW0 andW1 are weighting matrices. The expression for these matrices are

W0 =


(ωk

e )
2(σ 2

n+(ω
k
n )

2)−(ωk
en)

2(σ 2
en+(ω

k
en)

2)

(σ 2
e+(ω

k
n )

2)(σ 2
e+(ω

k
e )

2)−(σ 2
en+(ω

k
en)

2)2
σ 2
e (ω

k
en)

2−σ 2
en(ω

k
e )

2

(σ 2
n+(ω

k
n )

2)(σ 2
e+(ω

k
e )

2)−(σ 2
en+(ω

k
en)

2)2

σ 2
n(ω

k
en)

2−σ 2
en(ω

k
n )

2

(σ 2
n+(ω

k
n )

2)(σ 2
e+(ω

k
e )

2)−(σ 2
en+(ω

k
en)

2)2
(ωk

n )
2(σ 2

e+(ω
k
e )

2)−(ωk
en)

2(σ 2
en+(ω

k
en)

2)

(σ 2
n+(ω

k
n )

2)(σ 2
e+(ω

k
e )

2)−(σ 2
en+(ω

k
en)

2)2

 (43)

W1 =


σ 2
e (σ

2
n+(ω

k
n )

2)−σ 2
en(σ

2
en+(ω

k
en)

2)

(σ 2
n+(ω

k
n )

2)(σ 2
e+(ω

k
e )

2)−(σ 2
en+(ω

k
en)

2)2
σ 2
en(ω

k
e )

2−σ 2
e (ω

k
en)

2

(σ 2
n+(ω

k
n )

2)(σ 2
e+(ω

k
e )

2)−(σ 2
en+(ω

k
en)

2)2

σ 2
en(ω

k
n )

2−σ 2
n(ω

k
en)

2

(σ 2
e+(ω

k
n )

2)(σ 2
e+(ω

k
e )

2)−(σ 2
en+(ω

k
en)

2)2
σ 2
n(σ

2
e+(ω

k
e )

2)−σ 2
en(σ

2
en+(ω

k
en)

2)

(σ 2
n+(ω

k
n )

2)(σ 2
e+(ω

k
e )

2)−(σ 2
en+(ω

k
en)

2)2

 . (44)

The simpli�ed expression can be found by setting ωk
en = 0 and rearranging the expression for

the weights.

Consistency

To see that the estimator is consistent under the same conditions as IV, observe that as
the IV sample size (E) becomes large, then given standard regularity conditions and a �xed
non-experimental sample size (N ), we have
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plimE→∞β̂0 = β0

plimE→∞β̂
e
k = βk

plimE→∞ϕ̂
k
e =

plimE→∞σ̂
2
e + plimE→∞(ω̂

k
e )

2

plimE→∞σ̂
2
e

=
plimE→∞σ̂

2
e + 0

plimE→∞σ̂
2
e

= 1

plimE→∞α̂k =
plimE→∞ϕ̂

k
n − plimE→∞ρ̂

2

(plimE→∞ϕ̂
k
n)(plimE→∞ϕ̂

k
e ) − plimE→∞ρ̂2

=
plimE→∞ϕ̂

k
n − plimE→∞ρ̂

2

(plimE→∞ϕ̂
k
n)(1) − plimE→∞ρ̂2

= 1

plimE→∞δ̂k =

(plimE→∞ρ̂)(plimE→∞(ω̂
k
e )

2)
plimE→∞(σ̂e σ̂n)

plimE→∞(ϕ̂
k
nϕ̂

k
e − ρ̂2)

=

(plimE→∞ρ̂)(0)
plimE→∞(σ̂e σ̂n)

plimE→∞(ϕ̂
k
nϕ̂

k
e − ρ̂2)

= 0.

(45)

And we can see that

plimE→∞β̂
s
k = β0 + (1)(β

e
k − β0) + (0)(β̂

n
k −

�β0 + b0) = βek . (46)

C.3 Simulations

In this section, I show the results of two sets of simulation. The �rst simulation shows how
the estimator’s performance varies with the signal-to-noise ratio under an idealized DGP and
when the parent distribution for the treatment e�ect heterogeneity is normal. I �nd that the
empirical Bayes procedure using all of the data strictly dominates other available estimators
for the treatment e�ect heterogeneity.

The second simulation shows how the estimator’s performance performs using a DGP
calibrated to match the distribution of observables in the real data and estimated using the
linear approximation for treatment heterogeneity applied in the main text. This is important
because the model I take to the data in the main text assumes the treatment e�ect hetero-
geneity is a linear combination of binary and other nonnormally distributed variables and
hence implies the potential for deviations from normality in the parent distribution. In the
simulation, I �nd that despite these deviations from normality, the empirical Bayes procedure
using all of the data weakly dominates among consistent estimators under a wide range of
values for the amount of selection present in the non-experimental data.
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Performance under Normality

To assess the theoretical performance of the empirical Bayes procedure, I generate fake data
under idealized conditions as follows:

yi = α + βkdi + xi + ϵi (47)

βk ∼ N(β0,σβ ) (48)

xi ∼ N(0,σx ) (49)

ϵi ∼ N(0,σϵ ). (50)

Here yi is the outcome of interest, di is a treatment indicator, βk is the heterogeneous treat-
ment e�ect to an individual of observable type k ∈ {1, 2, . . .K}, xi is an unobserved potential
confounder, and ϵi is a residual. The treatment vector di is assigned di�erently depending on
whether the observation is in the experimental or observational sample. Note that I generate
the data such that there are Je observations per type k in the experimental sample and Jo ob-
servations per type k in the observational sample, with Je << Jo , so that the total number of
observations in each sample is Ne = Je × K and No = Jo × K , and thus the total sample size is
N = Ne + No .

For the experimental sample, I assign treatment according to

di = 1(i mod 2 = 1) (51)

so that all observations with an even index are treated. Since I generate the indices such
that every type k has the same number of even values, and Je itself will be even, half of all
observations per type k receive treatment in the experimental sample.

For the observational sample, I assign treatment according to

di = 1(xi > 0) (52)

so that assignment to treatment is confounded by xi for the observational sample.
For the Monte Carlo trials, I assume the following values for the parameters:
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K = 100

Je = 10

Jo = 100

α = 1

β0 = 1

σβ = 1
σβ

σϵ
∈ {.3, .4, .5, .6, .7, .8, .9, 1, 2, 3, 4, 5}

σx = 1.

I generate data according to this process 500 times for each value of the signal-to-noise ratio
σβ
σϵ

and estimate the vector βk using the cross sample empirical Bayes strategy discussed ear-
lier in this section. For purposes of comparison, I also estimate βk using standard empirical
Bayes applied only to the experimental data, the unpooled estimator (i.e., the maximum like-
lihood estimator) applied only to the experimental sample, the unpooled estimator applied
only to the observational sample, and the pooled estimator (i.e., the projection assuming no
heterogeneity so that βk = β ∀k) applied only to the experimental data. For each trial, I mea-
sure the estimator’s performance by calculating the mean squared error of the estimates with
respect to the true vector of heterogeneous e�ects βk , and I report the average mean squared
error for each estimator across the 500 trials for each value of the signal-to-noise ratio σβ

σϵ
.

Figure A.3 plots the results. Observe that for small values of the signal-to-noise ratio,
the standard empirical Bayes procedure o�ers substantial gains in mean squared error rela-
tive to the unpooled (maximum likelihood estimator) estimate, while the consensus procedure
proposed in this paper o�ers modest gains relative to standard empirical Bayes. As the signal-
to-noise ratio becomes large, the unpooled and standard empirical Bayes estimate converge,
while the consensus procedure using all of the data continues to o�er substantial improve-
ments relative to the unpooled estimate. Intuitively, this occurs because empirical Bayes us-
ing all of the data brings new information to the table that is unavailable to the unpooled
estimator or to the standard empirical Bayes estimator; synthesizing the experimental and
observational data e�ectively increases the sample size by increasing the pool of information
used to estimate the heterogeneous treatment e�ects.

[Figure A.3 about here.]
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Estimator Performance Calibrated to Empirical Data-Generating Process

To assess the estimator’s performance for the actual application in this paper, I perform a
Monte Carlo simulation with a DGP that matches the actual model I brought to the data and
with the DGP calibrated to the data’s empirical distribution.

Before describing the DGP and simulation, I �rst introduce some notation. Let yit denote
the math score of student i at time t , and let Xit denote a vector of student covariates that
includes the same set of covariates used to estimate student heterogeneity in the main text.
For ease of notation, also assume thatXit contains an intercept. Letwit denote student i’s ELA
score from the prior period, and let dit denote an indicator for whether student i participates
in choice at time t . Let (y,X ,w,d)e denote the entire experimental sample so that a row within
the experimental sample is given by (y,X ,w,d)eit = (yit ,Xit ,wit ,dit )

e . Similarly, let (y,X ,w,d)o

denote the observational sample.
I assume the experimental sample is generated according to the following process:

yit = βkdit + ΓeXit + uit (53)

uit = δewit + ϵit (54)

βk = αXit (55)

(dit ,Xit ,wit ) ∼ Fe(d,X ,w) (56)

ϵit ∼ Ge(ϵ), (57)

where α is calibrated to the empirical DGP by projecting the consensus posterior modes for
the experimental data found in the main text onto the corresponding covariates Xit ;43 Γe and
δe are calibrated to the empirical DGP by imposing the appropriate values for α and by recov-
ering the relevant parameters from the model implied by equations (53) and (54), as estimated
on the actual lottery data. Fe is determined by the empirical distribution of the lottery data
but imposing thatdit |Xit ⊥ wit ,44 andGe is determined by the empirical distribution of residu-

43To be precise, α = [(X ′itXit )
−1X ′it β̂

s
k (i ,t )]

′

44To be precise, I create draws from Fe by resampling with replacement from the actual lottery data within
“subgroups,” as de�ned by the interaction of all binary variables contained in (Xit ,dit ). Resampling the data
within subgroups ensures that the fraction “treated” within each of these subgroups matches the empirical dis-
tribution and hence ensures that all of the necessary interaction terms are identi�ed within any given Monte
Carlo iteration. While it is a low probability event, over many iterations, naively resampling from the entire dis-
tribution can result in draws where important parameters are not identi�ed. After resampling, I then randomly
permute the treatment vector d within subgroups. I do this to break the correlation between treatment and the
variable wit that will play the role of the “omitted variable” in the simulation and hence ensure that treatment
is “as-if” randomly assigned in the experimental sample conditional on Xit .
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als found by imposing the appropriate values for (α, Γe, δe) and by calculating residuals using
model (53) as applied to the lottery data.45

I assume the observational sample is generated according to the following process:

yit = βkdit + ΓoXit + uit (58)

uit = (δo + χ )wit + rϵit (59)

βk = αXit (60)

dit ∼ bernoulli(pw ) (61)

(Xit ,wit ) ∼ Fo(X ,w) (62)

ϵit ∼ Go(ϵ), (63)

where α is identical to the parameter values used for the experimental sample; Γo and δo are
calibrated to the empirical DGP by imposing the appropriate values for α and by recovering
the corresponding parameters from the model implied by (53) and (54), as estimated using
the actual non-experimental data. χ is a free parameter that I use to vary the amount of
selection in the observational data; r = r (χ ) is a rescaling factor that, for small values of
χ , ensures the variance of yit is not a function of χ .46 Fo is determined by the empirical
distribution of the non-experimental data.47 The parameter of the Bernoulli distribution is
given by pw = p(wit ) = p11[wit > 0] + (1 − p1)(1 − 1[wit > 0]) so that students of di�erent
ability levels have di�erent propensities to take up the treatment, and p1 = E(dit |wit > 0) is
calibrated to match the corresponding empirical probability in the non-experimental data. Go

is determined by the empirical distribution of residuals found by imposing the appropriate
values for (α, Γo, δo), setting χ = 0 and r = 1, and calculating residuals using the model implied
by equations (58) and (59), as applied to the actual non-experimental data.48

Finally, I set the experimental and observational sample sizes to the actual sample sizes of
45To be precise, the distribution of residuals that determinesGe is constructed using the lottery data according

to ϵ = (I − Ω(Ω′Ω)−1Ω′)y, where Ω = (αXitdit ,Xit ,wit ) with α = [(X ′itXit )
−1X ′it β̂

s
k (i ,t )]

′.
46To be precise, r (χ ) =

√
max[1 − var (χw )−2cov(χw ,βkdit+ΓoXit+χw )

var (ϵ ) , 0].
47To be precise, I create draws from Fo by resampling with replacement from the actual non-experimental data

within “subgroups” as de�ned by the interaction of all binary variables contained in (Xit ,dit ). Resampling the
data within subgroups ensures that the fraction “treated” within each of these subgroups matches the empirical
distribution and hence ensures that all of the necessary interaction terms are identi�ed within any given Monte
Carlo iteration. While it is a low probability event, over many iterations naively resampling from the entire
distribution can result in draws where important parameters are not identi�ed.

48To be precise, the distribution of residuals that determines Go is constructed with the non-experimental
data according to ϵ = I − Ω(Ω′Ω)−1Ω′y, where Ω = (αXitdit ,Xit ,wit ) with α = [(X ′itXit )

−1X ′it β̂
s
k (i ,t )]

′.
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the lottery (1,705) and non-experimental (6,549,949) data used for the main analysis. I allow
the selection parameter χ to vary from zero to ten in increments of 0.5.

For the Monte Carlo trial, I proceed as follows:

0. Fix the selection parameter χ .

1. Draw the experimental sample (d,X ,w, ϵ)e according to the distributions Fe andGe , and
then construct the outcome for the experimental sample (y) according to equations (53),
(54), and (55).

2. Draw the observational sample (X ,w, ϵ)o from distributions Fo and Go , construct treat-
ment status from equation (61), and then construct the outcome for the observational
sample (y) according to equations (58), (59), and (60).

3. Delete the unobserved potential confounder (wit ) from both the experimental and non-
experimental data.

4. Estimate the heterogeneous treatment e�ects by applying the same model and empirical
Bayes procedure used with the actual data in the main text to the simulated data from
steps one through three.49

5. Calculate the mean squared error of the estimated treatment e�ect heterogeneity rela-
tive to the actual vector of heterogeneous e�ects in the experimental simulation sam-
ple. I perform this calculation for the pooled estimate found using only the experimental
simulation sample, the unpooled estimate found using only the experimental simulation
sample, the unpooled estimate found using only the observational simulation sample,
the standard empirical Bayes estimate found using only the experimental simulation
sample, and the consensus empirical Bayes estimate found using both the experimental
and observational simulation samples.

6. Store these calculations.

7. Repeat steps one through six for 100 iterations.

8. Average the mean squared error calculations for each estimator over the stored values
from the 100 iterations.

49I do not include �xed e�ects in either the DGP or the estimation step of the simulations for computational
reasons. Incorporating �xed e�ects into the simulation DGP would cause the simulations to take weeks to
converge.
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7. Change the value of the selection parameter χ , and return to step 1.

The results are displayed in Figure A.4.

[Figure A.4 about here.]

At low values of selection, the empirical Bayes procedure using all of the data dominates
the corresponding unpooled and standard empirical Bayes estimates. This occurs despite the
fact that the treatment e�ect heterogeneity in this simulation (as it is in the main text) is a
linear combination of binary and other nonnormally distributed variables and hence is also
not normally distributed. Therefore the empirical Bayes procedure using all of the data can
still work well, even under violations of normality.

At large values of the selection parameter, we see that the standard empirical Bayes proce-
dure and the empirical Bayes procedure using all of the data converge. However, it is impor-
tant to note here that such large values of selection are only possible if we also increase the
total variance of y in the non-experimental sample; hence, it is not clear whether the conver-
gence is the result of the increasing bias or the corresponding decrease in the signal-to-noise
ratio.

Taken together, the simulation suggests that the empirical Bayes procedure using all of
the data weakly dominates among consistent estimators of the treatment e�ect heterogeneity
for this DGP when calibrated to match the actual data.
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Figure A.1: Lottery Distribution by Size

Note: This �gure displays the distribution of lottery size (i.e., the number of students involved in randomization)
for the districts where I collected data. I de�ne a lottery as occurring at the entry grade by academic year in the
receiving district, provided some form of randomization was used to ration an open seat.
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Figure A.2: Lottery Distribution by Year

Note: This �gure displays the distribution of lottery years (i.e., the number of lotteries I observe in each year)
for the districts where I collected data. I de�ne a lottery as occurring at the entry grade by academic year in the
receiving district provided some form of randomization was used to ration an open seat.
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Figure A.3: Estimator Performance Varying the Signal-to-Noise Ratio (σβσϵ )

Note: This �gure displays the average mean squared error across 500 Monte Carlo trials for various estimators
of treatment e�ect heterogeneity (βk ) using the data-generating process described in equations (47)–(52) at dif-
ferent values of the signal-to-noise ratio (σβσϵ ). “Pooled” refers to the maximum likelihood estimator using only
the experimental data and assuming there is no heterogeneity in treatment e�ect (i.e., βk = β ∀k). “Unpooled”
refers to the maximum likelihood estimator using only the experimental data but allowing for treatment e�ect
heterogeneity. “Empirical Bayes (Standard)” refers to the empirical Bayes estimator for the treatment e�ect het-
erogeneity applied only to the experimental data. “Observational” refers to the maximum likelihood estimator
for the treatment e�ect heterogeneity using only the observational data and under the (incorrect) assumption
that treatment is randomly assigned in this sample. And “Empirical Bayes (All Data)” refers to the empirical
Bayes estimator that uses all of the available data, both experimental and observational.
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Figure A.4: Estimator Performance Calibrated to Empirical Data-Generating Process

Note: This �gure shows that the empirical Bayes procedure using all of the data performs well with a data-
generating process (DGP) calibrated to match the actual data from Massachusetts and using a model that ap-
proximates the treatment e�ect heterogeneity linearly with nonnormally distributed variables. For a complete
description of the DGP used for this simulation, so the discussion in Section C.3. Each line in this �gure gives
the average mean squared error over 100 Monte Carlo trials for the indicated estimator at di�erent amounts
of selection in the non-experimental data. “Pooled” refers to the maximum likelihood estimator using only the
experimental data and assuming there is no heterogeneity in treatment e�ect (i.e., βk = β ∀k). “Unpooled”
refers to the maximum likelihood estimator using only the experimental data but allowing for treatment e�ect
heterogeneity. “Empirical Bayes (Standard)” refers to the empirical Bayes estimator for the treatment e�ect het-
erogeneity applied only to the experimental data. “Observational” refers to the maximum likelihood estimator
for the treatment e�ect heterogeneity using only the observational data and under the (incorrect) assumption
that treatment is randomly assigned in this sample. And “Empirical Bayes (All Data)” refers to the empirical
Bayes estimator that uses all of the available data, both experimental and observational.
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Table A.1: Testing for Di�erential Attrition

Observed After Choice Year
(1) (2) (3) (4)

Initial O�er −0.001 −0.001 −0.002 0.002
(0.007) (0.007) (0.008) (0.008)

Waitlist O�er 0.058 0.060 0.043 0.045
(0.052) (0.054) (0.051) (0.043)

Lottery Number −0.0003 −0.0003 −0.001 −0.001
(0.001) (0.001) (0.001) (0.001)

Waitlist Number −0.002 −0.002 −0.003 −0.002
(0.002) (0.002) (0.002) (0.003)

Demographic Controls No Yes Yes Yes
Baseline Controls No No Yes Yes
Baseline Test Scores No No No Yes
Probability Observed Post-Choice Year 0.94 0.94 0.94 0.94
Observations (Students) 1905 1905 1571 1292
Adjusted R2 0.672 0.673 0.737 0.775

Note: This table shows speci�cations where I predict an indicator for observing a student in the state data in
a postlottery year using the vector of lottery instruments. All speci�cations contain lottery �xed e�ects.50 I
drop students who I am unable to match to the state data, were not involved in competitive lotteries, received
a sibling preference, or applied late. Column (1) presents results for the entire lottery sample, and column (2)
is identical to column (1) but controls for demographic characteristics. Column (3) further restricts the sample
to students I observe in the data at baseline and includes baseline controls for any disability, subsidized lunch
status, and English language learner status. Column (4) further restricts the sample to the set of students for
whom I observe at least one baseline test score and includes a test score average observed prior to the lottery as
controls.
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Table A.2: Falsi�cation Test: Math

Math Score (Baseline)
(1) (2) (3) (4) (5) (6)

Initial O�er 0.14 0.06 0.15 0.07 0.01 −0.01
(0.06) (0.06) (0.07) (0.06) (0.04) (0.04)

Waitlist O�er 0.36 0.19 0.32 0.15 0.04 0.08
(0.27) (0.27) (0.25) (0.27) (0.18) (0.19)

Lottery Number 0.01 0.003 0.01 0.002 −0.001 −0.001
(0.004) (0.003) (0.004) (0.004) (0.002) (0.002)

Waitlist Number −0.004 −0.001 −0.004 0.002 −0.01 −0.005
(0.02) (0.02) (0.02) (0.02) (0.01) (0.01)

Sample All All 2-test 2-test 2-test 2-test
Baseline Controls No Yes No Yes No Yes
Pre-Baseline Test Score No No No No Yes Yes
Observations 1,265 1,265 1,025 1,025 1,025 1,025
Adjusted R2 0.06 0.23 0.05 0.23 0.71 0.72

Note: This table shows speci�cations that predict baseline student math test scores with the vector of lottery
instruments. I drop students who I am unable to match to the state data, did not have a baseline test score, were
not involved in competitive lotteries, received a sibling preference, or applied late. All speci�cations contain a set
of lottery �xed e�ects. Column (1) presents the uncontrolled comparison, and column (2) is identical to column
(1) except that it also includes demographic variables as controls. Column (3) restricts the sample to the set of
students for whom I observe at least two test scores prior to the lottery and presents results for the otherwise
uncontrolled comparison. Column (4) is identical to column (3) except that it also includes demographic variables
as controls. Column (5) is identical to column (3) except that it includes the earlier prelottery test score as a
control, and column (6) is identical to column (3) except that it controls for both demographic characteristics
and the earlier prelottery test score.
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Table A.3: Falsi�cation Test: English Language Arts

ELA Score (Baseline)
(1) (2) (3) (4) (5) (6)

Initial O�er 0.14 0.08 0.17 0.11 0.03 0.03
(0.06) (0.05) (0.06) (0.06) (0.04) (0.04)

Waitlist O�er 0.13 −0.09 0.11 −0.07 0.05 0.07
(0.28) (0.26) (0.27) (0.26) (0.17) (0.17)

Lottery Number 0.01 0.003 0.01 0.003 0.002 0.002
(0.003) (0.003) (0.004) (0.003) (0.002) (0.002)

Waitlist Number −0.01 −0.01 −0.02 −0.01 −0.02 −0.01
(0.02) (0.01) (0.02) (0.01) (0.01) (0.01)

Sample All All 2-test 2-test 2-test 2-test
Baseline Controls No Yes No Yes No Yes
Pre-Baseline Test Score No No No No Yes Yes
Observations 1,265 1,265 1,025 1,025 1,025 1,025
Adjusted R2 0.12 0.30 0.12 0.31 0.60 0.63

Note: This table shows speci�cations that predict baseline student English Language Arts (ELA) test scores with
the vector of lottery instruments. I drop students who I am unable to match to the state data, did not have
a baseline test score, were not involved in competitive lotteries, received a sibling preference, or applied late.
All speci�cations contain a set of lottery �xed e�ects. Column (1) presents the uncontrolled comparison, and
column (2) is identical to column (1) except that it also includes demographic variables as controls. Column (3)
restricts the sample to the set of students for whom I observe at least two test scores prior to the lottery and
presents results for the otherwise uncontrolled comparison. Column (4) is identical to column (3) except that it
also includes demographic variables as controls, and column (5) is identical to column (3) except that it includes
the earlier prelottery test score as a control. Column (6) is identical to column (3) except that it controls for both
demographic characteristics and the earlier prelottery test score.
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Table A.4: Additional Controls

Standardized Test Score
Math Math Math ELA ELA ELA

(1) (2) (3) (4) (5) (6)
Choice 0.19 0.15 0.17 0.01 −0.02 −0.06

(0.08) (0.08) (0.07) (0.08) (0.08) (0.07)
F-Stat Excluded Instruments 117.2 115.8 114.6 114.9 118.2 112.3
Lottery Fixed E�ects Yes Yes No Yes Yes No
Baseline Test Score Yes Yes No Yes Yes No
Year Fixed E�ects Yes Yes No Yes Yes No
Demographic Controls No Yes No No Yes No
Student Fixed E�ects No No Yes No No Yes
Year x Lottery Fixed E�ects No No Yes No No Yes
Observations 1702 1702 5113 1702 1702 5167
Observations (Students) 959 959 959 961 961 961
Adjusted R2 0.65 0.67 0.78 0.56 0.59 0.72

Note: Columns (1) and (4) replicate the 2SLS results from Table 3. Columns (2) and (5) add controls for demo-
graphic characteristics and other baseline observables. These include indicators for race, ethnicity, and gender;
age (measured in days); whether the student received a subsidized lunch at baseline or had any disability at
baseline; number of days suspended at baseline; number of unexcused absences at baseline; and an indicator for
whether the student was labeled as an English language learner at baseline. Columns (3) and (6) expand the sam-
ple to include all student years observed prior to the lottery and replaces all controls with a set of student �xed
e�ects and year-by-lottery �xed e�ects. Hence columns (3) and (6) represent an IV di�erence-and-di�erence
design that generates reduced-form and �rst-stage estimates by comparing the trends in test scores and choice
status across lottery winners and losers relative to the lottery’s date.
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Table A.5: Initial O�er Lotteries

Standardized Test Score
Math Math ELA ELA

(1) (2) (3) (4)
Choice 0.19 0.21 0.01 0.01

(0.08) (0.09) (0.08) (0.09)
F-Stat Excluded Instruments 117.2 231.5 114.9 223.1
Instruments All Initial O�er All Initial O�er
Observations 1,702 1,556 1,702 1,556
Observations (Students) 959 874 961 875
Adjusted R2 0.65 0.65 0.56 0.56

Note: Columns (1) and (3) replicate the main speci�cation from Table 3 using all instruments. Columns (2) and
(4) drop students who were not involved in initial o�er lotteries and only uses the initial o�er instrument in the
�rst stage.
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Table A.6: Omitting Idiosyncratic Lotteries

Standardized Test Score
Math Math Math ELA ELA ELA

(1) (2) (3) (4) (5) (6)
Choice 0.19 0.19 0.19 0.01 0.01 0.01

(0.08) (0.08) (0.09) (0.08) (0.08) (0.09)
Admission Round Lotteries Yes No Yes Yes No Yes
Waitlist Request Lotteries Yes Yes No Yes Yes No
Observations 1,702 1,680 1,606 1,702 1,680 1,605
Observations (Students) 959 937 886 961 939 887
Adjusted R2 0.65 0.65 0.65 0.56 0.56 0.56

Note: Columns (1) and (4) replicate the speci�cations from Table 3. Columns (2) and (5) drop the lottery with
admission rounds, and columns (3) and (6) drop the waitlist request lotteries.

32



Table A.7: Predictors of District Participation

Choice Status
(1) (2) (3) (4)

Students (thousands) −0.04 −0.01 0.01 0.04
(0.03) (0.01) (0.03) (0.04)

Average Math Score −0.30 −0.39 0.04 0.05
(0.16) (0.16) (0.06) (0.07)

Average ELA Score −0.18 −0.15 −0.04 −0.04
(0.15) (0.16) (0.05) (0.05)

100x(Fraction White) 0.01 −0.001 −0.01 −0.01
(0.01) (0.004) (0.01) (0.005)

100x(Fraction Asian) 0.01 −0.002 −0.01 −0.01
(0.01) (0.01) (0.01) (0.01)

100x(Fraction Hispanic) −0.01 −0.01 −0.004 −0.004
(0.004) (0.003) (0.005) (0.004)

100x(Fraction ELL) −0.001 −0.004 −0.004 −0.004
(0.01) (0.01) (0.003) (0.003)

100x(Fraction HQ Teachers) −0.01 −0.01 0.002 0.002
(0.003) (0.003) (0.002) (0.002)

Student-Teacher Ratio −0.07 −0.07 −0.002 −0.002
(0.02) (0.02) (0.01) (0.01)

Per-Pupil-Spending: Instruction −0.08 −0.05 0.04 0.01
(0.03) (0.02) (0.02) (0.01)

Per-Pupil-Spending: Pupil Services 0.15 0.23 0.03 0.04
(0.08) (0.07) (0.04) (0.04)

Per-Pupil-Spending: Teachers −0.01 −0.001 −0.05 −0.04
(0.04) (0.04) (0.02) (0.02)

Metco Students (tens) −0.01 −0.01 0.01 0.02
(0.005) (0.005) (0.02) (0.02)

Estimation Method OLS Post-Lasso OLS OLS
Additional Variables Yes No Yes No
District Fixed E�ects No No Yes Yes
Year Fixed E�ects No No Yes Yes
Dependent Variable Mean 0.55 0.55 0.55 0.55
F-Stat (Projected) 14.6 26.43 0.91 1.28
Observations 2280 2280 2280 2280
Observations (Districts) 285 285 285 285
Adjusted R2 0.34 0.31 0.88 0.88

Note: This table contains speci�cations that predict a year-by-district indicator for participation in inter-district
choice since 2009 with district-level observable characteristics. Column (1) estimates the model with OLS, and
column (2) presents results from a post-Lasso regression where model selection was performed over the set of
variables included in column (1). For visual clarity, the only variables displayed in the table are those that were
Lasso selected. See the discussion in Section B.4 for a complete list of predictors. Columns (3) and (4) include
district and time �xed e�ects and the time-varying observables from columns (1) and (2), respectively.
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Table A.8: Intensive Margin Coursework Results

Number of Classes
AP Remedial General Advanced

Choice 0.14 −0.10 0.35 0.79
(0.10) (0.10) (0.45) (0.20)

Mean Dependent Variable 0.3 0.23 9.25 0.91
Observations 805 2,413 2,413 2,413
Observations (students) 467 911 911 911
Adjusted R2 0.27 0.10 0.20 0.32

Note: The results in this table come from the two-stage least squares model outlined in equations (1) and (2) from
the main text. All of the table’s estimates are from speci�cations that use my preferred set of controls. These
include a lottery �xed e�ect, a baseline average of test scores observed prior to randomization, academic year
and grade �xed e�ects, indicators for PARCC testing, indicators for whether or not a student was matched to the
state data via an exact or fuzzy process, and indicators for waitlist requests or admissions rounds. The sample
used for estimation includes all students from the lottery data that I was able to match to the state data who
were involved in competitive lotteries, did not receive a sibling preference, did not apply late, and for whom I
observe at least one test score prior to randomization. I also drop a small number of students who appear in
my data only prior to the period when the department of education in Massachusetts kept records on student
coursework. The column labeled “AP” further restricts the sample to observations that occur in grades 11 and
12, since Advanced Placement courses are typically unavailable to students in earlier grades.
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