Methodology and Data

Main Results

Explanation 000000000

イロト 不同下 イヨト イヨト

3

1/31

Conclusion

Trend Factor in China: The Role of Large Individual Trading

Yang Liu Tsinghua University

Guofu Zhou Washington University in St. Louis

Yingzi Zhu Tsinghua University

Jan, 2021

Introduction 0000	Methodology and Data	Main Results 000000000	Explanation 0000000000	Conclusion
Overview				

- 2 Methodology and Data
- 3 Main Results

Introduction ●000	Methodology and Data	Main Results 000000000	Explanation 0000000000	Conclusion
Backgroun	d			

- China is the world's second-largest stock market:
 - Equity value, in trillions of US dollar: US(27.4), China(7.3), Japan(5.0)
 - Become increasingly open
- How well asset pricing models previously developed in US work in China?
 - Classic models: Fama and French (FF-3, 1993); Carhart-4 (1997)
 - Poor performance in China (Liu et al., 2019, Cheema et al. 2014)
- Features of Chinese market:
 - Different political and economic environment
 - Tight IPO constraints: Small firms as potential "Shells"
 - ...

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	0000	00000000	0000000000	
Background	b			

- Liu, Stambaugh and Yuan (2019) develop new factor models in China to account for the unique feature of small stocks.
- LSY-3 factor model:
 - Factors: market (MKT), size (SMB), value (VMG)
 - $\bullet\,$ Exclude the smallest 30% stocks because of the shell value
 - Value factor based on EP rather than BM
- LSY-4 factor model:
 - Adding a turnover factor: PMO (Pessimistic-Minus-Optimistic)
 - Abnormal turnover (AbTurn): the past month's turnover divided by the past year's turnover
- Dominates a replication of Fama-French-3 factor model in China

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
00●0	0000	000000000	0000000000	
Backgroun	d			

- We find limitations of LSY factor models:
 - PMO captures sentiment in small stocks but NOT in large stocks
 - Fail to explain some anomalies, i.e. reversal, illiquidity, IVOL ...
- We argue that, for models to work well in China, it is important to consider another critical feature of China's stock market: individual investors contribute over 80% of the total trading volume.

Introduction ○○○●	Methodology and Data	Main Results 000000000	Explanation 0000000000	Conclusion
Main Findi	ngs			

- We propose a 4-factor model by adding a **Trend** factor to LSY-3, to account for large retail participation in China.
 - Trend exploits both price and volume signals
 - Our model dominates all existing factor models in China
 - Explains all anomalies in China
 - Explains mutual fund, serving as a Carhart model in China
- We provide an economic explanation on the Trend factor.
 - The theoretical model implies noise trading is the driving force
 - Empirical tests show that Trend increases with noise trader participation and noise trader demand volatility
 - International comparison to emphasize the particular importance of volume in China

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	●○○○	000000000	0000000000	
Methodo	logy			

- Our trend factor extends the original price trend factor of Han, Zhou, and Zhu (2016) by adding volume signals to reflect noise trader behavior in China.
- Moving-average (MA) of price and volume of stock i with lag L in month t:

$$M_{i,L}^{P,t} = \frac{P_{i,d}^{t} + P_{i,d-1}^{t} + \dots + P_{i,d-L+1}^{t}}{L},$$

$$M_{i,L}^{V,t} = \frac{V_{i,d}^{t} + V_{i,d-1}^{t} + \dots + V_{i,d-L+1}^{t}}{L}.$$
(1)

• Normalization of MA signals:

$$\widetilde{M}_{i,L}^{P,t} = \frac{M_{i,L}^{P,t}}{P_{i,d}^{t}}, \widetilde{M}_{i,L}^{V,t} = \frac{M_{i,L}^{V,t}}{V_{i,d}^{t}}.$$
(2)

- Following Brock et al. (1992) and HZZ (2016), we use various lag length (L): 3-, 5-, 10-, 20-, 50-, 100-, 200-, 300-, and 400-days.
- We use alternative specifications for robustness check.

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	⊙●○○	000000000	0000000000	
Methodolo	gy			

• At the end of each month, cross-section regression:

$$r_{i,t} = \beta_0 + \sum_j \hat{\beta}_j^{P,t} \widetilde{M}_{i,L_j}^{P,t-1} + \sum_j \hat{\beta}_j^{V,t} \widetilde{M}_{i,L_j}^{V,t-1} + \epsilon_i^t, \quad i = 1, ..., n.$$
(3)

• Trend Expected Return (ER_{Trend}):

$$ER_{Trend}^{i,t+1} = \sum_{j} E_t(\beta_j^{P,t+1}) \widetilde{M}_{i,L_j}^{P,t} + \sum_{j} E_t(\beta_j^{V,t+1}) \widetilde{M}_{i,L_j}^{V,t}, \quad (4)$$

• where the coefficient forecast:

$$E_t(\beta_j^{x,t+1}) = (1-\lambda)E_{t-1}(\beta_j^{x,t}) + \lambda \hat{\beta}_j^{x,t}, \quad x = P, V.$$
 (5)

• $\lambda = 0.02$, and alternative values for robustness check.

• Out-of-sample results: ER_{Trend} only relies on historical information.

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	○○●○	000000000	0000000000	
Factor Definition				

- Following Hou, Xue, and Zhang (2015), we use a $2 \times 3 \times 3$ sorting.
- At the end of each month, independently sort stocks into :
 - 2 size groups by size: Small(S), Big(B)
 - 3 EP groups by EP: Growth(G), Neutral(N), Value(Value)
 - 3 trend groups by *ER*_{Trend}: Low(L), Neutral(N), High(H)
- Use the 18 VW portfolios to construct factor:
 - SMB = (SGL+SGN+SGH+SNL+SNN+SNH+SVL+SVN+SVH)/9 -(BGL+BGN+BGH+BNL+BNN+BNH+BVL+BVN+BVH)/9
 - VMG = (SVL+SVN+SVH+BVL+BVN+BVH)/6 -(SGL+SGN+SGH+BGL+BGN+BGH)/6
 - Trend = (SGH+SNH+SVH+BGH+BNH+BVH)/6 -(SGL+SNL+SVL+BGL+BNL+BVL)/6
- Factors are jointly controlled for each other.

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	○○○●	000000000	000000000	
Data				

- Domestic stocks on Chinese A-Shares in Shanghai and Shenzhen Stock Exchange
- Period: January, 2005 June, 2018
- Database: WIND
- Following LSY (2019), exclude the smallest 30% stocks
- Use the most recent available data to calculate valuation ratio
- Portfolios are value-weighted.

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	0000	••••••	0000000000	
Summary	Statistics			

	MKT	SMB	VMG	РМО	SMB*	VMG*	Trend
Panel A: Summ	nary stati	stics					
Mean (%)	0.91	1.00**	1.09***	0.89***	0.90**	1.29***	1.43***
	(1.20)	(2.42)	(4.06)	(3.26)	(2.46)	(5.11)	(6.10)
Std. dev. (%)	8.30	4.96	3.97	3.92	4.32	3.35	3.00
Sharpe ratio	0.11	0.20	0.28	0.23	0.21	0.38	0.48
Skewness	-0.38	-0.05	0.21	-0.73	0.08	0.14	0.33
MDD (%)	69.33	26.06	19.69	25.69	23.09	13.06	13.17
Panel B: Correl	ation ma	trix					
MKT	1.00	0.10	-0.26	-0.28	0.08	-0.16	-0.12
SMB	0.10	1.00	-0.63	0.10	0.96	-0.56	0.13
VMG	-0.26	-0.63	1.00	-0.03	-0.62	0.94	0.04
PMO	-0.28	0.10	-0.03	1.00	0.09	-0.05	0.47
SMB*	0.08	0.96	-0.62	0.09	1.00	-0.58	0.10
VMG*	-0.16	-0.56	0.94	-0.05	-0.58	1.00	0.09
Trend	-0.12	0.13	0.04	0.47	0.10	0.09	1.00

Introduction 0000	Methodology and Data	Main Results ○●0000000	Explanation 0000000000	Conclusion

Comparison of PMO vs Trend

- Triple sort: $2(size) \times 3(EP) \times 3(AbTurn \text{ or } ER_{Trend})$
- PMO is weak in large stocks, while Trend is persistent

		PMO			Trend	
Panel A: Con	trol for Size a	nd EP				
Size:	Small	Big	Average	Small	Big	Average
EP-Low	1.56***	0.51	1.04***	2.22***	1.35***	1.78***
	(5.74)	(1.10)	(2.92)	(8.61)	(2.93)	(6.09)
EP-Mid	1.31***	0.40	0.85**	1.73***	1.14***	1.44***
	(3.92)	(0.88)	(2.41)	(6.30)	(3.35)	(5.53)
<i>EP</i> -High	1.23***	-0.07	0.58*	1.31***	0.82*	1.07***
	(2.99)	(-0.17)	(1.89)	(4.27)	(1.94)	(3.54)
Average	1.37***	0.28	0.82***	1.76***	1.10***	1.43***
	(4.51)	(0.83)	(2.82)	(7.51)	(3.45)	(6.10)

Methodology and Data Main Results Explanation Conclus 0000 00€000000 000000000

Comparison of PMO vs Trend

- Triple sort: 2(size)×3(AbTurn)×3(*ER*_{Trend})
- PMO is subsumed by Trend

		РМО			Trend	
Panel B: Cont	rol for Size	e and ERT	rend			
Size:	Small	Big	Average	Small	Big	Average
Trend-Low	0.71**	0.35	0.53			
	(2.17)	(0.73)	(1.60)			
Trend-Mid	0.64**	-0.94**	-0.15			
	(2.05)	(-2.00)	(-0.47)			
Trend-High	1.29***	-0.25	0.52			
	(3.15)	(-0.49)	(1.47)			
Average	0.88***	-0.28	0.30			
	(2.98)	(-0.79)	(1.07)			
Panel C: Cont	rol for Size	e and AbT	urn			
Size:	Small	Big	Average	Small	Big	Average
AbTurn-Low				1.89***	0.96**	1.42***
				(4.70)	(2.35)	(4.09)
AbTurn-Mid				1.16***	0.51	0.83***
				(4.75)	(1.13)	(3.25)
AbTurn-High				1.31***	1.55***	1.43***
				(4.17)	(2.85)	(4.50)
Average				1.45***	1.01***	1.23***
				(5.78)	(3.00)	(5.13)

13/31

3

< ≣ >

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	0000	○○○●○○○○○	0000000000	
Explaining	g Power			

• Model competitors:

- Our 4-factor model: Our-4
- Liu, Stambaugh, and Yuan (2019): LSY-3, LSY-4

- Hou, Xue, and Zhang (2015): q-4
- Fama and French (2015): FF-5
- Comparing model performance in:
 - Explaining other models
 - Explaining anomalies
 - Explaining mutual fund portfolios

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	0000	○○○○●○○○○	000000000	
Explaining	Other Models			

• Our 4-factor model dominates existing models in explaining each other.

	Panel A: LSY	∕-3 vs Our-4	Panel B: LSY	′-4 vs Our-4
Measure	LSY-3	Our-4	LSY-4	Our-4
Average $ \alpha $	0.53	0.05	0.45	0.15
Average $ t $	2.86	0.43	2.99	0.67
Δ	0.24	0.01	0.20	0.02
GRS	9.37***	0.29	7.46***	0.62
	$[< 10^{-5}]$	[0.75]	[<10 ⁻³]	[0.60]
	Panel C: q-	4 vs Our-4	Panel D: FF	-5 vs Our-4
Measure	q-4	Our-4	FF-5	Our-4
Average $ \alpha $	0.80	0.06	0.77	0.12
Average $ t $	4.49	0.32	3.55	0.31
Δ	0.39	0.00	0.36	0.01
GRS	16.64***	0.13	14.96***	0.16
	[<10 ⁻⁸]	[0.94]	[<10 ⁻⁷]	[0.96]

Introduction 0000	Methodology and Data	Main Results ○○○○○●○○○	Explanation 0000000000	Conclusion
Explaining	g Anomalies			

• Anomalies in China: 10 Categories, 18 anomalies in total.

- Size: Market capitalizaiton
- Value: EP, BM, CP
- Turnover: Turnover, AbTurn
- Trend: TrendPV, TrendP, TrendV
- Illiquidity: Amihud (2002) illiquidity
- Past return: Reversal, Momentum
- Profitability: ROE
- Volatility: VOL, IVOL, MAX
- Accrual: Accrual
- Investment: Asset gorwth
- Including all the anomalies tested in LSY (2018).
- Anomalies is defined as the spread between extreme decile portfolios.

Introduction 0000	Methodology and Data 0000	Main Results	Explanation 0000000000	Conclusion
Explaining	g Anomalies			

• Our 4-factor model dominates existing models by explaining all the anomalies, including those that failed to be explained by LSY factor models.

Measure	Unadjusted	LSY-3	LSY-4	q-4	FF-5	Our-4
Average $ \alpha $	1.29	0.88	0.53	1.25	0.94	0.35
Average $ t $	2.66	2.05	1.33	2.92	2.36	0.77
Δ	0.55	0.35	0.30	0.47	0.38	0.18
GRS	5.41***	2.50***	2.04**	3.75***	2.91***	1.08
	[<10 ⁻⁸]	[0.00]	[0.02]	$[< 10^{-4}]$	[<10 ⁻³]	[0.38]

Introduction 0000	Methodology and Data	Main Results ○○○○○○○●○	Explanation 0000000000	Conclusion
Explaining	, Mutual Funds			

• Our 4-factor model dominates existing models by producing smaller pricing error in explaining mutual fund performance.

Measure	Unadjusted	LSY-3	LSY-4	q-4	FF-5	Our-4
Average $ \alpha $	1.47	0.38	0.34	0.41	0.50	0.26
Average $ t $	2.04	1.42	1.14	1.51	1.87	0.89
Δ	0.11	0.05	0.04	0.04	0.08	0.03
GRS	1.67*	0.56	0.45	0.53	1.01	0.24
	[0.09]	[0.84]	[0.92]	[0.86]	[0.44]	[0.99]

Introduction 0000	Methodology and Data	Main Results ○○○○○○○●	Explanation 0000000000	Conclusion
Sharpe Rat	io Tests			

• *Sh*² of Barillas and Shanken (2017) is the squared Sharpe ratio of the tangency portfolio spanned by the factor.

• Assume
$$Sh^2(f_1) > Sh^2(f_2)$$
, then

$$Sh^{2}(f_{1}, f_{2}, R) - Sh^{2}(f_{1}) < Sh^{2}(f_{1}, f_{2}, R) - Sh^{2}(f_{2}),$$
 (6)

• A higher *Sh*² suggests greater explanatory power regardless of the test assets.

	LSY-3	LSY-4	q-4	FF-5	Our-4
nel A	A: Sh ²				
h ²	0.363	0.417	0.215	0.246	0.598
anel E	3: Sh ² diffe	rence			
SY-3		0.054	-0.148**	-0.117	0.235**
		[0.386]	[0.045]	[0.247]	[0.018]
SY-4	-0.054		-0.202**	-0.171*	0.181**
	[0.386]		[0.016]	[0.084]	[0.012]
q-4	0.148**	0.202**		0.031	0.383***
	[0.045]	[0.016]		[0.768]	[0.000]
FF-5	0.117	0.171*	-0.031		0.352***
	[0.247]	[0.084]	[0.768]		[0.000]
Our-4	-0.235**	-0.181**	-0.383***	-0.352***	
	[0.018]	[0.012]	[0.000]	[0.000] 🗆	

Introduction 0000	Methodology and Data	Main Results 000000000	Explanation •000000000	Conclusion
A Theore	tical Model			

- An explanation for the trend factor in China: extending the equilibrium model of Han, Zhou, and Zhu (2016).
- One risky asset:
 - D_t: Dividend stream
 - π_t : Long-term mean growth rate of dividend
- Three types of investors with asymmetric information
 - Informed: Risk-averse arbitrageurs, limited arbitrage due to noise trader.
 - Uniformed: Use MA of price (A_t) to infer information.
 - Noise traders: Liquidity demand θ_t is given by a exogenous process

$$d\theta_t = -\alpha_\theta \theta_t dt + \sigma_\theta dB_{3t},\tag{7}$$

• σ_{θ} is the noise trader liquidity demand fluctuation and thus measures the noise trading

• Additional assumption: the noise trader demand (θ_t) can be partially observed by another observable variable Y_t , which is exogenous to the model:

$$E[\theta_t | Y_t] = \xi_0 + \xi_1 Y_t.$$
(8)

• Based on Theorem 1 of Han, Zhou, and Zhu (2016), we have

$$R_{t+1} = \gamma_0 + \gamma_1 D_t + \gamma_2 \pi_t + \gamma_3 Y_t + \gamma_4 A_t,$$

- where γ 's are determined by the model parameters.
- Y_t and A_t can predict return

Introduction 0000	Methodology and Data	Main Results 000000000	Explanation 0000000000	Conclusion
A Theoreti	cal Model			

- Noise trader demand is correlated with trading volume:
 - Campbell et al. (1993) theoretically imply that the liquidity demand of noise traders must reveal itself with high trading volume.
 - Lee and Rui (2001) empirically verify the implication.
 - Bloomfield, OHara, and Saar (2009) experimentally show the increase of uninformed traders, who behave largely as noise traders, dramatically increases the trading volume
- Especially true for China, given the retail trading dominance.
 - Use MA of volume over various horizons to reflect noise trading activity
 - Our trend factor is constructed through $\gamma_3 Y_t + \gamma_4 A_t$

Introduction 0000			Explanation 000000000	Conclusion
A Theoreti	cal Model			

- What is the influence of noise trader risk (σ_{θ}) on the trend factor?
- Trend measure: $\gamma_3 Y_t + \gamma_4 A_t$
 - *Y_t*: Volume signals
 - At: Price signals

$\sigma_{ heta}$	1.0	1.5	2.0	2.5	3.0	3.5	4.0
γ_3	0.29	0.30	0.31	0.33	0.36	0.40	0.47
γ_4	0.94	0.95	0.95	0.95	0.96	0.96	0.97
$\begin{array}{c} \gamma_3 \\ \gamma_4 \\ \gamma_3 / \gamma_4 \end{array}$	0.31	0.32	0.33	0.35	0.38	0.42	0.48

- Model implication:
 - $\gamma_3, \gamma_4 \Uparrow$ with σ_{θ} : Trend effect increases with noise trader risk.
 - γ_3/γ_4 \Uparrow with σ_{θ} : The role of volume increases with noise trader risk.

Introduction 0000	Methodology and Data	Main Results 000000000	Explanation	Conclusion
Empirical 7	Test			

	Low	2	3	4	High	Trend	$\Delta Trend$
Panel A: T	rend and	the parti	cipation c	of retail inv	estors		
RetailLow	1.09	1.63*	1.75**	2.10***	2.23***	1.14**	0.81*
	(1.37)	(1.83)	(2.02)	(2.67)	(2.69)	(2.52)	(1.77)
Retail _{Mid}	0.44	0.93	1.22	1.73**	1.85*	1.42***	
	(0.52)	(1.04)	(1.56)	(1.98)	(1.96)	(3.19)	
Retail _{High}	-0.78	0.35	0.98	0.94	1.17	1.95***	
0	(-0.86)	(0.38)	(1.07)	(0.95)	(1.24)	(4.13)	
Panel B: T	rend and	the volat	ility of no	oise trader	demand		
VolLow	0.98	1.24	1.70*	1.88**	1.80*	0.81**	0.90**
	(1.09)	(1.39)	(1.88)	(2.04)	(1.96)	(2.44)	(2.51)
Vol _{Mid}	0.80	1.20	1.82**	2.11**	1.92**	1.12***	
	(0.89)	(1.32)	(2.05)	(2.27)	(2.11)	(2.92)	
Vol _{High}	0.30	1.01	1.38	1.77*	2.01**	1.71***	
	(0.34)	(1.11)	(1.57)	(1.92)	(2.22)	(4.04)	

Introduction	

Methodology and Data

Main Results

Explanation

Conclusion

Empirical Test: the US, 1945-2018

Panel A: Summ	ary statistic	s for the t	rend factor	s in the US			
	TrendPV	TrendP	TrendV	$\Delta_{TrendP}^{TrendPV}$	$\Delta_{TrendV}^{TrendPV}$		
Mean (%)	1.15***	1.06***	0.25***	0.09***	0.90***		
	(14.31)	(13.37)	(4.16)	(3.34)	(11.74)		
Std. dev. (%)	2.32	2.36	1.94	0.80	2.43		
Sharpe ratio	0.50	0.45	0.13	0.12	0.37		
Panel B: Trend	and the pa	rticipation	of retail in	vestors			
	Low	2	3	4	High	Trend	Δ Trend
Retail _{Low}	0.55**	0.92***	1.11***	1.29***	1.53***	0.98***	0.97**
	(2.06)	(4.09)	(4.94)	(5.83)	(5.89)	(4.70)	(2.36)
Retail _{Mid}	0.29	0.96***	1.12***	1.48***	1.78***	1.49***	
	(0.98)	(4.24)	(5.40)	(6.18)	(6.07)	(5.83)	
Retail _{High}	-0.11	0.84***	1.29***	1.65***	1.84***	1.95***	
-	(-0.35)	(3.16)	(5.70)	(6.18)	(4.06)	(4.47)	
Panel C: Trend	and volatili	ty of noise	trader der	nand			
	Low	2	3	4	High	Trend	Δ Trend
VolLow	0.26	0.78***	1.00***	1.32***	1.51***	1.25***	0.30**
	(1.38)	(5.03)	(7.27)	(8.77)	(8.91)	(9.20)	(2.06)
Vol _{Mid}	0.25	0.82***	1.12***	1.24***	1.68***	1.43***	
	(1.34)	(5.49)	(7.37)	(7.73)	(8.54)	(10.27)	
Vol _{High}	0.26	0.84***	0.96***	1.31***	1.81***	1.55***	
-	(1.18)	(5.18)	(6.07)	(7.25)	(7.67)	(8.60)	

(ロ) (四) (三) (三) (三) (○)

- What is the importance of volume trend in China vs the US?
- Use Sharpe (1988) style regression to identify the contribution of volume.

• TrendPV_t =
$$\alpha + \beta_V$$
 TrendV_t + β_P TrendP_t + ϵ_t ,

• s.t.
$$\beta_V \ge 0, \beta_P \ge 0, \beta_V + \beta_P = 1.$$

- International evidence in 12 markets
 - 5 major emerging markets in Asia:
 - China, India, Malaysia, S.Korea, Taiwan
 - 7 developed markets in G7:
 - US, Canada, UK, Germany, France, Italy, Japan

Introduction	Methodology and Data	Main Results	Explanation	Conclusion
0000	0000	00000000	0000000000	
Empirical ⁻	Test: International	Evidence-1		

• Cross-markets comparison:

- Volume contributes the highest in China, and the lowest in the US
- Volume is more important in emerging markets

Emerging markets						Developed markets						
	China	India	Malaysia	S.Korea	Taiwan	US	Canada	UK	Germany	France	Italy	Japan
Panel A:	Coefficien	ts of Trend	V in each m	arket								
TrendV	0.48***	0.22***	0.33***	0.27***	0.38***	0.05***	0.13***	0.17***	0.08***	0.15***	0.20***	0.09***
	(14.56)	(8.74)	(9.61)	(5.73)	(6.74)	(5.57)	(3.82)	(8.43)	(2.93)	(6.99)	(7.18)	(6.21)
Δ_{China}	· - ·	-0.26***	-0.15***	-0.21***	-0.10	-0.43***	-0.35***	-0.31***	-0.40***	-0.33***	-0.28***	-0.39***
	-	$[<10^{-3}]$	[0.03]	[0.00]	[0.48]	[<10 ⁻⁵]	$[<10^{-4}]$	$[<10^{-4}]$	[<10 ⁻⁴]	$[<10^{-4}]$	[<10 ⁻⁴]	[<10 ⁻³]
Δ_{US}	0.43***	0.17***	0.28***	0.22***	0.33***	· - ·	0.07*	0.12***	0.03	0.10***	0.15***	0.04
	[<10 ⁻⁵]	$[< 10^{-3}]$	$[< 10^{-4}]$	$[<10^{-3}]$	[0.00]	-	[0.09]	[0.00]	[0.41]	[0.00]	[0.00]	[0.33]

Introduction 0000	Methodology and Data	Main Results 00000000	Explanation ○○○○○○○●○	Conclusion
Empirical T	est: International	Evidence-2		

- IMF (2005): the importance of institutional investors are growing globally.
- Time-series comparison within each market:
 - Volume is more important in the earlier period in emerging markets
 - Volume is persistently important in China
 - Volume contributes almost the same in most of developed markets

	Emerging markets				Developed markets							
	China	India	Malaysia	S.Korea	Taiwan	US	Canada	UK	Germany	France	Italy	Japan
Panel B: Coefficients of TrendV in different periods												
Earlier	0.47***	0.29***	0.46***	0.37***	0.44***	0.05***	0.14***	0.19***	0.09*	0.24***	0.29***	0.08***
	(8.81)	(7.38)	(8.27)	(4.55)	(4.70)	(4.33)	(2.65)	(6.35)	(1.89)	(7.23)	(5.98)	(3.49)
Recent	0.49***	0.08***	0.13***	0.17***	0.22***	0.06***	0.12***	0.11***	0.06**	0.03	0.10***	0.10***
	(11.59)	(2.99)	(4.54)	(3.45)	(4.49)	(3.46)	(2.81)	(3.76)	(1.99)	(1.17)	(3.80)	(7.09)
$\Delta^{Earlier}_{Recent}$	-0.02	0.21***	0.33***	0.20**	0.22	-0.01	0.02	0.08	0.03	0.21***	0.19***	-0.02
	[0.82]	$[< 10^{-2}]$	$[< 10^{-3}]$	[0.03]	[0.24]	[0.68]	[0.73]	[0.25]	[0.74]	[0.00]	[0.00]	[0.67]

• In the US, volume contributes 22%, 16%, 7%, 5% in the four sub-periods during 1945 to 2018.

Incremental Explanatory Dower						
			000000000			
Introduction	Methodology and Data	Main Results	Explanation	Conclusion		

- Incremental Explanatory Power
 - *TrendP* adds strong explanatory power in both China and the US.
 - TrendPV further enhances the pricing ability in China, but not in the US.

Panel A: Explaining anomalies in China					
Measure	LSY-3	TrendP-4	TrendPV-4		
Average $ \alpha $	0.88	0.57	0.35		
Average $ t $	2.05	1.31	0.77		
Δ	0.35	0.25	0.18		
GRS	2.50***	1.61*	1.08		
	[0.00]	[0.08]	[0.38]		
Panel B: Explaining anomalies in the US					
Measure	FF-3	TrendP-4	TrendPV-4		
Average $ \alpha $	0.61	0.43	0.39		
Average $ t $	3.30	2.19	2.00		
Δ	0.29	0.18	0.17		
GRS	8.21***	4.67***	4.20***		
	[0.00]	[0.00]	[0.00]		

Introduction 0000	Methodology and Data	Main Results 000000000	Explanation 0000000000	Conclusion
Conclusion				

- We extend LSY model into a 4-factor model by adding a Trend factor to account for large individual participation in China.
 - Trend factor exploits both price and volume trends
 - Our model dominates all existing models in China
 - Promising candidate for Carhart model in China
- Economic explanations on the Trend factor
 - Theoretical model and empirical test suggest noise trading is the key driving force
 - International comparison highlights the particular importance of volume in China

Introduction	Methodology and Data	Main Results	Explanation	Conclusion

• Thanks !