Air Pollution Quotas and the Dynamics of Internal Skilled Migration in Chinese Cities

${\bf Bo}~{\bf Yu^1},$ Wang-Sheng Lee, Shuddhasattwa Rafiq

Department of Economics, Deakin University

November 23, 2020

 $^{1}\mathrm{Presenter}$

T., 4	/[:	- $ -$	1.1.Dl			
●0000	0000000	0000	00	00000	00	00000
Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion

Internal Migration: The Global Phenomenon

US (Molloy et al., 2011; JEP) and Europe (Cheng et al., 2014).

In China,

- Internal migrants exceed 225 million (NBS Census, 2010);
- Central-to-East Movement before 2010
- East-to-Central and West after 2010 (Wu et al., 2018; Khanna, 2019, NBER)

Air pollution spurs Chinese people's out-migration interests: Qin and Zhu $(2017,\,{\rm J.Pop.Econ})$

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
Air Pollu	tion in C	China				

Speaking of ${\bf Solution}$

- Binary: Two-Control Zone (TCZ, "两控区"): Tanaka (2015, JHE)
- Continuous: Target-based 11^{th} Five-Year Plan: Chen et al. (2018, JEEM)

Speaking of ${\bf Policy}~{\bf Cost}$

- Decrease employment due to Clean Air Act: Walker (2011; AER)
- GDP growth reduction in 11th Five-Year Plan: Chen et al. (2018b, JDE)

${\rm Speaking} \ {\rm of} \ {\rm Identification}$

- Cross-section: TCZ status and continuous SO_2 quota
- Time variation: 11^{th} FYP (2006 2010)
- thus, Diff-in-Diff

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
In This	Paper					

1. Investigate distribution effects of air pollution regulation on internal skilled migration using annual data

2. Explore the sectoral job transitions due to policy regulation

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
Comparir	ng with I	Important	Works			

Air Pollution Induced Migration

- 1. Internal migration in China; four censuses data: Chen, Oliva & Zhang (2017, NBER)
- 2. Skilled worker leaves polluted areas and increases output (three census data and CLDS): Khanna et al. (2019, NBER)

Environmental Regulation Induced Migration

- 1. Labour Reallocation and decreased employment on Clean Air Act in 1990 in US: Walker (2011, AER; 2013, AER P&P)
- 2. Air Pollution Prevention and Control Law in 1998 in China (long difference of two censuses data for 286 cities; proxy SO2 for law; IV): Chen (2019, W.P.)

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
Contribu	tions					

- 1. Decomposing change of relative labour demand due to environmental regulations into industrial levels; investigating the redistribution in high-skill occupations
- 2. Addresses a policy-relevant question: to what extent do environmental regulations in developing countries redistribute high-skilled workforce?
- 3. One of very few papers looking at the unexpected effects of environmental regulation on internal labour migration dynamics in China.
- 4. Using continuous measurement in addition to binary treatment at Tanaka (2015; JHE) and Chen et al. (2018b; JDE)

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	●000000	0000	00	00000	00	00000
Outmigra	tion Va	riables				

- **Total internal migration:** move Hukou (Qin and Liao, 2016, CER; Rafiq et al., 2017, Ener.Econ.)
- High-skilled labour: move urban non-agricultural Hukou
- Low-skilled labour: move rural Hukou

Formula: residual method (Feng et al., 2010, PNAS; Chen, Oliva and Zhang, 2017, NBER)

$$y_{c,t} = \frac{NonAgr_{c,t-1} - NonAgr_{c,t}}{NonAgr_{c,t-1}} - Natural Pop. Growth\%_{c,t}.$$

Positive $y_{c,t}$: net out-migration rate; Negative: net in-migration rate

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	000000	0000	00	00000	00	00000
Distribu	tion of N	Aigration 1	Variables			

• Measured by production activity in 2005 using industrial firm data: Chen et al. (2018b, JEEM)

$$SO_2 \ Quota_{c,05-10} = \Delta Quota_{p,05-10} \cdot \sum_{i=1}^{39} \mu_i \frac{output \ value_{i,c}}{output \ value_{i,p}}$$

- μ_i is proportion of industrial SO2 emission.
- $Quota_{p,05-10}$ is reduction amount of provincial SO2 emission in 5 years.

TCZ vs Non-TCZ Prefectures

	(1)	(2)
	TCZ	Non-TCZ
Description	Mean	Mean
Sectoral Employment (2000-2005):		
Share of employees of primary industry $(\%)$	3.48	7.23
Share of employees of secondary industry (%)	44.92	37.17
Share of employees of tertiary industry at urban district (%)	48.20	51.87
Unemployment in log form (ppl.)	9.82	9.44
Provincial employment share for air polluted industries $(\%)$	3.67	1.96
TCZ Selection Variables:		
Average SO2 concentration 1990-1995 (ug/m3)	16.63	12.50
Average Elevation (metre)	309.9	455.2
Average tempurature 1990-1995 (°C)	15.23	13.03
Sunshine Duration 1990-1995 (0.1 hrs)	5.34	5.91
Average humidity 1990-1995 (1%)	0.72	0.70
Average daily precipitation 1990-1995 (0.1 mm)	10638	8708
Average wind speed 1990-1995 (0.1 m/s)	22.23	22.40
Percentage of days in a year no greater than 5 °C 1990-1995 (%)	0.17	0.24

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	●000	00	00000	00	00000
Identific	ation					

$$y_{c,t} = \beta_1 \times TCZ_c \times Post_t + \mathbf{X_{ct}} + \mathbf{Z_c} \times \mathbf{f}(\mathbf{t}) + \delta_c + \lambda_t + \epsilon_{c,t}$$

$$y_{c,t} = \beta_1 \times Quota_c \times Post_t + \mathbf{X_{ct}} + \mathbf{Z_c} \times \mathbf{f}(\mathbf{t}) + \delta_c + \lambda_t + \epsilon_{c,t}$$

- Z_c is a vector of TCZ selection variable averaged from 1990 1995
- f(t) is a third-order polynomial time trends
- $\mathbf{X_{ct}}$: Push-pull factors that explains outmigration
- δ_c , λ_t : prefecture and year fixed effects

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
Balancir	ng Test					

	(1) Non- TCZ	$\stackrel{(2)}{\mathbf{TCZ}}$	(3)	(4)	(5)	(6)
VARIABLES	Mean	Mean	Unconditional difference	Conditional Difference (Prior)	Conditional Difference (11th FYP)	Conditional Difference (Whole)
High student/Teachers at urban (%)	17.461	16.304	1.156	-0.668	0.465	-0.051
$Doctor \times Hospital beds/Hospital no.$	11.621	12.255	634***	-0.030	0.034	0.067
(log unit)						
Green coverage rate (%)	27.358	29.253	-1.895	0.301	-1.041	-0.805
Prefecture GDP value (log 10,000	14.358	14.913	-0.555^{***}	-0.029	-0.012	-0.013
CNY)						
Social commodity consumption in log	13.279	13.921	-0.642^{***}	0.059	0.010	-0.003
(10,000 CNY)						
Constructed areas (log hectare)	3.558	3.985	-0.427^{***}	-0.012	-0.031	-0.016
Green land (log hectare)	6.815	7.344	-0.529^{***}	-0.024	-0.040	-0.058
Retail Sale (log billion CNY)	13.123	13.991	-0.868^{***}	0.109	-0.016	-0.038
Total Paved road (log KM2)	5.552	6.041	-0.489^{***}	0.006	0.016	0.019
Urban unemployment (log)	8.411	8.963	-0.664^{***}	0.144	-0.010	-0.055
Year coverage	2000	2000		2000	2000-2010	2000-2014

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
			T	1 3 6		

The Effect of SO2 Quota on Internal Migration

	(1)	(2)	(3)	(4)
Panel A: Total Ne	t Outmigrati	on Rate		
$TCZ \times Post2006$	0.206	0.048		
	(0.131)	(0.106)		
$Quota \times Post2006$			0.073^{*}	0.024
			(0.038)	(0.026)
Observations	3,021	4,140	3,021	4,140
Panel B: Low-Skill	ed Net Outr	nigration Rate		
$TCZ \times Post2006$	-0.101	-0.173		
	(0.226)	(0.198)		
$Quota \times Post2006$			-0.032	-0.034
			(0.127)	(0.097)
Observations	2,857	3,919	2,857	3,919
Panel C: High-Skil	led Net Out	migration Rate	:	
$TCZ \times Post2006$	0.413	0.140		
	(0.285)	(0.218)		
Quota \times Post2006			0.150^{*}	0.133
			(0.085)	(0.083)
Observations	2,849	3,919	2,849	3,919
City FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
TCZ Controls \times f(t)	Yes	Yes	Yes	Yes
Prefecture Controls	Yes	Yes	Yes	Yes
Year Coverage	2000-2010	2000 - 2014	2000-2010	2000 - 20

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	000●	00	00000	00	00000
Darrand	ATT. CO	Onata	for More T	10 CH		

Beyond ATT: SO_2 Quota for Non-Top 10 Cities

 $y_{c,t} = \beta_1(Quota_c \times Post_t \times Non_Top10_c) + \mathbf{X_{ct}} + \mathbf{Z_c} \times \mathbf{f}(\mathbf{t}) + \delta_c + \lambda_t + \epsilon_{c,t},$

	(1)	(2)	(3)	(4)
VARIABLES	Low-Skilled	Net Outmigration Rate	High-Skilled I	Net Outmigration Rate
$TCZ \times Post \times Top10$	-1.293		-0.862	
	(1.431)		(0.633)	
Quota \times Post \times Top10		-0.044		-0.088
		(0.171)		(0.096)
$TCZ \times Post \times Non_Top10$	0.034		0.519^{*}	
	(0.238)		(0.270)	
$Quota \times Post \times Non_Top10$		-0.017		0.290^{***}
		(0.168)		(0.088)
Observations	2,857	2,857	2,849	2.849
City FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
TCZ Controls \times f(t)	Yes	Yes	Yes	Yes
Prefecture Controls	Yes	Yes	Yes	Yes
Year Coverage	2000-2010	2000-2010	2000-2010	2000-2010

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	•0	00000	00	00000
Mechanis	m 1: Ch	ange in Ind	dustrial R	telative La	abour Dei	nand

Data: Annual Survey of Industrial Manufacturing Firms Cons

- survey firms with 500 million revenue plus (omitted firms due to inflation)
- survey firms with 2000 million revenue plus (incomparable)

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	●0000	00	00000
Machania	1 Cl_{1}	ana in Tra	Justial D	alating T.	har Da	la a a d

Mechanism 1: Change in Industrial Relative Labour Demand

- Data: Annual Survey of Industrial Manufacturing Firms (ASIF, 2000-2013)
- Adjusting survey cut-off
 - 1. Using total employment in each province at each year

 $EmpShare_Prov_{i,c,t} = \sum \frac{Employment \ at \ industry \ i \ in \ city \ c \ at \ year \ t}{Employment \ in \ Province \ p \ at \ year \ t}.$

2. Using national employment at each year

$$EmpShare_Total_{i,c,t} = \sum \frac{Employment \ at \ industry \ i \ in \ city \ c \ year \ t}{Employment \ in \ year \ t}$$

An illustration: Power Plants Location

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	0000	00	00000

DiD for Relative Labour Demand

VARIABLES	(1)	(2) EmpShare	(3) Province	(4)
		policies		
TC7 × Dest9006	0.020*		0.050***	
$1CZ \times Post2000$	(0.016)		-0.030	
Quota × Post2006	(0.010)	-0.011	(0.013)	-0.023**
		(0.009)		(0.011)
Observations	16,601	16,601	21,176	21,176
Panel B: Electricity, heat production and supply industry (SO2: 59%)				
$TCZ \times Post2006$	0.073^{*}		0.081	
	(0.041)		(0.053)	
$Quota \times Post2006$		0.022		0.010
		(0.028)		(0.041)
Observations	3,012	3,012	3,830	3,830
Panel C: Non-metal mineral products (SO2: 9%)				
$TCZ \times Post2006$	-0.062^{***}		-0.085***	
	(0.021)		(0.030)	
$Quota \times Post2006$		-0.038***		-0.061***
Olasses Para	0.007	(0.010)	0.040	(0.021)
Observations	3,037	3,037	3,848	3,848
Panel D: Ferrous metal smelting and pressing (SO2: 7.2%)				
$TCZ \times Post2006$	-0.082*		-0.133**	
0	(0.046)	0.050**	(0.054)	0.070***
Quota × Post2006		-0.050**		-0.076***
Observations	2,797	2,797	3,537	3,537
Panel E: Chemical materials and products (SO2: 5.9%)				
$TCZ \times Post2006$	-0.005		-0.048	
	(0.029)		(0.033)	
$Quota \times Post2006$		-0.031**		-0.035***
		(0.013)		(0.011)
Observations	3,031	3,031	3,848	3,848
Year Coverage	2000-2010	2000-2010	2000-2013	2000-2013

			_			
00000	0000000	0000	00	0000	00	00000
Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion

DDD for Relative Labour Demand

 $EmpShare_{i,c,t} = \beta_1(TCZ_c \times Post_t \times Dirty_i) + \delta_{it} + \gamma_{ct} + \lambda_{it} + \epsilon_{i,c,t}.$

	(1)	(2)	(3)	(4)
VARIABLES		EmpShar	re_Prov	
Panel A: Dirty Industrie				
$TCZ \times Post2006 \times Dirty$	-0.0409**	-0.0530***		
101 × 1002000 × Dilty	(0.0201)	(0.0188)		
Quota × Post2006 × Dirty	(0.0201)	(0.0100)	-0.0145*	-0.0204*
Quota × 1 Ost2000 × Dirty			-0.0145	-0.0204
01			(0.0087)	(0.0109)
Observations				
	91,172	116,088	91,172	116,088
Panel B: Excluding Ener	gy Industry	1		
$TCZ \times Post2006 \times Dirty$	-0.0520***	-0.0787***		
5	(0.0199)	(0.0212)		
$Quota \times Post2006 \times Dirty$	(()	-0.0214^{**}	-0.0274**
Q aaaaa			(0.0089)	(0, 0110)
Observations			(0.0000)	(0.0110)
	88.123	112.207	88.123	112.207
City-Vear FE	Ves	Ves	Ves	Ves
Ind Voor FF	Voc	Voc	Voc	Voc
City Ind FE	res	res	ies	res
City-ind FE	res	res	res	res
Year Coverage	2000-2010	2000-2013	2000-2010	2000-2013

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000

High-Skill Sectors Redistribution

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
Machani	am 9. C) Concor	tration			

Mechanism 2: SO_2 Concentration

- Alleviating skilled outmigration trend
- Skilled labour more sensitive to air pollution (Chen et al.2017; Khanna et al. 2019, NBER; Chen, 2019)

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	•0	00000
Robustn	less					

Results are explained by

- Natural population growth rate (×)
- Within city variation (\times)
- Alternative Quota Measurements (\checkmark):

$$SO_2 \ Quota_{c,05-10} = \frac{\Delta Quota_{p,05-10}}{Quota_{p,05}} \cdot \sum_{i=1}^{39} \mu_i \frac{output \ value_{i,c}}{output \ value_{i,p}}$$

• Randomisation and falsification test (\checkmark) : 1000 simulation of $Quota_c^{false} \times Post_t^{false} \times Non_Top10_c$. IntroductionVariablesIdentificationMechanismMechanismRobustnessConclusion0000000000000000000000000000000000

Randomisation of Treatment

• 1000 simulation of $Quota_c^{false} \times Post_t^{false} \times Non_Top10_c$ for low-skills and high-skills

26/31

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	●0000
What We	Learn?					

• The 11^{th} FYP redistributes approximately 41,000 net high-skilled outmigrants in non-mega cities per year

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
Implicati	ons					

- One stone for two birds!
 - Reducing regional inequality: China Western Development, The Rise of Central China
 - A tool for skilled population redistribution and improving air quality
- Changing in spatial distribution of high-skills improves overall labour productivity in China ($2 \times AEJ$: He et al., 2019; Chang et al., 2019)
 - Migrants may move from heavily polluted to less polluted area
 - Possible increased output value could be included in social welfare calculation
- Relevant to other developing countries: India, Malaysia, Vietnam...

Introduction 00000

ariables 200000 ntification 00 Mechanism 00 Mechanism 00000 Robustness 00 Conclusion 00●00

Thank you for listening!

@ Email: bo.yu@deakin.edu.au % Website: sites.google.com/view/boyulamont Introduction 00000 s Idei 0 000 fication

Mechanism 00 Mechanism 00000 Robustness 00 Conclusion 000€0

Chinese Power Plant Location

Source: Regional Emission inventory in Asia (REAS) version 2 Proposed Solution

Introduction	Variables	Identification	Mechanism	Mechanism	Robustness	Conclusion
00000	0000000	0000	00	00000	00	00000
Table of	Content	TS				

Introduction

Variables

Identification

Mechanism

Mechanism

Robustness

Conclusion